

www.elsevier.nl/locate/poly

Polyhedron 19 (2000) 545-548

Addition of the alkenyl C–H bond of enamines to η^3 -allenyl/propargyl complexes leading to the formation of pyrrole derivatives

An-Chi Yeh, Shang-I Chen, Ai-Jan Chen, Gene-Hsiang Lee, Yu Wang, Jwu-Ting Chen*

Department of Chemistry, National Taiwan University, Taipei, 106 Taiwan, Republic of China

Received 4 October 1999; accepted 24 November 1999

Abstract

The reactions of enamines (ROC)HC=CMe(NHⁱPr) with η^3 -allenyl/propargyl complexes [M(PPh_3)_2(\eta^3-C_3H_3)]⁺ (M=Pd, Pt) result in the formation of pyrrole derivatives. Such reactions involve the intermediates of central-carbon-substituted η^3 -allyl complexes {M(PPh_3)_2(\eta^3-CH_2C[C(COR)=CMe(NHⁱPr)]CH_2)}⁺ which are formed by hydroalkenylation to the C_3H_3 moiety. ©2000 Elsevier Science Ltd All rights reserved.

Keywords: Enamine; Alkenylation; Pyrrole

1. Introduction

The addition of an olefinic C–H bond across an unsaturated carbon–carbon bond is highly interesting from the viewpoint of synthetic methodology [1]. The involvement of transition metal complexes in such processes is often crucial, particularly for the development of novel ways of C–C bond formation [2]. We and other groups have discovered that cationic η^3 -allenyl/propargyl complexes generally behave as good carbon electrophiles and are subject to the addition with a wide variety of nucleophiles containing O, S, Se, N, P or C donor [3–7]. Meanwhile, such complexes exhibit keen chemical selectivity. For instance, tertiary amine such as Et₃N can be added to [Pt(PPh₃)₂(η^3 -C₃H₃)]⁺ (**3**) via C–N bond formation to give a platinacyclobutene adduct [8]. In contrast, compound **3** activates a phenyl C–H bond in NMe₂Ph to allow arylation, yielding an arylallyl complex [9].

We have chosen to use enamines that are known to contain both active N–H as well as C–H bonds to react with η^3 allenyl/propargyl complexes. Our studies lead to the discovery of the first examples of hydroalkenylation of metal complexes of allenyl/propargyl. The insertion of η^3 -C₃H₃ to an enamine C–H bond affords a diene 'skeleton' which allows incorporation of an amino functionality to form the pyrrole derivatives.

2. Results and discussion

The enamines Me(NHⁱPr)C=CHR [R=COMe (1a), CO₂Me (1b)] have been prepared by the reactions of α , γ diketone or ketoester methane, respectively, with ⁱPrNH₂ [10]. The NMR data for compounds 1a and 1b indicate that tautomerization overwhelmingly inclines to the enamine form, which is presumably stabilized by hydrogen bonding between N–H and the keto group:

Previous studies have shown that amines and amino derivatives with active hydrogen are prone to undergo regioselective hydroamination to $[M(PPh_3)_2(\eta^3-C_3H_3)]^+$ [M=Pd(2), Pt (3)], yielding azatrimethylenemethane (N-TMM) complexes and their derivatives (N-TMM represents the azatrimethylenemethane complexes $M[CH_2C(NR)CH_2])$ [11]. However, heating a mixture of compounds 2 and 1b at 50°C was found to generate the pyrrole derivatives. Further investigation shows that reactions of equimolar amounts of compound 2 and enamine at 25°C undergo unprecedented hydroalkenylation. The regioselective C–C coupling takes place between the central carbon of the C₃H₃ and the βolefinic carbon of the enamine, and results in enamine– allyl complexes of the formula of Pd(PPh_3)₂{ η^3 -CH₂C-

^{*} Corresponding author. Tel: +886-2-2366-0352; fax: +886-2-2363-6359; e-mail: jtchen@ccms.ntu.edu.tw

^{0277-5387/00/\$ -} see front matter ©2000 Elsevier Science Ltd All rights reserved. PII S $0277-5387(99)\,00404-0$

 $[C(COR)CMe(NH^{i}Pr)]CH_{2}^{+}$ [R = Me (4a), OMe (4b)] with yields of over 75%. Complexes 4a and 4b were characterized mainly by NMR techniques and elemental analysis. By heating the reaction solutions of complexes 4a and 4b to 50°C, or treating them with base, yielded the pyrrole derivatives 6a and 6b, respectively (Scheme 1).

The analogous reactions of $[Pt(PPh_3)_2(\eta^3-C_3H_3)](BF_4)$ (3) with compound 1a or 1b produced $\{Pt(PPh_3)_2\}$ $(\eta^3$ -CH₂C[C(COR)=CMe(NHⁱPr)]CH₂)}(BF₄) [R=Me (4a'), OMe (4b')], also in very good yields. The enamineallyl platinum complexes could alternatively be formed from the reactions of *trans*-Pt(Br)(PPh₃)₂(η^1 -CHCCH₂) and enamine at 25°C, but with longer reaction time. Single-crystal X-ray crystallography provides the authentic molecular structure of 4b'. Fig. 1 shows its ORTEP drawing. The length of C2–C4 is 1.46(2) Å, a typical C_{sp^2} - C_{sp^2} single bond. The dihedral angle between the C1-C2-C3 and C1-Pt-C2 planes is $68(1)^{\circ}$ and $\angle C1$ –C2–C3 is $113(1)^{\circ}$, which is consistent with the η^3 -allyl characteristic and somewhat approaches that of the η^3 -trimethylenemethane species [7,12]. This indicates that there is significant electronic delocalization in the planar N-C5-C4-C10-O1 moiety of enamine. The distance between N and O1 atoms is 2.52 Å, which is suitable for hydrogen bonding in the vicinity. However, the generated amino hydrogen points out of the enamine plane with $\angle O1$ - $H-N = 116(7)^{\circ}$. The single crystals of compound 4b' were obtained by recrystallization in CH2Cl2-Et2O solution. Crystal data: orthorhombic $P2_12_12_1$ a = 11.100(5)Á. b = 17.764(4) Å, c = 21.951(4) Å, V = 4328(2) Å³, Mo Ka radiation $\lambda = 0.7107$ Å, Z=4, $\mu = 3.398$ mm⁻¹, 5490 total reflections, 3032 observed reflections $(I > 2.0\sigma(I))$, $R = 0.044, R_w = 0.036.$

Ring closure in compounds **4a** and **4b** could be accomplished by heating or treating with base as well, except that cyclization of compound **4b** first generates a dihydropyrrole derivative (**5b**). Upon chromatographing on a silica gel column, **5b** would isomerize to the stable pyrrole product (**6b**). Such a reaction is mechanistically comparable to furan formation from an enolate–allyl complex [13].

3. Conclusions

The regioselective addition of enamine to η^3 -allenyl/propargyl complexes demonstrates a new type of 'alkene-

Fig. 1. ORTEP drawing of $\{Pt(PPh_3)_2(\eta^3-CH_2C[C(CO_2Me)-CMe(NH^iPr)]CH_2)\}(BF_4)$ (**4b**') with 50% probability ellipsoids. All hydrogen atoms except the N-bound one are omitted for clarity. Selected bond distances (Å) and angles (°): Pt–P1 2.298(4), Pt–P2 2.300(3), Pt–C1 2.17(1), Pt–C2 2.24(1), Pt–C3 2.19(1), C1–C2 1.40(2), C2–C3 1.45(2), C2–C4 1.46(2), C4–C5 1.44(2), C4–C10 1.41(2), C5–N 1.32(2), C10–O1 1.22(2); \angle P1–Pt–P2 100.3(1), \angle C1–Pt–C3 66.2(5), \angle C1–C2–C3 113(1), \angle C1–C2–C4 122(1), \angle C3–C2–C4 125(1), \angle C5–C4–C10 116(1), \angle C5–C4–C2 118(1), \angle C2–C4–C10 126(1), \angle C4–C5–N 120(1), \angle C4–C10–O1 130(1).

alkyne' coupling which affords new enamine–allyl complexes and leads to the formation of pyrrole derivatives.

4. Experimental

4.1. General

Commercially available reagents were purchased and used without purification unless necessary. Solvents were dried using standard procedures. All reactions and other manipulations were carried out under a nitrogen atmosphere, using standard Schlenk techniques. The IR spectra were recorded on a Bio-Rad FTS-40 spectrophotometer. The NMR spectra were run on either a Bruker AC-200 or ACE-300 spectrometer. For the ³¹P NMR spectra, the spectrometer frequency at 81.015 or 121.49 MHz was employed, and the chemical shifts are given in ppm (δ) relative to 85% H₃PO₄ in CDCl₃. Values upfield of the standard are defined as negative. The corresponding frequencies for ¹³C NMR spectra were at 75.47 MHz, respectively. Mass spectrometer. Elemental analyses were done on a Perkin-Elmer 2400 CHN analyzer.

4.2. Synthesis and characterization

4.2.1. $\{Pd(PPh_3)_2(\eta^3 - CH_2C[C(COMe) = CMe(NH^iPr)] - CH_2)\}(BF_4)$ (4a)

The reaction of compound **2** (300 mg, 0.39 mmol) and (MeOC)HC=CMe(NHⁱPr) (**1a**) (55 μ l, 0.039 mmol) was

carried out in 20 ml of predried CH_2Cl_2 at $-30^{\circ}C$. After stirring for 90 min, the solution was concentrated to 2 ml. Addition of 20 ml of dried Et₂O gave a yellow solid product. Recrystallization resulted in compound 4a in 76% isolated yield (260 mg). ³¹P NMR (CDCl₃, 300 MHz): δ 23.8. ¹H NMR (CDCl₃, 300 MHz): δ 1.21, 1.24 (3H, 3H, s, s, CH₃), 2.00 (6H, d, $J_{\rm HH}$ = 6.9 Hz, CH(CH₃)₂), 3.50 (2H, m, br, H_{anti}), 3.69 (1H, m, CH(CH₃)₂), 4.12 (2H, br, H_{svn}), 7.02-7.73 (30H, m, phenyl H), 12.6 (1H, d, $J_{\rm HH}$ = 2.2 Hz, NH). ¹³C NMR (CD₃CN, 300 MHz): δ 18.4, 23.7 (CH₃), 30.5 (CH_2) , 46.2 $(COCH_3)$, 80.1 (t with virtual coupling, $J_{\rm CP} = 15.4 \, {\rm Hz}, {\rm C}_{\rm t}$), 104.2 (${\rm C}_{\gamma}$), 129–134 (phosphino phenyl C), 146.1 (C_c), 165.0 (NC=C), 193.7 (COMe). MS (FAB, m/z): 810 (M⁺ – BF₄). Anal. Calc. for PdC₄₇H₄₈NOP₂BF₄: C, 62.86; H, 5.38; N, 1.56. Found: C, 62.30; H, 5.04; N, 1.25%.

4.2.2. $\{Pd(PPh_3)_2(\eta^3 - CH_2C[C(CO_2Me) = CMe(NH^iPr)] - CH_2)\}(PF_6)$ (**4b**)

Refer to compound **4a** for the procedure. The reaction of compounds **2** (100 mg, 0.12 mmol) and **1b** (20 mg, 0.15 mmol) gave a yellow solid product in 76% isolated yield (90 mg). IR (KBr) (cm⁻¹): ν_{CO} 1638. ³¹P NMR (CDCl₃, 300 MHz): δ 24.53. ¹H NMR (CDCl₃, 300 MHz): δ 1.15 (6H, d, J_{HH} = 6.4 Hz, CH(CH₃)₂), 2.04 (3H, CH₃), 3.14 (3H, s, OCH₃), 3.68 (5H, m, br, CH₂(allyl), CH(CH₃)₂), 6.82–7.64 (30H, m, phenyl H), 10.09 (1H, d, J_{HH} = 2.0 Hz, NH). ¹³C NMR (CDCl₃, 300 MHz): δ 17.7 (CH₃), 23.5 (s, (CH₃)₂CH), 45.3 ((CH₃)₂CH), 50.9 (OCH₃), 78.5 (t, J_{CP} = 15.7 Hz, Ct), 91.2 (MeC=C), 128.7, 128.9, 130.1, 130.7, 131.1, 133.7 (phosphino phenyl C), 141.5 (Cc), 164.0 (MeC=C), 168.8 (CO₂Me). MS (FAB, *m/z*): 826 (M⁺ - PF₆). *Anal.* Calc. for PdC₄₇H₄₈NO₂P₃F₆CH₂Cl₂: C, 55.43; H, 4.75; N, 1.35. Found: C, 54.01; H, 4.63; N, 1.11%.

4.2.3. { $Pt(PPh_3)_2(\eta^3 - CH_2C[C(COMe) = CMe(NH^iPr)] - CH_2$ }(PF_6) (4a')

The reaction of compound **3** (240 mg, 0.28 mmol) and an equimolar amount of compound **1a** produced compound **4a**' in 82% yield (220 mg). ³¹P NMR (CDCl₃, 300 MHz): δ 18.1 (J_{PPt} = 3828 Hz). ¹H NMR (CDCl₃, 300 MHz): δ 2.00 (6H, d, J_{HH} = 6.9 Hz, CH(CH₃)₂), 2.13, 2.15 (3H, 3H, s, s, CH₃), 3.33 (2H, br, H_{syn}), 3.45 (2H, dd, J_{HP} = 8 Hz, J_{HPt} = 40.8 Hz, H_{anti}), 3.77 (1H, m, CH(CH₃)₂), 7.03–7.76 (30H, m, phenyl H), 12.5 (1H, d, J_{HH} = 2.2 Hz, NH). ¹³C NMR (CDCl₃, 300 MHz): δ 15.2, 23.4 (CH₃), 30.6 (CH₂), 45.4 (COCH₃), 69.6 (d, J_{CP} = 34 Hz, J_{CPt} = 105 Hz, C_t), 103.7 (J_{CPt} = 30 Hz, C_γ), 128.0–133.9 (phosphino phenyl C), 143.5 (t, J_{CP} = 4 Hz, J_{CPt} = 20.2 Hz, C_c), 165.1 (NC=C), 192.4 (COMe). MS (FAB, m/z): 899 (M⁺ – BF₄). *Anal.* Calc. for PtC₄₇H₄₈NOP₂BF₄: C, 57.20; H, 4.90; N, 1.42. Found: C, 56.78; H, 4.04; N, 1.20%.

4.2.4. $\{Pt(PPh_3)_2(\eta^3 - CH_2C[C(CO_2Me) = CMe(NH^iPr)] - CH_2)\}(BF_4)(4b')$

Complex **3** was first prepared from *trans*-Pt(Br)-(PPh₃)₂(η^3 -CHCCH₂) (300 mg, 0.36 mmol) and AgBF₄

(69 mg, 0.36 mmol) in situ. The reaction of compounds 3 and 1b (0.36 mmol) basically followed the procedure used for the preparation of compound 4a and produced 4b' in 77% isolated yields (272 mg). Colourless single crystals were obtained by recrystallization from CH2CH2-benzene. IR (KBr) (cm⁻¹): $\nu_{\rm CO}$ 1634, $\nu_{\rm C=C}$ 1580. ³¹P NMR (CDCl₃, 300 MHz) δ 19.6 (J_{PPt} = 3845 Hz,). ¹H NMR (CDCl₃, 300 MHz): δ 1.24 (6H, d, $J_{\rm HH}$ = 6.3 Hz, CH(CH₃)₂), 2.20 (3H, $J_{\rm HPt} = 7.2 \,\text{Hz}, CH_3$, 3.10 (2H, d, $J_{\rm HH} = 8.6 \,\text{Hz}, J_{\rm HPt} = 42 \,\text{Hz}$, H_{anti}), 3.20 (3H, s, OCH₃), 3.63 (2H, br, H_{syn}), 3.77 (1H, dhep, $J_{\rm HH} = 6.3$, 8.0 Hz, $CH(CH_3)_2$), 7.0–7.6 (30H, m, phenyl H), 10.4 (1H, d, $J_{\rm HH}$ = 8.0 Hz, NH). ¹³C NMR (CDCl₃, 300 MHz): δ 15.1 (CH₃), 22.6 (s, (CH₃)₂CH), 45.4 (dd, J_{CP} = 5.8, 14.2 Hz, (CH₃)₂CH), 50.9 (OCH₃), 67.6 (d, $J_{CP} = 32$ Hz, $J_{CPt} = 100$ Hz, C_t), 91.6 ($J_{CPt} = 27$ Hz, MeC=C), 128.4–133.4 (phosphino phenyl C), 140.6 (t, $J_{\rm CP} = 2.9$ Hz, $J_{\rm CPt} = 18.4$ Hz, $C_{\rm c}$), 165.0 ($J_{\rm CPt} = 19.0$ Hz, MeC=C), 169.1 (J_{CPt} =11 Hz, CO₂Me). Anal. Calc. for PtC₄₇H₄₈NO₂P₂BF₄: C, 56.29; H, 4.83; N, 1.40. Found: C, 55.74; H, 4.91; N, 1.12%.

4.2.5. 3-Carboxymethyl-2-methyl-4-methylene-Nisopropyldihydropyrrole (5b)

¹H NMR (C_6D_6 , 200 MHz): δ 1.13 (6H, d, J_{HH} = 6.5 Hz, CH₃), 2.31 (3H, s, CH₃), 3.61 (3H, s, OCH₃), 4.01 (1H, m, J_{HH} = 6.5 Hz, CH), 4.18 (2H, t, J_{HH} = 3.4 Hz, CH₂), 4.52, 5.10 (1H, 1H, dt, J_{HH} = 1.5, 3.4 Hz, =CH₂).

4.2.6. 3-Acetyl-2,4-dimethyl-N-isopropyldihydropyrrole (*6a*)

A solution that contained compound **4a** (30 mg) in 2 ml of chloroform was heated at 50°C for 24 h. The solution was then chromatographed on alumina and eluted with Et₂O. Compound **6a** was obtained in 75% yield. ¹H NMR (CDCl₃, 200 MHz): δ 1.34 (6H, d, J_{HH} = 6.6 Hz, CH(CH₃)₂), 2.38, 2.47 (3H, s, s, CH₃), 4.28 (1H, m, J_{HH} = 6.6 Hz, CH(CH₃)₂), 6.38 (1H, s, =CH).

4.2.7. 3-Carboxymethyl-2,4-dimethyl-N-isopropylpyrrole (*6b*)

¹H NMR (CDCl₃, 200 MHz): δ 1.34 (6H, d, J_{HH} = 6.6 Hz, CH_3), 2.19 (3H, s, CH_3), 2.48 (3H, s, CH_3), 3.76 (3H, s, OCH_3), 4.27 (1H, m, J_{HH} = 6.6 Hz, CH_2), 6.38 (1H, s, =CH). ¹³C NMR (CDCl₃, 300 Hz): 11.1, 12.8, 23.2, 46.6, 50.3, 114.0, 120.4, 128.4, 132.0, 166.9. HRMS: calc. for C₁₁H₁₇NO₂ (M⁺) 194.1181; found 194.1180.

4.3. X-ray crystallographic analysis

Diffraction data were measured at 298 K on a Nonius CAD-4 diffractometer with graphite-monochromatized Mo K α radiation. Cell parameters were determined by a least-squares fit on 25 reflections. Intensity data were corrected for absorption on the basis of an experimental ψ rotation curve. The refinement procedure was by a full-matrix least-squares method including all the non-hydrogenic atoms anisotropically. Hydrogen atoms were fixed at the ideal geometry and the C–H distance of 1.0 Å; their isotropic thermal parameters were fixed to the values of the attached carbon atoms at the convergence of the isotropic refinement. Atomic scattering factors were taken from international tables [14]. Computing programs are from the NRCC SDP VAX package [15]. Detailed data of compound **4b**'are supplied in the supplementary material.

Supplementary data

Supplementary data are available from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: +44-1223-336033; e-mail: deposit@ccdc.cam.ac.uk), on request, quoting deposition number 135924.

Acknowledgements

We thank the National Science Council, Taiwan, ROC, for financial support.

References

- J. March, Advanced Organic Chemistry, Reactions, Mechanisms, and Structure 4th ed. Wiley, New York, 1992.
- [2] C.P. Casey, C.S. Yi, J. Am. Chem. Soc. 114 (1992) 6597.
- [3] T.-M. Huang, J.-T. Chen, G.-H. Lee, Y. Wang, J. Am. Chem. Soc. 115 (1993) 1170.
- [4] V. Plantevin, P.W. Blosser, J.C. Gallucci, A. Wojcicki, Organometallics 13 (1994) 3651.
- [5] T.-M. Huang, R.-H. Hsu, C.-S. Yang, J.-T. Chen, G.-H. Lee, Y. Wang, Organometallics 13 (1994) 3657.
- [6] F.-Y. Tsai, R.-H. Hsu, J.-T. Chen, G.-H. Lee, Y. Wang, J. Organomet. Chem. 520 (1996) 85.
- [7] J.-T. Chen, Coord. Chem. Rev. 190/192 (1999) 1143 and references therein.
- [8] J.-T. Chen, Y.-C. Cheng, Y.-K. Chen, T.-M. Huang, C.-I. Yu, G.-H. Lee, Y. Wang, Organometallics 17 (1998) 2953.
- [9] J.-T. Chen, R.-H. Hsu, A.-J. Chen, J. Am. Chem. Soc. 120 (1998) 3243.
- [10] J.L. Chiara, A. Gómez-Sánchez, Z. Rappoport, The Chemistry of Enamines, Wiley, New York, 1994, p. 353.
- [11] A.-J. Chen, C.-C. Su, F.-Y. Tsai, J.-J. Lee, T.-M. Huang, C.-S. Yang, J.-T. Chen, G.-H. Lee, Y. Wang, J. Organomet. Chem. 569 (1998) 39 and references therein.
- [12] A. Wojcicki, New J. Chem. 21 (1997) 733.
- [13] K. Ohe, H. Matsuda, T. Moromoto, S. Ogoshi, N. Chatani, S. Murai, J. Am. Chem. Soc. 116 (1994) 4125.
- [14] International Tables for X-Ray Crystallography IV (1974) Kynoch Press, Birmingham.
- [15] E.J. Gabe, Y. LePage, J.-P. Charland, F.L. Lee, P.S. White, J. Appl. Crystallogr. 22 (1989) 384.