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Treating isotopically substituted molecule as a perturbed system, Green’s function
for the perturbation are constructed and related to the force field of vibration. By
spectral representation, Green’s function is diagonalized in the normal coordinates.
Then transforming back to the Cartesian cootdinates, the Cartesian force constants
are generated without solving the secular equation directly. The relations between
the internal force constants and the Cartesian force constants are given and complete
internal force field can be obtained. The results for H,O are discussed.

In the calculation of force constants of molecular vibration, the number of force
constants to be determined is generally much larger than the number of vibrational
frequencies available. Either additional informations, such as istopical frequencies, or
certain restricted models, such as Urey-Bradley field, valence-bond field, are used to
render the calculation possible.

The complexity of this calculation in the internal coordinate system arises partially
from the difficulty of setting the kinetic part of Hamiltonian. For a systemic approach,
the well-known Wilson G-F matrix method is used fly most authors.

However, another approach exists. If we use Cartesian coordinate, to define
Cartesian force constants, the Hamiltonian is also in quadratic form. Then, by calcula-
ting the complete force constants and finding transformation matrix between the
Cartesian and the internal ccordinates, the force constants in the internal coordinates
can also be evaluated.

In the case of Cartesian coordinates, the number of force constants is greatly
increased and the conditions of conservation of linear and angular momenta are usually
impractical to apply unless we have known the detail forms of normal vibrations.

Instead of solving the secular equation explicitly, we use the Green's function method
proposed by R.E. Dewames and T. Wolfram?, treating isotopically substituted mole-
cules as perturbed system and constructing the Green’s function of the system. A
unique set of force constants is generated directly from the elements of Green’s
function once a certain parameter concerning the mixing of normal mode is known.

GENERAL FORMULATION

Define Q as a ¢olumn vector:
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o i Q=vim Zi
Q= Qg Z, is a cartesian coordinate
Q ' m, is the mass of atom
n

(Q., Qz ------ Q,,} represent the mass weighted Cartesian coordinates. Then the vibration
motion is determined by the secular equation:

i) [ 2]

Where F,,'s are the force constants, m, is the mass of the ith atom, o, denotes the
the 7th normal frequency, §;, is the Kronecker delta.

Let  D=M-FM-* \ @

Eq. (1) becomes:
DQ=w'Q 3)

M is a diagonal supermatrix with three 33 submatrices whose elements are the
masses of atoms in the molecule.

Let Q=UN | 4

" N is a matrix of the normal coordinate and U is the transformation matrix
between the normal coordinates and the mass weighted Cartesian coordinates. Ui, is
the jth component (with mass weighted) of the norma! coordinate whose eigenvalue
is o

In terms of U matrix, the dynamic matrix D can be expressed in spectral
representation.

D=U""{0,8,,)U (5)

The only question now is to construct the U matrix. The complete force constants
can be generated from U.

CONSTRUCTION OF NORMAL MODE

The normal coordinates for an unperturbzd molecule can be constructed from the
symmetry coordinates obtained by group theoretical methoed. '
Let S be the symmetric coofdinates

and S= LQ
N=AS
then N=ALQ (6)

Comparing with Eq. (4), we get:
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U=(AL"'=L'A’ (7

While I’ and A’ denote the transpose matrices of L and A. The matrix L can be
obtained by group theoretical method®

S =S X RO, (8

S,< balongs to rth symmetry spzcies of the point group considered. X, is the
character of tth symmetry spacies for the symmetry operation R, and 7 is a
normalization constant,

Then, the A matrix can be defined by the individual symmetry species as

N"=T34,505,47 ®
that is
AWM 0 0
I
A= (10)
0 -...-"'A(n)

A;¢7’s are the mixing parameters describing how the symmetry coordinates are
mixed to form the normal coordinates in the rth symmetry species. Once these
mixing parameters are known, U-matrix can be generated and the complete force
field can be calculated. We determined these parameters by freating isotopically
substituted molecules as a perturbed system.

GREEN’S FUNCTION

For isotopically substituted molecule, the force field is considered unchanged,

F=F M'=M+4M an
Substituting Eq. (11} into the eigen equation of the perturbed system, we get:
(F—Mo*]Q'=4Mo* (12)
or - |
Q' =G )M dMw*Q ' 13

where G(o*)=(D—o?"* is called the Green’s function. From Egq. (13) one arrives at
the determinant for the vibrational frequencies of the *perturbed” molecule in terms
of Green’s function.

| I—-G(w)dMM-'»*| =0 ' (14)
while I is é unit matrix.

In general, the dimensionality of 4M is much smaller than the total number of degrees
of freedom and therefore the secular determinant is truncated to a smaller dimensjon.
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One only needs the submatrix of G associated with the pzarturbation. In case of a
single isotope substitution, the secular ceterminant reduces to

| I—eGle®w?| =0 (15)
while
g:ﬂﬂ%ﬂ (16)

m® is the mass of isotope.
By Eq. (5), the Green’s function is easily constructed in the spectral representafion.

1
( s 0 0
0 ! 0
2 .2
Glet)=U G U1 : a7
0 0 —
By’ —0

w/s are frequencies for the unperturbed molecule 1nclud1ng 6 zero {frequencies
associated with translational and rotational motion.

Substitution of Eq. (17) into Eq. (14) or Eq. (15), the parameters A, can be
calculated and the complete force constants are generated by Eg. (3) without
employing any special force field. We shall discuss the calculation in detail with
triatomic molecule H,Q as an example,

APPLICATION TO BENT TRIATOMIC MOLECULE H.0

A. Construction of U-matrix

Here we need only consider the inplan motions. The six mass weighted
coordinates are shown in Fig. 1.

The six symmetry coordinates denoting vibration, translation and rotation in the
molecular plan are shown in Fig. 2.
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Fig. 2. Symmetry coordinates for bent triatomatic molecule XY

The symmetry coordinates S, and S, transform according to the same symmetry
species A, and therefore normal coordinates will be linear combinations of S, and S,

N=(8,+a8;} (L+a*)1/
N,=(§,—a$,) (1+a?)'7 (18)

The remaining symmetry coordinates are also normal coordinates. With Fig 1.
and Fig 2. as aids and by the incoporation of Egq. (18), the U-matrix is easily
constructed. In Table 1, the complete U-matrix is given.

Table 1, U-matrix

1/v2C —a/vV2ZC —(m ) singu./ vV 2 I(my)vm1 0 mucospust.)V 2
a(my e/ VEC | (mp 2/ V2 C |—(mcospun/ V21 0 ((mg) 2| —sindp/V 2 gy
~1/v2C a/v'2C —(ma)sing s/ V2 () 2y O mazosu s/ V' 2
a(m Y/ VZC | m) i/ V2 C| () ospun/ V2| 0 (ma) )| sindp./ V2

0 0 V2 () sing ey (ma) ey O V2(mamy)/2cos it
—ay/ 2 (m)* 0 /C |~/ 2 ()21t /C, 0 0 (me)* ) 0

=0 2my Y py=(ma+2mysin’g)y 't Cl=(1+4a?

B. Determination of mixing prapmeter
Consider isotope substitution YXY—Y®XY®, M, is changed into A,%®. Then by
substitution of the complete U~ matrix into Eq. (17) and Eq. (15) one get.

12,0 F2— m z zmﬂ’+mz
0, %, =0, ! m:’) ( 2my+m, ) (19)
0 o, ,z__C (w0 +0.)) 2mytm) +((my/m) =11 12m,CPw.* 4+ 2myw 2+ mCw 40, ] (20)

C{ 2my,+m,)

Eq. (19) is the well-known Teller-Redlich preduct rule. By Eq. (20) the mixing
parameter “a” can be calculated once the frequencies for isotopically substituted
molecule are known.
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Table 2. Vibrational frequencies of HZO and D,O

l 1 } 2 3

|
H.0 ' 3825.32 1653.91 3935.59
D.0 2758.06 1210.25 2883.79

With the frequencies listed in Table 2, the mixing parameter “s” is determined.
a=0,7217,

C. Calculation of force constants
By Eq. (5) and Table 1, the force field is generated as:

@,'m w2 *m
F1x= 1 '’} + ZQ 5]

zcz 2C3 +w32mzmysz-nz¢ﬂzz/2
Fu=ammg)"*p,w /20— 0 my(m,) 2 1.0/ 2C° + [ (mg)sindcos» p,* w1 /2
: 2 2 2 ’
F=—-S3at — S5t 40, mamsin'gu/2

Fl=wm(my *ap,/2C°— o, mimy*ap, /20— (mm,singcosd 1,°w,%)/2
Fiy=—mmsin*du,’w,?
Fr=(@,'=0.2) (am,(my) /1, /C?)
F,=a*mamyp w2 /2C+ momy o, /20 momycos*d p, w2/ 2
Foy={my(m;)an,/2C*) (0, — 0,%) + mamysingcosd ' w3/ 2
Fi=atmamyp, '/ 2C+mamy w0, [ 20— mzmycos*d py*wy? /2
F, o =—mymysinpcosd i, w,?
Fye=—a*mamyp*0,*/CP—mamyp o, /C*
Foy=2mymy,sin’du, w,*
Foo=2a*memy 1’0,/ C*+ 2mamy 120, /C*
While F,,=F, F,=-F, F,=F, F,=-F, F.,=F, F.=—F, F,=F,
F;;=0 by symmetry consideration.
The force constants calculated are listed in Table 3.

D. Internal force constants

Once the Cartesian force constants are calculated, one can transform them to
internal coordinates, and find the internal force constants. We calculate the force
constants of H,0O and compare them to the results of other authors.

Define the internal force field of X ¥X molecule as

2V=fdr o fodri b2 tridrs L sy 2 L2t g2 T 00 (21)

r, r,—bond distances of X—Y bonds
2¢—hbond angle of X—Y—-X
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Table 3. Force constants of H,O. F;; in 10° dyne/em

Fu Fo Fy Fu Fi Fi
5.796 3.641 —0.470 —0.689 —0.584 —3.158
Fu Fi Fa Fuy Fus Fu
.3.641 3.392. 0.689 0.197 —~4.125 —3.589
Fa Fa Fa Fi Fis F
—0.470 0.639 5.796 —3.641 —0.584 3.158
Fq Fo Fus Fu Fu Fu
—0.689 0.197 —3.641 3.392 4.125 —3.589
Fil st FH FE‘ Fiﬁ F“
—0.584 —4.125 —0.584 4.125 10.652 0
Fa Fe Fa o Fes Fle
--3.158 —3.589 3.158 —3.589 0 16.829

The relations between the
constants are:

internal force constants

fr=F.sin®*+ F,co5°d+2F ,singcosd
frr=F,co5t¢—F sin’p—2F, sindcosp

—%—z F,.cos?¢p+F,,sin*¢—2F, singcosp

i;-’*-:(Fu—— 22 )Singrosg+ Fy(cos’g—sin’g)

The force constants of H,O calculated in this way are listed in Table 4.
These results are compared to the results of (3) various force field model listed

by D.E. Freeman in-Table 5.

Table 4. Internal force constants of H,O (in 10° dyne/cm)

and the Cartesian force

(22)

fr Srr _-%_ f :c‘:
8.420 —0.299 0.7678 0.2532
Table 5. Comparison of Force fields for water (in dyne/cm)

Character of Force field fr %- frr —{L
1. (TrF)maa 8.448 0.785 —0.107 0.388
2, (TrF')maa 8.445 0.791 —0.110 0.414
3. Progressive rigidity 8.444 0.750 —0.111 0.044 |
4. (Trtl)maa 8.452 0.754 —0.103 0.159
5. This Work 8.420 0.768 —0.2089 0.2532
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Although the value of f,. is a little bit smaller, the results seem justified in comparison
to the results of other force field model.

In more complex molecule, if there is more mixing in the symmetry coordinates,
we need several isotopes to calculate the mixing parameters. In this cas, the method
of perturbation still applies, but the off-diagonal terms in force field are sensitive
to the variation of a-value. Nonetheless, the Green’s function methed has several
advantages. First, no restrictions are put on the force field model. In larger
molecule, the calculation is not so complex as direct solution of secular equation.
And the knowledge of mixing parameters lead to a fuller appreciation of the normal
vibrations, '

REFERENCES
(1) R.E. Dewames and T. Wolfram, J. Chem. Phy. 40, 853 {1964).

(2) E.B. Wilson, "Molecular Vibration” McGraw Hill, N.Y. (6935).
{3) D.E. Freeman, J. Mol. Spectry, 27, 27 (1958).



