Addition of the alkenyl $\mathrm{C}-\mathrm{H}$ bond of enamines to η^{3}-allenyl/propargyl complexes leading to the formation of pyrrole derivatives

An-Chi Yeh, Shang-I Chen, Ai-Jan Chen, Gene-Hsiang Lee, Yu Wang, Jwu-Ting Chen *
Department of Chemistry, National Taiwan University, Taipei, 106 Taiwan, Republic of China

Received 4 October 1999; accepted 24 November 1999

Abstract

The reactions of enamines (ROC) HC= $\mathrm{CMe}\left(\mathrm{NH}^{\mathrm{i} P r}\right)$ with η^{3}-allenyl/propargyl complexes $\left[\mathrm{M}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{3}\right)\right]^{+}(\mathrm{M}=\mathrm{Pd}, \mathrm{Pt})$ result in the formation of pyrrole derivatives. Such reactions involve the intermediates of central-carbon-substituted η^{3}-allyl complexes $\left\{\mathrm{M}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta^{3}-\mathrm{CH}_{2} \mathrm{C}\left[\mathrm{C}(\mathrm{COR})=\mathrm{CMe}\left(\mathrm{NH}^{\mathrm{i} P r}\right)\right] \mathrm{CH}_{2}\right)\right\}^{+}$which are formed by hydroalkenylation to the $\mathrm{C}_{3} \mathrm{H}_{3}$ moiety. ©2000 Elsevier Science Ltd All rights reserved.

Keywords: Enamine; Alkenylation; Pyrrole

1. Introduction

The addition of an olefinic $\mathrm{C}-\mathrm{H}$ bond across an unsaturated carbon-carbon bond is highly interesting from the viewpoint of synthetic methodology [1]. The involvement of transition metal complexes in such processes is often crucial, particularly for the development of novel ways of $\mathrm{C}-\mathrm{C}$ bond formation [2]. We and other groups have discovered that cationic η^{3}-allenyl/ propargyl complexes generally behave as good carbon electrophiles and are subject to the addition with a wide variety of nucleophiles containing $\mathrm{O}, \mathrm{S}, \mathrm{Se}, \mathrm{N}, \mathrm{P}$ or C donor [3-7]. Meanwhile, such complexes exhibit keen chemical selectivity. For instance, tertiary amine such as $\mathrm{Et}_{3} \mathrm{~N}$ can be added to $\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{3}\right)\right]^{+}(\mathbf{3})$ via $\mathrm{C}-\mathrm{N}$ bond formation to give a platinacyclobutene adduct [8]. In contrast, compound $\mathbf{3}$ activates a phenyl $\mathrm{C}-\mathrm{H}$ bond in $\mathrm{NMe}_{2} \mathrm{Ph}$ to allow arylation, yielding an arylallyl complex [9].

We have chosen to use enamines that are known to contain both active $\mathrm{N}-\mathrm{H}$ as well as $\mathrm{C}-\mathrm{H}$ bonds to react with η^{3} allenyl/propargyl complexes. Our studies lead to the discovery of the first examples of hydroalkenylation of metal complexes of allenyl/propargyl. The insertion of $\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{3}$ to an enamine $\mathrm{C}-\mathrm{H}$ bond affords a diene 'skeleton' which allows incorporation of an amino functionality to form the pyrrole derivatives.

[^0]
2. Results and discussion

The enamines $\mathrm{Me}\left(\mathrm{NH}^{\mathrm{i}} \mathrm{Pr}\right) \mathrm{C}=\mathrm{CHR}[\mathrm{R}=\mathrm{COMe}(\mathbf{1 a})$, $\left.\mathrm{CO}_{2} \mathrm{Me}(\mathbf{1 b})\right]$ have been prepared by the reactions of $\alpha, \gamma-$ diketone or ketoester methane, respectively, with ${ }^{i} \mathrm{PrNH}_{2}$ [10]. The NMR data for compounds $\mathbf{1 a}$ and $\mathbf{1 b}$ indicate that tautomerization overwhelmingly inclines to the enamine form, which is presumably stabilized by hydrogen bonding between $\mathrm{N}-\mathrm{H}$ and the keto group:

Previous studies have shown that amines and amino derivatives with active hydrogen are prone to undergo regioselective hydroamination to $\left[\mathrm{M}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{3}\right)\right]^{+} \quad[\mathrm{M}=\mathrm{Pd}$ (2), Pt (3)], yielding azatrimethylenemethane ($\mathrm{N}-\mathrm{TMM}$) complexes and their derivatives ($\mathrm{N}-\mathrm{TMM}$ represents the azatrimethylenemethane complexes $\mathrm{M}\left[\mathrm{CH}_{2} \mathrm{C}(\mathrm{NR}) \mathrm{CH}_{2}\right]$) [11]. However, heating a mixture of compounds $\mathbf{2}$ and $\mathbf{1 b}$ at $50^{\circ} \mathrm{C}$ was found to generate the pyrrole derivatives. Further investigation shows that reactions of equimolar amounts of compound 2 and enamine at $25^{\circ} \mathrm{C}$ undergo unprecedented hydroalkenylation. The regioselective $\mathrm{C}-\mathrm{C}$ coupling takes place between the central carbon of the $\mathrm{C}_{3} \mathrm{H}_{3}$ and the β olefinic carbon of the enamine, and results in enamineallyl complexes of the formula of $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{2}\left\{\eta^{3}-\mathrm{CH}_{2} \mathrm{C}\right.$ -

Scheme 1.
$\left.\left[\mathrm{C}(\mathrm{COR}) \mathrm{CMe}\left(\mathrm{NH}^{\mathrm{i} P r}\right)\right] \mathrm{CH}_{2}\right\}^{+} \quad[\mathrm{R}=\mathrm{Me} \quad$ (4a), $\quad \mathrm{OMe}$ ($\mathbf{4 b}$)] with yields of over 75%. Complexes $\mathbf{4 a}$ and $\mathbf{4 b}$ were characterized mainly by NMR techniques and elemental analysis. By heating the reaction solutions of complexes 4a and 4b to $50^{\circ} \mathrm{C}$, or treating them with base, yielded the pyrrole derivatives $\mathbf{6 a}$ and $\mathbf{6 b}$, respectively (Scheme 1).

The analogous reactions of $\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{3}\right)\right]\left(\mathrm{BF}_{4}\right)$ (3) with compound 1a or 1b produced $\left\{\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}{ }^{-}\right.$ $\left.\left(\eta^{3}-\mathrm{CH}_{2} \mathrm{C}\left[\mathrm{C}(\mathrm{COR})=\mathrm{CMe}\left(\mathrm{NH}^{\mathrm{i} P r}\right)\right] \mathrm{CH}_{2}\right)\right\}\left(\mathrm{BF}_{4}\right) \quad[\mathrm{R}=\mathrm{Me}$ $\left(\mathbf{4} \mathbf{a}^{\prime}\right)$, OMe ($\left.\mathbf{4} \mathbf{b}^{\prime}\right)$], also in very good yields. The enamineallyl platinum complexes could alternatively be formed from the reactions of trans $-\mathrm{Pt}(\mathrm{Br})\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta^{1}-\mathrm{CHCCH}_{2}\right)$ and enamine at $25^{\circ} \mathrm{C}$, but with longer reaction time. Single-crystal X-ray crystallography provides the authentic molecular structure of $\mathbf{4} \mathbf{b}^{\prime}$. Fig. 1 shows its ORTEP drawing. The length of $\mathrm{C} 2-\mathrm{C} 4$ is 1.46 (2) \AA, a typical $\mathrm{C}_{\mathrm{sp}^{2}-\mathrm{C}_{\mathrm{sp}^{2}} \text { single bond. The }}$ dihedral angle between the $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$ and $\mathrm{C} 1-\mathrm{Pt}-\mathrm{C} 2$ planes is $68(1)^{\circ}$ and $\angle \mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$ is $113(1)^{\circ}$, which is consistent with the η^{3}-allyl characteristic and somewhat approaches that of the η^{3}-trimethylenemethane species [7,12]. This indicates that there is significant electronic delocalization in the planar $\mathrm{N}-\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 10-\mathrm{O} 1$ moiety of enamine. The distance between N and O 1 atoms is $2.52 \AA$, which is suitable for hydrogen bonding in the vicinity. However, the generated amino hydrogen points out of the enamine plane with $\angle \mathrm{O} 1-$ $\mathrm{H}-\mathrm{N}=116(7)^{\circ}$. The single crystals of compound $\mathbf{4} \mathbf{b}^{\prime}$ were obtained by recrystallization in $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$ solution. Crystal data: orthorhombic $P 2_{1} 2_{1} 2_{1} \quad a=11.100(5) \AA$, $b=17.764(4) \AA, c=21.951(4) \AA, V=4328(2) \AA^{3}, \mathrm{Mo} \mathrm{K} \alpha$ radiation $\lambda=0.7107 \AA, Z=4, \mu=3.398 \mathrm{~mm}^{-1}, 5490$ total reflections, 3032 observed reflections $(I>2.0 \sigma(I))$, $R=0.044, R_{\mathrm{w}}=0.036$.

Ring closure in compounds $\mathbf{4 a}$ and $\mathbf{4 b}$ could be accomplished by heating or treating with base as well, except that cyclization of compound $\mathbf{4 b}$ first generates a dihydropyrrole derivative (5b). Upon chromatographing on a silica gel column, $\mathbf{5 b}$ would isomerize to the stable pyrrole product ($\mathbf{6 b}$). Such a reaction is mechanistically comparable to furan formation from an enolate-allyl complex [13].

3. Conclusions

The regioselective addition of enamine to η^{3}-allenyl/propargyl complexes demonstrates a new type of 'alkene-

Fig. 1. ORTEP drawing of $\left\{\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta^{3}-\mathrm{CH}_{2} \mathrm{C}\left[\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)\right.\right.\right.$ $\left.\left.\left.\mathrm{CMe}\left(\mathrm{NH}^{\mathrm{i} P r}\right)\right] \mathrm{CH}_{2}\right)\right\}\left(\mathrm{BF}_{4}\right)\left(\mathbf{4 b}^{\prime}\right)$ with 50% probability ellipsoids. All hydrogen atoms except the N -bound one are omitted for clarity. Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$: Pt-P1 2.298(4), Pt-P2 2.300(3), PtC1 2.17(1), Pt-C2 2.24(1), Pt-C3 2.19(1), C1-C2 1.40(2), C2-C3 1.45(2), C2-C4 1.46(2), C4-C5 1.44(2), C4-C10 1.41(2), C5-N $1.32(2), \mathrm{C} 10-\mathrm{O} 11.22(2) ; \angle \mathrm{P} 1-\mathrm{Pt}-\mathrm{P} 2100.3(1), \angle \mathrm{C} 1-\mathrm{Pt}-\mathrm{C} 366.2(5)$, $\angle \mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3113(1), \angle \mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 4122(1), \angle \mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 4125(1), \angle \mathrm{C} 5-$ C4-C10 116(1), $\angle \mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 2118(1), \angle \mathrm{C} 2-\mathrm{C} 4-\mathrm{C} 10$ 126(1), $\angle \mathrm{C} 4-\mathrm{C} 5-$ N 120(1), $\angle \mathrm{C} 4-\mathrm{C} 10-\mathrm{O} 1130(1)$.
alkyne’ coupling which affords new enamine-allyl complexes and leads to the formation of pyrrole derivatives.

4. Experimental

4.1. General

Commercially available reagents were purchased and used without purification unless necessary. Solvents were dried using standard procedures. All reactions and other manipulations were carried out under a nitrogen atmosphere, using standard Schlenk techniques. The IR spectra were recorded on a Bio-Rad FTS-40 spectrophotometer. The NMR spectra were run on either a Bruker AC-200 or ACE-300 spectrometer. For the ${ }^{31} \mathrm{P}$ NMR spectra, the spectrometer frequency at 81.015 or 121.49 MHz was employed, and the chemical shifts are given in $\mathrm{ppm}(\delta)$ relative to $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ in CDCl_{3}. Values upfield of the standard are defined as negative. The corresponding frequencies for ${ }^{13} \mathrm{C}$ NMR spectra were at 75.47 MHz , respectively. Mass spectrometric (MS) data were collected on a JEOL SX-102A spectrometer. Elemental analyses were done on a Perkin-Elmer 2400 CHN analyzer.

4.2. Synthesis and characterization

4.2.1. $\left\{\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta^{3}-\mathrm{CH}_{2} \mathrm{C}\left[\mathrm{C}(\mathrm{COMe})=\mathrm{CMe}\left(\mathrm{NH}^{i} \mathrm{Pr}\right)\right]-\right.\right.$ $\left.\left.\mathrm{CH}_{2}\right)\right\}\left(\mathrm{BF}_{4}\right)(4 \boldsymbol{a})$

The reaction of compound $2(300 \mathrm{mg}, 0.39 \mathrm{mmol})$ and $(\mathrm{MeOC}) \mathrm{HC}=\mathrm{CMe}\left(\mathrm{NH}^{\mathrm{i}} \mathrm{Pr}\right)(1 \mathbf{1 a})(55 \mu \mathrm{l}, 0.039 \mathrm{mmol})$ was
carried out in 20 ml of predried $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-30^{\circ} \mathrm{C}$. After stirring for 90 min , the solution was concentrated to 2 ml . Addition of 20 ml of dried $\mathrm{Et}_{2} \mathrm{O}$ gave a yellow solid product. Recrystallization resulted in compound $\mathbf{4 a}$ in 76% isolated yield (260 mg). ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 23.8 .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 1.21,1.24\left(3 \mathrm{H}, 3 \mathrm{H}, \mathrm{s}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $2.00\left(6 \mathrm{H}, \mathrm{d}, J_{\mathrm{HH}}=6.9 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.50(2 \mathrm{H}, \mathrm{m}, \mathrm{br}$, $\left.\mathrm{H}_{\text {anti }}\right), 3.69\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.12\left(2 \mathrm{H}, \mathrm{br}, \mathrm{H}_{\text {syn }}\right), 7.02-$ $7.73\left(30 \mathrm{H}, \mathrm{m}\right.$, phenyl H), $12.6\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{HH}}=2.2 \mathrm{~Hz}, \mathrm{NH}\right)$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 300 \mathrm{MHz}\right): \delta 18.4,23.7\left(\mathrm{CH}_{3}\right), 30.5$ $\left(\mathrm{CH}_{2}\right), 46.2\left(\mathrm{COCH}_{3}\right), 80.1$ (t with virtual coupling, $J_{\mathrm{CP}}=15.4 \mathrm{~Hz}, \mathrm{C}_{\mathrm{t}}$), 104.2 (C_{γ}), 129-134 (phosphino phenyl C), $146.1\left(\mathrm{C}_{\mathrm{c}}\right), 165.0(\mathrm{NC}=\mathrm{C}), 193.7$ (COMe). MS (FAB , $m / z): 810\left(\mathrm{M}^{+}-\mathrm{BF}_{4}\right)$. Anal. Calc. for $\mathrm{PdC}_{47} \mathrm{H}_{48} \mathrm{NOP}_{2} \mathrm{BF}_{4}$: C, 62.86; H, 5.38; N, 1.56. Found: C, 62.30; H, 5.04; N, 1.25%.

4.2.2. $\left\{\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta^{3}-\mathrm{CH}_{2} \mathrm{C}\left[\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)=\mathrm{CMe}\left(\mathrm{NH}^{i} \mathrm{Pr}\right)\right]-\right.\right.$ $\left.\left.\mathrm{CH}_{2}\right)\right\}\left(\mathrm{PF}_{6}\right)(4 \boldsymbol{b})$

Refer to compound $\mathbf{4 a}$ for the procedure. The reaction of compounds 2 ($100 \mathrm{mg}, 0.12 \mathrm{mmol}$) and $\mathbf{1 b}$ ($20 \mathrm{mg}, 0.15$ mmol) gave a yellow solid product in 76% isolated yield (90 $\mathrm{mg})$. IR (KBr) $\left(\mathrm{cm}^{-1}\right): \nu_{\mathrm{CO}} 1638 .{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}): \delta 24.53 .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 1.15(6 \mathrm{H}$, d, $\left.J_{\mathrm{HH}}=6.4 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.04\left(3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.14(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 3.68\left(5 \mathrm{H}, \mathrm{m}, \mathrm{br}, \mathrm{CH}_{2}(\right.$ allyl $\left.), \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 6.82-$ $7.64\left(30 \mathrm{H}, \mathrm{m}\right.$, phenyl H), $10.09\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{HH}}=2.0 \mathrm{~Hz}, \mathrm{NH}\right)$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 17.7\left(\mathrm{CH}_{3}\right), 23.5(\mathrm{~s}$, $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 45.3\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 50.9\left(\mathrm{OCH}_{3}\right), 78.5(\mathrm{t}$, $\left.J_{\mathrm{CP}}=15.7 \mathrm{~Hz}, \mathrm{C}_{\mathrm{t}}\right), 91.2(\mathrm{MeC}=C)$, 128.7, 128.9, 130.1, 130.7, 131.1, 133.7 (phosphino phenyl C), $141.5\left(\mathrm{C}_{\mathrm{c}}\right), 164.0$ $(\mathrm{MeC}=\mathrm{C}), 168.8 \quad\left(\mathrm{CO}_{2} \mathrm{Me}\right)$. MS (FAB, $\left.\mathrm{m} / \mathrm{z}\right): 826$ $\left(\mathrm{M}^{+}-\mathrm{PF}_{6}\right)$. Anal. Calc. for $\mathrm{PdC}_{47} \mathrm{H}_{48} \mathrm{NO}_{2} \mathrm{P}_{3} \mathrm{~F}_{6} \mathrm{CH}_{2} \mathrm{Cl}_{2}$: C, 55.43 ; H, 4.75; N, 1.35. Found: C, 54.01; H, 4.63; N, 1.11%.

4.2.3. $\left\{\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta^{3}-\mathrm{CH}_{2} \mathrm{C}\left[\mathrm{C}(\mathrm{COMe})=\mathrm{CMe}\left(\mathrm{NH}^{i} \mathrm{Pr}\right)\right]-\right.\right.$ $\left.\left.\mathrm{CH}_{2}\right)\right\}\left(P F_{6}\right)\left(4 \boldsymbol{a}^{\prime}\right)$

The reaction of compound $3(240 \mathrm{mg}, 0.28 \mathrm{mmol})$ and an equimolar amount of compound $\mathbf{1 a}$ produced compound $\mathbf{4 a} \mathbf{a}^{\prime}$ in 82% yield $(220 \mathrm{mg}) .{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta$ $18.1\left(J_{\text {PPt }}=3828 \mathrm{~Hz}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 2.00$ $\left(6 \mathrm{H}, \mathrm{d}, J_{\mathrm{HH}}=6.9 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.13,2.15(3 \mathrm{H}, 3 \mathrm{H}, \mathrm{s}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 3.33\left(2 \mathrm{H}, \mathrm{br}, \mathrm{H}_{\text {syn }}\right), 3.45\left(2 \mathrm{H}, \mathrm{dd}, J_{\mathrm{HP}}=8 \mathrm{~Hz}\right.$, $\left.J_{\mathrm{HPt}}=40.8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{anti}}\right), 3.77\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 7.03-7.76$ $(30 \mathrm{H}, \mathrm{m}$, phenyl H$), 12.5\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{HH}}=2.2 \mathrm{~Hz}, \mathrm{NH}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 15.2,23.4\left(\mathrm{CH}_{3}\right)$, $30.6\left(\mathrm{CH}_{2}\right)$, $45.4\left(\mathrm{COCH}_{3}\right), 69.6\left(\mathrm{~d}, J_{\mathrm{CP}}=34 \mathrm{~Hz}, J_{\mathrm{CPt}}=105 \mathrm{~Hz}, \mathrm{C}_{\mathrm{t}}\right)$, $103.7\left(J_{\mathrm{CPt}}=30 \mathrm{~Hz}, \mathrm{C}_{\gamma}\right), 128.0-133.9$ (phosphino phenyl C), $143.5\left(\mathrm{t}, J_{\mathrm{CP}}=4 \mathrm{~Hz}, J_{\mathrm{CPt}}=20.2 \mathrm{~Hz}, \mathrm{C}_{\mathrm{c}}\right), 165.1(\mathrm{NC}=\mathrm{C})$, 192.4 (COMe). MS (FAB, m / z): $899\left(\mathrm{M}^{+}-\mathrm{BF}_{4}\right)$. Anal. Calc. for $\mathrm{PtC}_{47} \mathrm{H}_{48} \mathrm{NOP}_{2} \mathrm{BF}_{4}$: C, 57.20; H, 4.90; N, 1.42. Found: C, 56.78; H, 4.04; N, 1.20\%.

4.2.4. $\left\{\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta^{3}-\mathrm{CH}_{2} \mathrm{C}\left[\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)=\mathrm{CMe}\left(\mathrm{NH}^{i} \mathrm{Pr}\right)\right]-\right.\right.$ $\left.\left.\mathrm{CH}_{2}\right)\right\}\left(\mathrm{BF}_{4}\right)\left(4 \boldsymbol{b}^{\prime}\right)$

Complex 3 was first prepared from trans $-\mathrm{Pt}(\mathrm{Br})-$ $\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta^{3}-\mathrm{CHCCH}_{2}\right)(300 \mathrm{mg}, 0.36 \mathrm{mmol})$ and AgBF_{4}
($69 \mathrm{mg}, 0.36 \mathrm{mmol}$) in situ. The reaction of compounds 3 and $\mathbf{1 b}$ (0.36 mmol) basically followed the procedure used for the preparation of compound $\mathbf{4 a}$ and produced $\mathbf{4 b}$ ' in 77% isolated yields (272 mg). Colourless single crystals were obtained by recrystallization from $\mathrm{CH}_{2} \mathrm{CH}_{2}$-benzene. IR $(\mathrm{KBr})\left(\mathrm{cm}^{-1}\right): \nu_{\mathrm{CO}} 1634, \nu_{\mathrm{C}=\mathrm{C}} 1580 .{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz}) \delta 19.6\left(J_{\mathrm{PPt}}=3845 \mathrm{~Hz},\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}): \delta 1.24\left(6 \mathrm{H}, \mathrm{d}, J_{\mathrm{HH}}=6.3 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.20(3 \mathrm{H}$, $\left.J_{\mathrm{HPt}}=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 3.10\left(2 \mathrm{H}, \mathrm{d}, J_{\mathrm{HH}}=8.6 \mathrm{~Hz}, J_{\mathrm{HPt}}=42 \mathrm{~Hz}\right.$, $\left.\mathrm{H}_{\text {anti }}\right), 3.20\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.63\left(2 \mathrm{H}, \mathrm{br}, \mathrm{H}_{\text {syn }}\right), 3.77(1 \mathrm{H}$, dhep, $\left.J_{\mathrm{HH}}=6.3,8.0 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 7.0-7.6(30 \mathrm{H}, \mathrm{m}$, phenyl H), $10.4\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{HH}}=8.0 \mathrm{~Hz}, \mathrm{NH}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 15.1\left(\mathrm{CH}_{3}\right)$, $22.6\left(\mathrm{~s},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right)$, $45.4\left(\mathrm{dd}, J_{\mathrm{CP}}=5.8,14.2 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 50.9\left(\mathrm{OCH}_{3}\right)$, $67.6\left(\mathrm{~d}, J_{\mathrm{CP}}=32 \mathrm{~Hz}, J_{\mathrm{CPt}}=100 \mathrm{~Hz}, \mathrm{C}_{\mathrm{t}}\right), 91.6\left(J_{\mathrm{CPt}}=27 \mathrm{~Hz}\right.$, $\mathrm{MeC}=C$), 128.4-133.4 (phosphino phenyl C), 140.6 (t , $\left.J_{\mathrm{CP}}=2.9 \mathrm{~Hz}, J_{\mathrm{CPt}}=18.4 \mathrm{~Hz}, \mathrm{C}_{\mathrm{c}}\right), 165.0\left(J_{\mathrm{CPt}}=19.0 \mathrm{~Hz}\right.$, $\mathrm{MeC}=\mathrm{C}), 169.1$ ($\left.J_{\mathrm{CPt}}=11 \mathrm{~Hz}, \mathrm{CO}_{2} \mathrm{Me}\right)$. Anal. Calc. for $\mathrm{PtC}_{47} \mathrm{H}_{48} \mathrm{NO}_{2} \mathrm{P}_{2} \mathrm{BF}_{4}$: C, 56.29; H, 4.83; N, 1.40. Found: C, 55.74; H, 4.91; N, 1.12\%.

4.2.5. 3-Carboxymethyl-2-methyl-4-methylene-Nisopropyldihydropyrrole (5b)
 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 200 \mathrm{MHz}\right): \delta 1.13\left(6 \mathrm{H}, \mathrm{d}, J_{\mathrm{HH}}=6.5 \mathrm{~Hz}\right.$, $\left.\mathrm{CH}_{3}\right), 2.31\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.61\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.01(1 \mathrm{H}, \mathrm{m}$, $\left.J_{\mathrm{HH}}=6.5 \mathrm{~Hz}, \mathrm{CH}\right), 4.18\left(2 \mathrm{H}, \mathrm{t}, J_{\mathrm{HH}}=3.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.52$, $5.10\left(1 \mathrm{H}, 1 \mathrm{H}, \mathrm{dt}, J_{\mathrm{HH}}=1.5,3.4 \mathrm{~Hz},=\mathrm{CH}_{2}\right)$.

4.2.6. 3-Acetyl-2,4-dimethyl-N-isopropyldihydropyrrole ($6 a$)

A solution that contained compound $\mathbf{4 a}(30 \mathrm{mg})$ in 2 ml of chloroform was heated at $50^{\circ} \mathrm{C}$ for 24 h . The solution was then chromatographed on alumina and eluted with $\mathrm{Et}_{2} \mathrm{O}$. Compound 6a was obtained in 75% yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $200 \mathrm{MHz}): \delta 1.34\left(6 \mathrm{H}, \mathrm{d}, J_{\mathrm{HH}}=6.6 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.38$, $2.47\left(3 \mathrm{H}, \mathrm{s}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.28\left(1 \mathrm{H}, \mathrm{m}, J_{\mathrm{HH}}=6.6 \mathrm{~Hz}\right.$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 6.38(1 \mathrm{H}, \mathrm{s},=\mathrm{CH})$.

4.2.7. 3-Carboxymethyl-2,4-dimethyl-N-isopropylpyrrole (6b)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta 1.34\left(6 \mathrm{H}, \mathrm{d}, J_{\mathrm{HH}}=6.6\right.$ $\left.\mathrm{Hz}, \mathrm{CH}_{3}\right), 2.19\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.48\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.76(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{OCH}_{3}\right), 4.27\left(1 \mathrm{H}, \mathrm{m}, J_{\mathrm{HH}}=6.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 6.38(1 \mathrm{H}, \mathrm{s}$, $=\mathrm{CH}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{~Hz}\right): 11.1,12.8,23.2,46.6$, 50.3, 114.0, 120.4, 128.4, 132.0, 166.9. HRMS: calc. for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NO}_{2}\left(\mathrm{M}^{+}\right)$194.1181; found 194.1180.

4.3. X-ray crystallographic analysis

Diffraction data were measured at 298 K on a Nonius CAD4 diffractometer with graphite-monochromatized $\mathrm{Mo} \mathrm{K} \alpha$ radiation. Cell parameters were determined by a least-squares fit on 25 reflections. Intensity data were corrected for absorption on the basis of an experimental ψ rotation curve. The refinement procedure was by a full-matrix least-squares
method including all the non-hydrogenic atoms anisotropically. Hydrogen atoms were fixed at the ideal geometry and the C-H distance of $1.0 \AA$; their isotropic thermal parameters were fixed to the values of the attached carbon atoms at the convergence of the isotropic refinement. Atomic scattering factors were taken from international tables [14]. Computing programs are from the NRCC SDP VAX package [15]. Detailed data of compound $\mathbf{4} \mathbf{b}$ 'are supplied in the supplementary material.

Supplementary data

Supplementary data are available from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: +44-1223336033; e-mail: deposit@ccdc.cam.ac.uk), on request, quoting deposition number 135924.

Acknowledgements

We thank the National Science Council, Taiwan, ROC, for financial support.

References

[1] J. March, Advanced Organic Chemistry, Reactions, Mechanisms, and Structure 4th ed. Wiley, New York, 1992.
[2] C.P. Casey, C.S. Yi, J. Am. Chem. Soc. 114 (1992) 6597.
[3] T.-M. Huang, J.-T. Chen, G.-H. Lee, Y. Wang, J. Am. Chem. Soc. 115 (1993) 1170.
[4] V. Plantevin, P.W. Blosser, J.C. Gallucci, A. Wojcicki, Organometallics 13 (1994) 3651.
[5] T.-M. Huang, R.-H. Hsu, C.-S. Yang, J.-T. Chen, G.-H. Lee, Y. Wang, Organometallics 13 (1994) 3657.
[6] F.-Y. Tsai, R.-H. Hsu, J.-T. Chen, G.-H. Lee, Y. Wang, J. Organomet. Chem. 520 (1996) 85.
[7] J.-T. Chen, Coord. Chem. Rev. 190/192 (1999) 1143 and references therein.
[8] J.-T. Chen, Y.-C. Cheng, Y.-K. Chen, T.-M. Huang, C.-I. Yu, G.-H. Lee, Y. Wang, Organometallics 17 (1998) 2953.
[9] J.-T. Chen, R.-H. Hsu, A.-J. Chen, J. Am. Chem. Soc. 120 (1998) 3243.
[10] J.L. Chiara, A. Gómez-Sánchez, Z. Rappoport, The Chemistry of Enamines, Wiley, New York, 1994, p. 353.
[11] A.-J. Chen, C.-C. Su, F.-Y. Tsai, J.-J. Lee, T.-M. Huang, C.-S. Yang, J.-T. Chen, G.-H. Lee, Y. Wang, J. Organomet. Chem. 569 (1998) 39 and references therein.
[12] A. Wojcicki, New J. Chem. 21 (1997) 733.
[13] K. Ohe, H. Matsuda, T. Moromoto, S. Ogoshi, N. Chatani, S. Murai, J. Am. Chem. Soc. 116 (1994) 4125.
[14] International Tables for X-Ray Crystallography IV (1974) Kynoch Press, Birmingham .
[15] E.J. Gabe, Y. LePage, J.-P. Charland, F.L. Lee, P.S. White, J. Appl. Crystallogr. 22 (1989) 384.

[^0]: * Corresponding author. Tel: + 886-2-2366-0352; fax: + 886-2-23636359; e-mail: jtchen@ccms.ntu.edu.tw

