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Force constants of simple linear XYX and XYZ types of molecules
have been calculated in using the method of mass-weighted cartesian
coordinates. Relations and results between force constants in mass-
weighted cartesian coordinates and in internal coordinates were also
discussed.

Since the development of the theory or molecular vibration,
calculations of force constants in quadratic form -were approached
mostly in internal coordinates!. The calculations are very simple
in case of small molecules. For'Iarger molecules, the complexity
of the problem is increased greatly., In the latter case the well-
established G-matrix method! was emploved by most authors. But,
to calculate force constants in cartesian céordinates is not so simple
as in internal coordinates even in small molecules, We shall
approach this problem in this work and seek the relations ketween
the force constants calculated by the two different ways.
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194 C.Y. Mou anp T.L. CHEN

In this work zero order frequancies were used if available and
isotopic substitutions were employed if necessary. Linear triatomic
molecules are treated as examples in this paper.

Formulation of the problems

Choosing a coordinate system fixed in external space, we let the
nine rectangular cartesian coordinates of the three nuclei in the,
molecule be:

Ty Ly Tz Mo ¥m Y3 %1 % %3y Where 2's are along the molecule
axis, then, the kinetic energy is given by:

0z Ov: \*, (02 \*
2= g (o) +(50) +(5) ] O
Define mass-weighted coordinates: '

a=vVm n G=vVm 1, ¢a=vm 25 q=v'm y etc,
then

2T=

i

g )

The potential energy V may be expressed as a power series in

.ﬂMw

displacement zy, ¥, 24’8

- Ny v av
2v=2v, 25 (), =+ (G o+ (@) =]

8 V an kA sae
T izj: 1[<6$58$J) LTyt ( 6};—6)}_-)3’&3;) +(_65;:’321 )«5~J ] +

Since V,=0 [potential energy at equilibrium position]

oV (oY c .
and (6:5 ) (6%) \?3’:) ={ at minimum,

V=73 [IfurtijFw Y+ Frg 225 3)

a4 v OV
Whgre, F,;;—(m)o ij P(Q}’t@_,;) Fij _(6:,562; 0

In mass-weighted cartesian coordinates
2V =% —""— q:q; ‘ (4)
o mgn s

Using Largrange equation
d KGL\ oL _
>
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from eqs. 2, 4 and 5,
we get,

One possible solution of eq. 6 is
gi=A; cos [/ At +e¢]

Substitute into eq. 6 a set of algebraic equation results;

— g+ T g ymg
mm 5

or in matrix form,

-t Py Fis ) (g
- 1
-'l/mzml 'l/mlmz -'l/mlms . 7
P Fay T PPN g
'l/mlmz e ‘ .2
o to
'l/mzmS
Fss Fay -2
~ v mgms s J
The secular equation of eq. 7 is
det| L1y s, | —0
1/m-,;mj !
"8;y=Kronecker delta
iy j=1, 2yeeeerene,
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(n equation 9, some A's are equal to zero. These A’s correspond to

translational and rotational motions. Therefore, in order to calculate

F;ys from vibrational frequancies, some relations between F,j's

must be found from the separation of translational and rotational

motions.

Linear x-y-x molecules

In these molecules, there are three types of normal mode, two
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are linear stretching vibrations, and one is bending vibration. One
can consider z, v, = directions as independent, 1.e. treat stretching

and bending separately.
(1) Linear stretching meode.

or

gi=1'm; i
y—vibrational frequency
F—force constant matrix
E—unit matrix

1F—-EXQ1=0

(Fn Py _ T

Me 1V gy N
__F ) S F 29 - R F 23
1V Mgy My V'mam,

Fy Fe Fa

L 7a 1V mgmy e

A=47%2

_.U

a1

anj

By deﬁnition F,y=Fy; iand j=1, 2,3

and by symmetry Fy,==TI;
Eq. 10 becomes

-~ Fy -1 Fm_ ¢F13_ M

Ny 1/mgmy My
__Flz Fzz .y _}_;‘12_

- m, L

MMy v 1 My

FIS Flz FlI }
13 12 e * S |
L Mg v gy My J

a) For translational motion along x-axis

b] For symmetric stretching vibration

Let m=Zy=a=1; g=g=7" mz; q=v My s 2=0,

we get F11+F12+F13=0

Let ¢,=1; g=—1; ¢,=0; A=1,

we get Fy=Fp+msl

¢) For anti-symmetric stretching vibration

Knowing =1/ m; g;=0.

Substitute into eq. 11, we get

Let qi=gq:=1; ¢;= *2,‘/

g |=0

(10)

Moy
My

1L

(12

(12
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_Ell__.gz_zFlﬂ {_mﬁﬁ_:() (14)

My My Mg
From eqg’s 12, 13, 14, we get F./s in terms of sm,/s and 1 as
followings; '

7= — ity Ay Foo— 1[ __’ﬁ?f?ﬁﬁz._:[ m.
P iyt 2mg U G, +2m 11 TR
Ir mym,A 2mamyd,
Fpo= [—”—?’—?——-mmﬁl], Foym —2F, —2eMaly (15)
2lmy+2m, 2 , My+2m,

Table 1. Force constants calcilated corresponding to stretching
vibrations* Fy, in 10°dync/om.  Fry=Fy=Fp="F
F13=F313 F11=F33

Molecules , i | i Fi; Fog ‘Fm

C120, [g] 15.501 —1.407 © 28.368 —14.184
[s] — - 28.248 —14.123

C130, [l | — — 28.414 —14.207
[s] — — 28.314 —14.157

CiOs el — — 28.428 | —14.214
CS» [g] 7.589 —0.587 14. 004 —7.002
1 7.474 —0.68) 13.587 —6.793

CSe; (2] 5.940 —0.358 11.162 —5.581
(] 5.788 —90.509 10.555 —5.278

HgCly lg] 3.097 —0.038 5.963 —2.631
HgBrs lg] 9.316 —0.067 4.498 —2.249
Hgle (2] — - — —
K[N,] [s] 13.181 —1.724 92.914 —11.457
NH,[N,] [s] 13.130 —1.796 22.668 —~11.334
K[HF,] [s] — — 1.255 0.628
(ag] — — 1.365 1.684

K[DF.] [s] —_ — 1.230 0.616
luql - — 1.368 0.685

[(CHy)N] [HCl]  [s] — — 1.434 0.718
[NO:J*(cone HNO,) 17.297 —1.246 31.963 —15.982
Nas{CNe] [s]!  11.845 —0.717 29.957 —11.128
(VO] [aq] ' 7.078 0.7 | 14372 —7.186
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{2) Bending mode.
Since banding motioas in xy plane and xz planz are degenerate,
one can consider only the y-direction motion. The treatment is

exactly the same as bafore, thus:

Table 2, Force constants calculated corresponding to bending
vibrations.*
F12’=F21’=F23’=F32' F11'=F13'=F31'

Molecules F o' Fg!

C120, [g] 0.572 —1.143 2.288
[s] 0.560 —1.119 2.240

[aq] 0.548 —1.095 2.192

C1?Q, lel 0.574 —1.145 2,290
[s] 0.552 —1.105 2.210

C14Q, [g] 0.573 ~-1.145 2.290
CS; [g] 0.235 —0.,469 0.938
[1 - 0.235 —0.469 0.938

CSeq (gl 0.155 —0.312 0.624
[1] 0.148 —0.296 0.592

HgCl: (gl 0.038 —0.076 0.152
HgBrg [g] 0.022 —0.044 0.088
Hgl, lg] 0.018 —0.036 0.072
K[N,] 5] . 0.572 —1.144 2,288
NH,[Na] [s] 0.584 —1.168 2.336
K[HF.] [s] 0.220 —0.439 0.878
[aq) 0.211 —0.420 0.840

KIDF.] [s] 0.221 —0.441 0.882
[aq] 0.215 —0.429 0.858

[(CH3)N] [HCL] [s] 0.204 —0,408 0.816
[NOgI*(cone. HNOj) 0.638 —1.276 2.552
NasICNg] [s] ©0.442 —0.884 1.768
[VO, 1+ [aq] 0.183 —0.366 0.732

* Vibrational frequencies were taken from reference [2]
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y Py’ _ F' 'y  ~ 7. -~
gf I qTﬁ " Vma:my My P
l m Flv’ Fﬂz, Fm’
v z | T — A e gs (=0

o e T T

e Fis’ gry —EII,—--X ' g

z = .y Y Moy Mg PRV

Where ¢.=v Ma % G=V My ¥ @=V Mz ¥
aj) Translational, 2=0,

again one has Fy 4 Fy +Fis' =0
b) Rotational, A=0, =1, gz=-1, ¢;=0

than, Fy/=Fy

)
¢) Bending vibration =%, a=g=1, qg:._.?w/ Mo
My
than,
Iy — A ﬂ..gi_?li__;_fﬁ:__o
M My Mg
Therefore, bending force constants are eluciated as:
T — MMy As ' ' MaMyls
Py =P =gy, T = =200 =5 Ton ],
2m,m, A
Fy' = —~ 2y =4y = Wﬁj (16)

Where, A=47°c??=354.8107% J: wave number in em™h
Mg, My, 0 gram.
Force constants calculated from egs. 15, 16 are tabulated in
Table 1 and 2.

Linear triatomic molecules, x-y-z

(13 Stretching .m ode:

As before, one has the determinant equals to zero.

Fll -2 Flz _Flsh
M ']/ma:my ']/mmmz
dor | L Foy 3 Fu oo an
1V memy My V m.my
Fio _Fu  _Fs
'1/7_7131”3 'l/m 2hily Mtz '
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for translational motion, 2=0, one has the relations:

Futlyt+f=0 F+F,+F,= Frot Foy+ Fayz=0 (18)
Apply eq. 18 to eq. 17, resulting:
F]l ——a - Flz ‘___«Flﬁ_
Tits 1/ mﬁmmy v man,
1 der | —Fu_ _ﬁizz,___.g L =0 (19)
v/ m, v 1y, Tty v mym,
vV ity v m, >

Expand eq. 19 into the form of art+ b+ c=0,

the coefficient of 2 term, [%], is

Iy _}__Fi’i_i_ Fes

Ayt Ay=
My My i,

(20)

We assume here isotope substitution of the molecules would
simplify the above equation to calculate the force constants.

If M, is substituted by AM,’, where My is an isotope of M, the
frequencies are 4%, 4, 4,/

FIL F°2 F53 1/
s 4__?’ m, = Ay @1

If M, is substitued by A4,’, the frequencies are 1,7, A7y 2g”

i?l}"_'_;_ EZE_ + i"i =7+ 2,7 ' (22)

My My e
from eg’s. 20, 21 and 22, we have a set of Fy;; as followings:
A+ 2, =)+ 2,V mm,

Fy= My’ — iy
(A1t A= (47 + 2 ) Imm,’

Fn= T/

My — N1y

. m, mn,
Fag=— Pzz[fﬁg ~] —- FH[EJ + [+ A,]
?

Fe I, — I;lel - Fay | (23)
F235 Fll""l;:az“Faa
F12= Fas_}rzll "’ngﬁ

(2] BendinZ mode:
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We have the determinant equation as:

Fy' ) "*12’ _F

Ma V' Mty v man,

F.! Fo' 2 Fay _0 24)
'l/m:::mz, Ty 1/??13.?72 2

Fiyf Fo' Fy' 3
'l/m:umz 1/ My, ma

for translatiopal motion, A=0, we have:
Fiy + Fiy + Fis' =0 Fi/ 4+ Fop' +Fy’ =0  Fr/ +F;'+Foy' =0 (25)

F”’+—E2—2’+£3i, and for rotational moti 1
M ey m, 3 10n also,

Since 3] Ax=
X

A=0, then

My | My M
If M, is substituted by B4

)\3=

Fu’, Fa' . B
 — 83 33
ey Ly @

from eqg’s. 26 and 27, then

7o Mate Ua = 4] '
11 My — My

MMy’ 1A —A3"]
ny' — My

Fu’___f_'zz_’]

Py My

Fu'= > (28)

Fas'’ =mz[13'“ '

and by eq. 25 then:

o
an:Fzz"“Fu"'fsa’ \

Fll,""Fzz,'“FSSI

Py = kL 3 (29)

Fas"'En"'Fzzi

Fr) = j
The zero order frequencies of thiocyanate ion and nitrous oxide
are taken from Ref. (3] and [4]. Force constants listed in Table 3
and 4 are the averages over several isotopic species.
Off diagonal terms in force constant matrix are very sensitive

to the variations of isotopic frequency. A small change in frequency
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Table 3. Linear stretching vibrational force constants [in 10°

dyne/om.]

Molecules Fy Foo Fas Fig Fig Fog
NléNliOlﬁ [g]
NN 16 [g] | 18.432 ! 27.946 | 11.924 { —17.224 —1,999 10.721
N15N13OIG {g]
K[S32C13N 1] [s] " _
K[S32Ci3NLe] [s] 6.095 | 19.409 ; 15.431 | —5.036| —1.059 | —14,373
K[S%#CIENH4] [s]

Table 4, Bending vibrational force constants [in 10° dyne/cm].

Molecules ./ Foy Fay’ t I Fiyf Foy?
N14N14018 [g]
NUNIBQ!s [g] 1,991 | 0.536 0.4067 1—1.060—0.930 | +0.524
N15N14016 [g]
K[S*CI2N 4] (5]
K[S®CIN14] [s] *4,707 —_ — |—2.389 | —-2.318 | +2.397
K[S*#C12N1] [s]

* In solid K[SCN] the degenerate bending frequeney splits into two closely
packed frequencies, The average value is taken for the bending frequency.

may give a large differences in F,,s. Therefore, it is very important
to have a set of precise isotopic frequencies to elucide the force

constants,

Relations between force constants in mass-weighted cartesian

{13 Linear X-Y-X molecules.
Choose internal coordinates O, Q

Qi—_".-rz“xl

Qz“—‘zs‘“xz

¢b=

d

Pa== _}i ~[y e —2y,]

[z1+23—22,]

coordinates and in internal coordinates

as,

G0
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While d is the equilibrium bond distance of X-Y bond. If the
vibrations are small oscillations ()., Q, represent the bond stretching
of X-Y, Y-Z bonds, ¢, b, represent the bent angle in Y, Z, directions
respectively. In terms of Q, Q, ¢4 and ¢,, the potential energy is:

2V =anQi®+2a, Qs+ a5y + aeeba® + auuty’ (3D

Where no cross terms, Qida Qidss Qo Qubir duts |

occur because of symmetry, and also,

d11= 3 Az3 == 41

Substituting eq. 30 into eq. 31, the potential energy is

ZV:: aﬁ:ﬁz + 2[6111 - 413]1'22 + Clnxaz + 2[012 —- au]xlxz —

a3 da..
2a13x1x3+2[412-a11]x2$3+—H?, 2 22332 +— dz -
2 4a as: da
4;? 225 ), + ?;.23 9 s — dﬂﬁs v, ¥5 + ds; 2% — d:;s + Z(;s
2 da
..4_?; L212st —?;2—3 1% — dsf 25%s (32)

Compared the above potential enmergy with that in cartesian

coordinates, we get:

an=Fu= [zﬁf’;} Limh]  Zan—ag)=Fu
ai=Fn _,?1_;222, (33)
| from eq. 15,
am=%[mmh—7ﬂ%%i;] (38)
U Py owmdF =y ] (35)

These relations found are straight forward and exact.
{2] Linear X-Y-Z molecules.
Choose internal coordinates as:

1 1
Qi=Zy=x1  da="— N~ 'z]'*'_d:[ya'“i’z]

Q2=:L‘3--;C2 ¢b=' 6}1 [21 ~0.j "‘ 1 { _'22] (.36)

2

d,+ equilibrium length of X-Y bond

-

dq: equilibrium length of Y-Z bond
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The potential field in internal coordinate is:
2V = u’o’quz + 291291 Qz + ﬂszzz + a2t + aaa?’»’bz (37)
by symmetry, we should have, a;;=a.,
Substitute eq. 36 into eq. 37 then
2V=a12,® + @11+ Qa3 — 2011 75% + (g T5" +2[a13"‘(~’11]~'§112
@ 1 1

+2[Glz‘azg]xzxa —'Zfllﬁrlxa‘}'_éi:%ylz']" ass[le“ +"‘32—2]:\'2ﬂ

Zagu 5 dz3 — daz _— 1 1 '
+—_(]'3' P d 2 M3 +2[m; “‘C‘i‘l—z‘]yli\z 26133[8—6{;‘5‘ R ]3’235

2@33 2 1 2 dss _ s
I R T e R A S

+ 2%3[3}%}"%5]&2‘2‘“ 205, [m‘l‘ —d?] o3 +2da2; Zi2g - (38)
Compare it with potential energy in cartesian coordinates
2V=Fp2:?+ Foas® + Fop 2ot + 2F 102 0y + 2 F g 1023 -+ 2 Fyp 21 205
+ Fu’ o+ Foy’ 324 Fag’ 32+ 2F 10" 9130+ 2F 5y vovs+ 2F58 s
Py et o w4 Fog 2+ 215 2120+ 2F 5 2y + 2F15 ‘2025 (39)
it results that:
ai=Fn  Fa=an—2a,+css  Fasz=as,
then

Fy+ Foy—F "
Gn‘=F11 CZ23=F99 d15= 2"3 25 l.',?'33=1’7‘1]_"6?!7]_z (40)

From eq. 40, we can also calculate the internal force constants.
Force constants calculated by this way are compared with those
calculated by other authors in Tables 5 and 6.

Talkle 5. Internal coordinate force constants of NNO molecule
Gy Gzo C’iz
Ref 4. 18.48 11.83 1.13
Ref 5, 17.33 12.53 0.733
Ref 6. 18.98 11.50 1.43
Ref 7. 18.72 11.61 1.313
This work 18.423 11.920 1,200
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Table 6. Internal coordinate force constants of NCS™ ion.

‘ 211 22 ‘ @0
Ref 3. \ 5.18 15.95 0.9
This work ‘ 6.095 15.431 1.059

In Table 5, the frequencies used in this work are the same as
those of Ref [4]. They are in fairly good agreement. The discrepancies
between these force constants listed in the table are primarily due
to the fact that vibrational frequencies of isotopic species are
difficult to assign.

Discussion

In the calculations of force constants, the number of independent
force constants is generally greater than the number of vibrational
frequancies. In order to calculate the force constants, special force
fields are introduced by most authors. In our method, no special
force field is assumed, but we assume, instead, cartesian force cons-
tants are not varied when isotopic substitutions are considered.

In the case of linear XYX molecules, force constants calculated
are in fairly good agreement {vith those calculated from internal
coordinates directly. For linear XYZ molecules, force contants
obtained are also compared with those of calculated from special
force field in Table 6.

In the case of more complicated molecules, with certain sym-
metry, the calculation of the complete force field in cartesian
coordinates may be approached by two different ways. In the first
one, one may use external symmetry coordinates to reduce the
secular determinants to lower order, and introduce the conditions
of conservation of linear and angular momenta, then use isotopic
substitutions carefully, the problem may be soluble. This approach
is under progress.

In the second, we treat isotopic substitutions as perturbed
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systems, using Green’s function method we generate the complete
set of cartesian force constants for beat XYX type molecules.
This will be treated in the next work of this series.
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