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A quasi-thermedynamic model for expansion of polymer configuration in solution
is investigated. The model is based on Gaussian distribution of segments and mean
field theory of polymeér solution. An in-homogeneous contribution to the free
energy of solution is proposed. It arises from the nonhomogencous distribution of
polymer segements. This effects makes the expansion factor e to be larger than
those without the effect considered. Some numerical consequence for the case
Polydimethylsiloxane +-cyclohexane solution is calculated. Our theory predicts a
larger value a than the case, without inhomogeneous effect being considered. The

difference becomes less significant at higher molecular weight.

Theoretical description of dilute polymer
solution requires a knowledge of the average
configuration of the polymer. Usually, the
average configuration is characterized by the
"mean square radius of gyration

(SH=—- T 4D

where s, is the distance of the i'th segment
to the center of mass of the polymer. More
complete information involves the distribution
P(8) for &.

There are two factors in the determination
of average configuration of polymer, (a) free
energy of mixing of polymer segments in
solvent, it depends on the “goodness” of the
solvent (b) elastic free energy of the polymer
configuration distribution. These two opposite
factors balance each other to determine the
average configuration of the polymer. In (a)
and (b), one of the important effect is the so-
called excluded volume problem. It arises
from long range interaction between far-apart
segments of the polymer. Flory"'"’ treated this
problem first, he used a quasi-thermodynamic
approach that considers the two opposite ef-
fects mentioned above. Later, there are many

workers investigate this pi'oblem via more
soph-iSticated statistical mechanics®~*. Basically
most of the previous works deal with the ex-
pansiort of random coil in the infinite mass
limit and a relation as in Eq (1) is sought

D=5 (1)
with {(§*>=average extension of Gaussian coil
at f-state which is assumed to have no net ex-
cluded volume interactions. Excluded volume
makes & depends on molecular weight and
polymer-solvent interaction. In previous ap-
proaches"’, the polymer is taken as an infinitely
long chain that polymer extension can be
treated uniformly, In the free energy expres-
sion, such effect depends only on local segment
density. In real polymer of finite length, the
excluded volume effect must lead to the most
pronounced changes in the central region of
the coil, where segment density is highest.
In the fringe region, where peolymer-solvent
interface effect would make the excluded
volume contribution to be different.

Schematically, the fringe segments of the
polymer has different environment from ihe
center segments. We shall take this into con-
sideration by adding a density gradient ferm
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in free energy expression, this is shown to be
consistent with modern theory of inhomogene-
ous system®, in particular, the theory of
polymer interface®~”, The effect is to have
less density gradient and as a result, the distri-
bution function of radius of gyration tends io
become sharper than in the unperturbed
random flight chain, Also the expansion factor
« becomes larger than Flory's theory, at lower
molecular weight. However, such effect is
usually negligible for high molecular weight
polymer far from &-state due to the small
surface-to-volume ratio. It will become signi-
ficant when polymer molecular weight is low
and near f-state.

Vrij® had considered such an inhomogenc-
ous contribution to the expansion factor &&. An
important result of the contribution is that at
O-temperature, @ is not equal to unity as be-
Later Casassa®
considered its effect on branched polymer

fore, but somewhat larger.

chains in solution; he concluded that the effect
is not important. Candau'® and coworkers
put Vrij’s theory to experimental test and in-
dicated the shortfalls of Vrij-Casassa theory.
The comparisons with experiments were mainly
with variation on temperatures.

It is the purpose of this paper to re-
examine the effect based on a different deriva-
tion and considered the inhomegeneous effect
for very short polymer chains (molecular
weight down to 10*). We will examine the
effect for the case polydimethylsiloxane+-cy-
clohexane, We show that for very low mo-
lecular weight the inhomogencous contribution
to free energy is not neglegible. .

THEQRY

In the ideal state where excluded volume
interactions can be neglected and chain is in-
finitely long, we consider the Gaussian distri-

bution of random coil,
3 372
n,(S)—_—emSl(-z?< S-ég)

. cxp(-—z—2§>—u) (2)

as an freference state. It will serve as a point
of departure for the present treatment as in
Flory's theory. If we consider a chain of
clements, then only a fraction f(S) of the
random flight configurations which corresponds
to a fixed S will be allowed when the excluded
volume is other than zero. The distribution

for thic real chain will be

£(s) Ba(s) (3)
J35(s) Pi(s) ds

Tlhen we wish to calculate the function
f(s). {We will take the mean field approach
as Flory, let us assume V(s) to be the intramo-

P(s)=

lecular potential of mean force with § fixed.
Then,‘ '

f(s)=exp(—V¥(s)/KsT) (4)
¥{(s) will be the free energy of the polymer
coil interacting with solvent, with the polymer
center of mass fixed in space.

Let p(s]S)d to be the probability of find-
ing any one of the n segments in the volume

element s at the distance s from the center
of mass with § fixed, we.have
| ots19)d*s=n (5)

Let ¥, to be the volume of the polymer seg-

ment! volume density of polymer segment
o(s/8) will be

d(s/S)=V,p(s/S) (6)

In the mean field approach, V(s) will be
a functional of volume density ¢(s/5), it can
be expressed as

V(s) = [olo(s/)] @' (7>




1 i . B Ll Eid il . H M
AVERAGE CONFIGURATION OF FINITE PoLYMER wWiTH EXCLUDED VOLUME INTERACTION 3

where g[¢] is the local free energy of the
polymer segments. We will assume that local
density and its gradient are small so that free
energy density can be expanded as a Taylor
serics

£(0, Vo, V'p,+)
=8(0)+g" (Mo+1/2g*(0)p2
+EVo+k (VoY +k Vo4 (8)

with
og a'g
€13 _ s (33} =8
g(0)= op oot £ 7p° oo
p=1. 08 4. 0
2 a(Vp): avip

Such kind of density expansion is well-known
in the theory of fluid interface*''"’, Of the
coefficients, £ must be zero because the polymer
is spherically symmetric, the free energy must
be invariant to the symmetry operation of
Xi—-X;. The first and second terms in Eg
(&) will give constant contributions (independ-
ent of 'S), upon integration, to ¥(s); so they
can be taken as zero. Thus we have

V(S)=—5 8 0) lo(s|) Tas+
j’k,(wy d’s+fk, Vo d's

By applying the divergence theorem to the
last term and the surface term is zero in the
integration by parts.

We can write

V(S):—;—g"’(O)l[[p( |$)1 s+
(9}
‘fk(Vp)’ &’s

with

k=ky— 2.

with the {runcation of higher order terms. It
will be shown later that & is density independ-
We should note
here that the density gradient term in Equa-

ent to first approximation.

tion (9) is absent in previous theories. The
evaluations of the coeflicients g (0) and &
require statistical thermodynamic models, we
shall delay this until next section

The complete form of g(s|S) is still poerly
known at present!*®*, and we shall approxi-
mate it by a Gaussian fuaction. Since by
definition

St =p-1 J‘s’p.(s |$)ds (10)

The Gaussian function satisfying this condition
is

3 i
ols18)=n{—zr)
3 2
ew(-3)
With Equation (11), one can evaluate V(s).
The result js
st]_ 3”2__ 2 :2:’0 S—a
WA= gy ETL PR

Tz

-I%Eaﬁ nik 5= (12)

and the distribution function is

() exp (= V(S)/KsT)

M= ep Sy exp (—vis) Kayas Y
Defining
x= §/4SH1 (14)
V{(x)=Ax—?4Bx—* (15)
_ 33/2 n'h‘ g(l?(o)i
A= e (s s
31!2 n! k
B o (17)

The squared expansion factor e® may be cal-
culated from
2 7 3x? V(x)) dx
=l =] (18)
Ixt V{x)
2 .\
JT X cxp( KT )dx

The ratio of the two integrals in Eq (18)

may be evaluated approximately following the



4 Cnuns Yuan Mot

procedure of Herman and Overbeek', the
approximate value of « is equal to the value

. 3 . 3t .
x at which x® exp = V(x)/KsT { is a max-
imum. That is,

. *‘L[ln a2 V(@) ]=0 a9

dee | 2 K:T
or
4 5B,
e & T o (20)

Both 4 and B are molecular weight dependent.
It will be shown in the next scction that
Ao M2 and B oo MYVE
infinite, Eq (20) reduces to the result of Flory

When M approaches

A

§__ 3. T
=T

(21)

FREE ENERGY OF POLYMER COIL

In this section, we will present a model
calculation of ¥(S). The purpose is for a
qualitative understanding of the relative con-
tribution of both terms, rather than quantita-
tive precision. As indicated before, the value
of g#({0) and k require free encrgy model for
the polymer-solvent mixture. Here we will
adopt the Flory-Huggins model**~!®,

For a uniform distribution of polymer
system, the free energy density is expressed in
terms of volume fraction ¢. According to
Flory-Huggins Theory, for a polymer of =n
segments with solvent molecu}ar volume Vy,

the free energy per unit volume is

K"T [(1 8) In {1—¢)

+%___1ﬂ‘¢__+x_¢(_1f¢)] (22)

Where ¥ is the interaction-parameter tepre-
senting enthalpy change of mixing. For long
polymer n>>1, usually the second term in the
bracket can be neglected. Eq (22) becomes

=Ll r1-¢ -9

+xc’!(1—¢)] 2
Thus
dig
r3

_2VAKT 1
= G

_”V K,,

g(h(U) =V'z

———T(1-8/T) (24)

Where ¥ is the entropy parameter, & is the
thetai temperature.

For the coefficient, £, we need a theory of
inhm’nogeneous system applied to polymer
distribution. It comes from nonlocal contribu-
tion to the free energy of inhomogenous fluid
system as stressed by Cahn and Hilliard®,
Lal_uliatl and Lifshitz', Debye' and recently
by Helfard*". In the following, we follow
Helfe{ind’s approach.

Within Flory’s quasi-lattice model of
polygler-solvent sy.{em, we shall determine the
enthalp¢ of non-uniform system. Let C(R)
and F(S) be the probabilities of finding a B
mole;‘cule solvent at site R and A-segment at
site S. The probability Pas of finding such 4,
B pa!ir is

Pu=C(R)1-C(S)] gz - (25)

Where gp is the pair correlation. Assuming
that g4z Is independent of density, we than
expand _C('S) .around R-as

C(S)=C(R)+ (-V)C(R)
+ (V) C(R) @)

r, being the distance between R and 5.

Let ¥{r}=Ez—1/2(Eis¥+Ess), where E’s
are the intermolecular potential for polymers,
polymer-solvent, solvent-solvent interactions.
We iﬁnd‘ that the total energy per molécule at

R, U(R), relative to the pure component is:
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U(R)=C(R)[1=C(R)] fgaa (r) ¥(r) r

[ feutry e x| aryview)
(27)
Where the Ve term vanishes due to spheral

symmetry. The coefficient of the V¢ term can
be further written as

U(R)=0 C(R)[1—C(R)]

-.‘3231 C V*e(R) (28)
with L
w:fg,.,,(r) v(r) d (29)

IgAa(r) y(ryr® d'r
A= -
3J‘gu(r) v(r) d°r

(30)

Hence ¢ will be related to the well-known x
parameter of Flory as

w=KT % (31)

X has the dimension of length and represents
a root-meansquare interaction distance. For
Flory’s model, one can simply write the frce
energy density as

g OA 2

g-—gn—mﬁb(v @) (32)
with the replacement of ¢ by local volume
fraction ¢. Identifying, ’

2 2
kzz__wl Veip ,

2V,

k;=0,

We now have from Eq (9)

wi? V.2
[ 37, (33)
Finally, with Eq (16}, {17), we have
32 e 2t P2 KsT(—;‘—I) \
A= ——jgpn gy, 34)
 p= 31.'2 - (n‘z V’z KaT Az x),,

TS Yy

Recalling that n.¥,=M V/N,, with N, the Av-

agadro number, M the polymer molecular
weight, and ¥ the polymer partial specific
volume, we may also write

= 1
3/3 & KBT(T'_X)

- M 1/2

A_— =] ({S’)o) NV, MY (35a)
_ 372 M (52 ?KBTX YL
= 3—2:rw(<_si>‘.,) M (35h)

It is interesting to note the ratio A/B,

4 ey S
F=)—wy—

One can see that from Eq (33), as the mole-
cular weight of polymer increases the contri-

(36)

bution of inhomogeneous term becomes less
important. This is due to the rapid decrease
of “surface area” of polymer coil. In general,
A is expected to be of the magnetude of
segment length and <5%),/4* is expected to be
much less than one. Only in the case ¥ is
close to 1/2 would B-term in V(S) be signi-
ficant compared to A-term. That is, close to
0 point, the deviation from random coil be-
havior could be attributed to the inhomogene-
ous effect.

RESULTS AND DISCUSSIONS

In section (III) and {IV), we have deve-
loped a quasithermodynamic theory of polymer
configuration expansion under excluded volume
interaction. The result depends on many ther-
modynamic parameters. We want - in_ this
section to examine some numerical consequ-
ences for some typfcal polymer solutions in
order to compare the relative importance of
individual terms. We want to see, specifically,
how the distribution function P(S) and expan-
sion factor & are altered upon consideration
of the surface excluded volume effect for a
finite polymer,

In Table 1, we list the relcvant"strqcturéll
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Table 1. Resume of Thermodynamic parameters for represntative polymer solutionss
[¢SDo/M] % 10 14 NaVo 108 2
Pol lvent* °C)?
olymer-hsolven (em®/g) (e’ /[g) (em*/mole) 1056 (em)
PS+C-CHxy 8.0 0.9293 108 0.505 6.6
PDMS+-C-CsHiz 6.2 1.05 108 0.42 5.8
NR+CsHs 11.5% 1.10% 89 0.42 3.0

a. PS=Polystyrene, PDMS=Polydimethylsiloxane, NR=Natural Rubber.

b. Estimated from other temperature,

c. All data than X obtained from “Polymer Handbook"

{Interscience, New York, 1966).
d. x from reference (19).

edited by J. Brandrup and E,M. Immergul

Table 2. V{x) parameters for PDMS+c:yc]ohexane1 at several molecular weight (25°C)
M =10} 5x10¢ 100 { 2x10° 5x10° 106

A/KsT = 1.02 2.29 3.4 4.58 7.25 10.2
B/KsT = 0.657 0.294 0.208 0.147 0.093 0.066

and thermodynamic parameters for the polymer
solution system: Polystyrene4 cyclohexane,
polydimethylsiloxane +cyclohexane and natu-
ral rubber+benzene. All the data are obtained
from “Polymer Handbook” edited by Brandrup
and Immergut, Of these parameters, the seg-
ment interaction distance 4 is least known.
However, as one expects, 4 represents the range
of interaction; so here we simply take A to
be the segment length. This should be a
reasonable estimate barring exceptional long
range force.

From the data in Table 1, one ¢an calcu-
late the A, B parameters in our theory, using
Eq (35). We will examine here first the re-
lative importance of 4 term and B term, We
chose the system PDMS--cyclohexane at 25°C,
the values of A and B are listed in Table 2.
One can see that A is always larger than B;
the contribution of inhemogeneous free energy
is relatively small at large molecular weight
but becoming more significant at smaller mo-
lecular weight.

‘Let us first examine the distribution
function P(S), for three cases:

(a) Idea Gaussian chain with no excluded
volume
-3y 4

it 2
j e—SI!(x) x2 dx

0

Pi(x)=

(37)

{b) 'IJ‘he original Flory model with excluded
volume, eg. B=0
x2 e—anu!:-m—!

Jm xt e—uzu’:-nz—! dx
/]

P(x)=

(38)

(¢) This work, with surface term included

I,
We clalculate these distribution functions for
PDMS at 25°C and M=10* while the effect of
B-term is more important. The result is shown
in Fi!g. 1. As expected, the effect of excluded
volurrile is to shift the distribution toward
The effect of
surface term is to shift Fi(x) even more. B
As the
molecular weight increases, surface term be-
comes less important, for M=10%, P(x) and

x? 8—312(13)—As-3—31'5

Py(x)= (39)

—_ 2y Ae—3_ps—b
x! e L) -4 Rs d‘x

larger extension and narrower.

term is not negligible in this case.
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Fig. 1. Distribution function for radius of gyra-
tion of polymer. a: without exclude
volume interaction ¥(x)=0, b: A/KsT=
1.02 B=0. ¢: A/KeT=0.657 (This work).

Pi(x) are almost identical.

Next, we calculate the value oz using the
two distribution functions F{x) and Pi(x).
Experimentally, one measures e® (volume ex-
pansion factor). So we plot a® versus M in
Fig. 2 for PDMS at 25°C. One can se¢ here
o? increases as M increases. Our theory here
predicts a larger @ than Flory’s theory (curve
b), the difference is larger at lower molecular
weight, tending toward zero at higher molecu-
lar weight.

From the above numerical examples, we
conclude that the original Flory's theory of
excluded volume effect is probably justified in
neglecting the inhomogencous free energy
effect at high molecular weight. However, at
lower molecular weight this effect may not be
neglected, as seen from this model study. One
must be aware that, the Gaussian distribution
used in this work is not an accurate repre-
sentation of the real polymer, especially for

3
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4 3 5]
1ot 10 10 M
Fig. 2. Volume expansion factor a® Vs, M. The
case is for PDMS+cyclohexane at 25°C.
b: From Flory’s theory, c: from this
work with Bx0. ‘

p(s/S). In more realistic o(s/S), one may
encounter sharper gradient of density and, in
that case, the contribution of inhomogeneous
free energy could become more significant.
Previously, Fixman'® did evaluate the function
p{s/S) for larger S of an ideal chain, he found
that there is a very sharp boundary to the
molecule in the distribution of segments. In
this case, the gradient term in our theory
theory should smooth the distribution out.

To summarize, we have constructed a
quasithermodynamic model for the excluded
volume effect of polymer configuraiton. The
model study indicates that the inhomogeneous
free energy makes the polymer extend out
more in good selvent than Flory's theory, and
the effect become less important at higher
molecular weight. Although we have derived
the theory based on Gaussian distributions
and mean field theory, we believe the qualita-
tive conclusion is correct.
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In order to examine closer the experi-
mental implications, more work on more re-
alistic model is desirable. ’
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