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Statistical Inference of Distribution of Crystal Size by X-ray Powder
Diffraction

Po-Yi Chen { B3 ) and Chung-Yvan Mou { &R )
Department of Chemistry, National Taiwan University, Taipei, Taiwan, Republic of China

We describe a method to calculate the distribution of sizes of fine crystals from pure powder-diffraction
profile vsing a method of maximum entropy (MAXENT). We apply a Monte-Carlo technique of simulated
annealing to seek a global minimum of the error surface in fitting this diffraction profile. We consider pure
diffraction profile (instrument de-convoluted) of a powder specimen without lattice imperfection to a sig-
nificant extent. Under these circumstances, the distribution of the pure diffraction profile can be attributed
to the distribution of crystallite size. We applied this method to three cases of crystal sizes having a highly
inhomogeneous distribution with certain noise-tolerance. The resulis agree well with synthetic data of dif-

fraction.

INTRODUCTION

Measurements by X-ray diffraction' on fine crystalline
powders supply basic information about the type of lattice
and the dimensions of the unit cefl. In principle the profile
of the diffraction line {the distribution of intensity) in a De-
bye-Scherrer diagram could also provide information about
the distribution of the size of the particles in powder.”” This
object was rarely attempted. The reason is partly instrumen-
tal, but improvements in synchrotron radiation source make
this goal practicable. Other sources of difficulty are that the
mathematical inversion problem is not unique and that the
scarching process is difficult. In the most favorable situ-
ation, only information on the average size was extracted.!
Recent advances in the application of Maximum entropy
methods (MAXENT)™ and new techniques in stochastic
nonlinear optimization algorithm make the mathematical
problem readily tractable.™® We describe a method to calcu-
late the distribution of size of fine crystal from the diffrac-
tion profile of pure powder using MAXENT, We apply a
Monte Carlo technique of simulated annealing’ to seek a
global minimum of the error surface in fitting the diffraction
profile,

We consider pure diffraction profile {(instrument de-
convoluted) of a powder specimen without lattice imperfec-
tion to a significant extent. Under these circumstances, the
distribution of pure diffraction profile is attributed to crys-
tallite size distribution. According 0 our model of a crystal
as multi-planar diffraction gratings, a sample crystal is
thought to consist of columnar structures of repeating unit
cells perpendicular to the diffracting plane. Bach column
makes a contribution to the powder diffraction patterm. The
distribution of lengths of column is the unknown quantity

we seek to deduce from the density profile in X-ray diffrac-
tion pattern.

We present our formulation and demonstrate the
method with simulated numerical data. We show that with
the combination of MAXENT and the procedure of simu-
lated anncaling, the method can be applied to highly inho-
mogeneous distribution of crystal sizes with allowance for
noise.

The paper is organized as follows. After introducing
the problem of statistical inference of a probability distribu-
tion based on the maximun entropy method in scction II, we
formulate the problem of crystalline size distribution based
on diffraction data using MAXENT in section III. In sec-
tion 1V, we develop a method of simulated annealing search-
ing for the global minimum of a cost function. Finally, in
section V, we apply our method to synthetic data, with and
without added noise, and demonsirate its utility. For the
size distributions of the types mono-, bi- and tri-gaussian
that we considered, the method worked in most cases. A fi-
nal discussion is given then.

METHOD OF MAXIMUM ENTROP'Y (MAXENT)

The maximum entropy principle® is basically a princi-
ple of pattern-selection. From a set of experimental data, we
seek a best estimation of an underlying distribution. As the
data are incomplete, multiple answers are consistent with
the model. MAXENT allows one to find a least biased solu-
tion. Experimental information is partial in two ways: First,
the data may be sparse. The problem is then to “select” the
best interpolation and extrapolation function with whatever
prior information is given. MAXENT conforms to an intui-
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tive idea of Occam’s razor:® there should be least committal
to bias unless constrained by data. Secondly, the data may
be noisy. The problem is then to decide how much weight to
attach (o each datum. This problem is traditionally treated
according to maximum likelihood method. The maximum
entropy method may enable us to directly work on distribu-
tions of error. Entropy is thus used to solve an inverse prob-
lem in two ways, either as a particular choice of a regulari-
zation function in estimating noise,’ or in measuring the de-
gree of lack of knowledge (ignorance).®

For this inverse probilem,® we define entropy (8)'° as
the expected value of the information that is the negative
logarithm of the probability distribution P;.

S = -ZpnP, 1)

In the absence of further knowledge, the maximum entropy
distribution is flat. In a Bayesian sense, this distribution is
most reliable in the sense that there is least committal to any
unwarranted assumptions, Additional knowledge not in-
cluded in prior information is applied to constraint the dis-
tributions. In most applications, the latter appear in the
form of known averages,
Gpn=<gn>=Lpigu; m=1,23.. (2}
Then the constrained maximization of entropy is solved by
using Lagrange undetermined muliipliers. The method in-
volves the unconstrained maximization of the function,

L{p,A)=S-hZip; - Zm?‘-mzipigm.i 3)

Then maximizing L yields a distribution as
Pi = exp (-Zphng o }/Q @

in which An the undetermined multipliers chosen to satisfy
the constraints, Eq. 2, and Q is the normalization quotient
calied the partition function. The calculation of Maxent so-
lution consists of two stages: (i) the determination of the
probability function maximum entropy, Eq. 4, and (ii) the
determination of the uvndetermined multipliers such that
chosen constraints are satisfied. The first stage is easy for
our problem because the constraints in this work (shown in
the next section) are linear [cf. Eq. 2] hence L{p) is a strictly
concave function of a probability function p that has at most
one maximum. In the second siage, although one might
choose o satisfy all the constraints, in reality, these con-
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straints are subject to experimental yncertainties; one bad
datum would badly skew the distribution function, If one
fitted statistically according to the criterion of least-squares
to the constraint values, a problem of unigueness would
arise , for instance with many local minima after varying the
vndetermined multipliers. Advances in technigues of ran-
dom optimization belp to solve a problem of this type. The
method simulated annealing i useful for our purpose.

STZE DISTRIBUTION FROM DIFFRACTION
PATTERN

Guerin et al. applied MAXENT to evaluate the size
distribution of microcrystals from X-ray diffraction pat-
tern.'’ They considered only a simple distribution of one-
peak type. We first follow their basic formalism and then
maodify their approach.

We consider the distribution of a pure diffraction pro-
file attributed to distribution of crystallite size. We model a
crystal as a multi-planar diffraction grating. Hence, the
sample crystal consists of columnar structures of repeating
unit cells perpendicular to the diffracting plane. Each col-
umn makes a contribution to the powder diffraction pattern.
With spacing d between planes, wavelengih A of X-rays, and
angle 0 of incidence, we define a quantity f in termms of the
scattering angle as

f=A"2ndsin®d (5)

The interference function G(N,f) for a column of N layers is
given by

G(N, 1) = sin®(Nf)/sin? f (6)

That is, N is the number of unit cells along a crystallite
chord. With known unit cell dimension, N can give us a
measure of the column length. The scattering intensity at
angle f becomes

I(f) =K Zx p(N) G(N, ) )

in which K is a proportionality factor, and p(N) is the un-
known distribution of size of microcryseals. According to
the principle of MAXENT, the experimental data of Eq. 7
constitute the constraints o estimates of the distribution
function p(N). The number of constraints is equal fo the
number of data f;. Therefore, the MAXENT distribution has
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the form,
p(N) = exp[-ZX; G(N, £)1/Q &

in which A; are the undetermined multipliers and the nor-
malization quotient Q is given by,

Q = EN cxp[-E,»?L,- G(N, fl)] (9)

Guerin ct al."* chose the undetermined multipliers such that
Eq. 7 is satisfied exactly for every constraint at f;, but this
approach is impractical as random noise is unavoidable in
real data. Instead we consider a least-squares fitting proce-
dure of minimizing total errors with respect to the varying
A’s. The cost function of this optimization is then
C = [A{)/K) - Zy p(N) G(N, H)]? (10}
As the distributions are highly nonlinear wlth respect to the
undetermined multipliers, the problem of minimizing the
cost function, Eq. 10, becomes very difficult when the nurm-
ber of undetermined multipliers exceeds two. If the noise in
data is stgnificant, the problem becomes ill-conditioned.
The main source of difficully lies in the so-called loca! mini-
mum trapping problem when one is searching for a global
minimum in parameter space. A powerful method named
simulated anncaling to overcome this problem was pro-
posed;'* we used this method in our minimization process.

SIMULATED ANNEALING IN MINIMUM SEARCH

Simulated annealing, also known as Monte Carlo an-
nealing, was developed by Kirkpatrick ct al.'* and Cemy,"”
for the problem of combinatorial optimization. The name
was derived from the similarity of the optimization to mod-
eling the annealing of metals. A popular example for the use
of the algorithm on discrete data sets is the problem of trav-
eling salesman.”> That our searchin £ space is conlinuous
makes the problem more difficult, because one has 10
choose optimally the size of the step.

The physical process of annealing involves heating a
metal above its melting point at which all metal atoms are
randomly distributed. The melt is then slowly cooled. Dur-
ing this gradual cooling, the metal atoms reach equilibrium
at each temperature, tending to arrange themselves in
ground states of small energy. This thermal equilibrium is
characterized by the Boltzmann distribution of energy E,
P{E}
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E
exp (-? (1)

1
P = QM)
in which Q(T) is a normalization factor known as the parti-
tion function, and the exponential is referred to as the
Boltzmann factor. With decreasing temperature, the
BDoltzmann distribution tends toward the states with the low-
est energy, in the limit of zero temperature, only those states
with a minimum energy have a nonzero probability of oc-
currence.

The thermal equilibrium process can be modeled by
the Monte Carlo method,™ in which sequential microstates
of a substance are generated by using an iterative process.
With a given configuration of particles of substances, a new
configuration is chosen randomly, which results in reloca-
tion of randomly chosen particles. The difference in the en-
ergy of the two states AE is calculated, and if the difference
is negative (i.c., the new state is at a lower cnergy than the
original state), then the process conlinues using the new
state as the current configuration. If AL > 0, the probability
of accepting the new configuration is given by the Metropo-
lis criterion,

-AE
T

P=exp( ) (12)
According to this critcrion, the substance eventually
evolves into a state of thermal equilibrium.

The atgorithm for simulated annealing solves problem
ol oplimization by applying the Metropolis criterion to a se-
ries of configuraiions for the system being optimized. The
cost function C for optimization assumes the role of energy
in the algorithm, while the temperature T is decreased in a
controlled fashion,

The Metropolis criterion permits a nonzero probability
of moving to a configuration with a cost function excecding
that of the current configuration. Whether such a configora-
tion of greater cost is accepted is determined by drawing a
random number p from a uniform distribution in the interval
[0,1] and comparing the result with P from Eq, 13. If the re-
sulting random number is smaller than or equal to P, the det-
rimental configuration is accepted; otherwise a new con-
figuration in the neighborhood is computed and the evalu-
ation of the cost function is repeated. This probability crite-
rion allows the algorithm to move out of local minima,
through a biased random walk. The iterative process is con-
tinued until the probability distribution of the configura-
tions of the systerm approaches the Boltzmann disttibution,

. . C()
P{configuration =1} = exp { — ) (13)

1
Q(T)
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in which Q{T) is a normalization quient dependent on the
control parameter T, equivaleni to the partition function,
and T is the analog of temperature in a thermodynamic prob-
lem, Implementation of simulating annealing requires an
initial value of the control parameter T. Kirkpatrick et al."?
suggested that approximately 20% of the random configura-
tions are rejected. When the configurations approach a
Boltzmann distribution for a particular value of T, the con-
trol parameter is then decreased and the iterative process
continues. The algorithm terminates at some small value of
T for which few, if any, configurations are accepted. These
iterative runs are commonly catled cooling cycles denoting
the iowering of temperature for the Boltzmann distribution.

As our searching space is a high dimensional contin-
uum, there is an extra problem to choose the proper Monte
Carlo step size. If this size is 100 small, one could waste
much computation time moving in a fruitless region; if the
step size is too big, most Monte Carlo trials become re-
jected. Hence, one uses a self-regulatory mechanism to ad-
just the step size distribution. We adopted the algorithm de-
veloped by Vanderbilt and Louie.” in which step size distri-
butions are continually adjusted to fit the local terrain of the
surface of the cost function throughout the annealing proc-
¢ss. Their al gorithm9 is particularly suitable for our purpose
as we might have many continuous variables with large
ranges of values. Near saddle points of a cost function sur-
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Table 1. Mode Distributions of Column Length
No. Wi <Ni> VARMN) <N»

H 1.00 70 3985 70.0 398.5 4.41
0.50 40 100

VAR(MN) 5

2 0.50 100 156 73.3 1020.0 4.52
0.60 40 100

3 0.15 70 64 60.2 1018.8 4.45
0.25 115 64

face at which the heat capacity is large, we slowed the rate of
decrease of temperature to adjust the distribution to the
dominating attracting basin,

Because the Monte-Carlo method leads only to the vi-
cinity of the global minimum, we ocassionally vsed a sim-
plex algerithm'5 to achieve the final minimum after the an-
nealing procedure was properly concluded. For the purpose
of comparison, the simplex method was used to seek local
minima for the examples considered.

RESULTS AND DISCUSSION

We illustrate our method by means of several exam-
ples of simulated data. We consider synthetic data based on
a multiple-gaussian distribution of column length. These
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Fig. 1. Intensity profile for a monoguassian distribution, squares are sampling points. The intensities are in arbitrary unit.
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data are the sum of gaussian distributions

pN) =Z w; G (<Np>, a) (14)
in which G(<N>, a) is the gaussian function
G(<N>, 2) = A exp[-(N-<N>)*2 2% (15)

A is the normalization constant, <N> the mean size, and a
the variance. Table 1 lists the three cases that we consid-
ered.

Mono-gaussian distribution

We will consider first a simple gaussian distribution of
one size. We chose <N> = 70 and a = 20. For a typical unit
cell length of 10 A, this gives an average dimension of 700
A. We use Eq. 7 to generate the simulated intensity data
(Fig. 1). As the distribution is symmetric, in the inverse
MAXENT calculation, we need only half side of the inten-
sity data. The fifteen marked points in Fig. 1 (every 0.02°)
were chosen in least-squares fitting; the number of parame-
ters in Eq. 8 may vary.

In the simplex run, the cost function (normalized)
were mostly convergent to withia 0.001 to 0.0001. The re-
sulting p(N) function appears in Fig. 2, We have tested the
distribution functions with two to five undetermined multi-

0.021
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pliers; they are labeled from 102 to 105. Notice that the pro-
portionalily factor K in Eq. 7 is also determined in the mini-
mization. The fit with three parameters is already very close
to the exact distribution (solid line). For all fits, the com-
puled average sizes <N>, variance and entropy are listed in
Table 2,

Bi-gaussian distribution

For a bi-gaussian distribution of two sizes, simulated
intensity data appear in Fig. 3. The fifteen marked points in
Fig. 3 were chosen in least-squares fitting, and the resulting
distributions are shown in Fig. 4,

The fit with three multipliers (labeled 203) is poor
whereas that with four multipliers is improved. Neither fit
accounts for the backgrounds. Fits with five and six pa-
rameters are superior; the problem of local minimum be-
caoine serious because of the high dimensionality. We
failed to find the global minimum by the simplex method
that starts with an initial random configuration. The method
of simulated annealing helped ss converge quickly to the
global minimum.

Tri-gaussian distribution

For a tri-gaussian distribution of three sizes, the simu-
lated intensity data appear in Fig. 5. The twenty marked
points in Fig. 5 were chosen in least-squares fitting, and the

0.02
0.0r9
0.01r8
0.017
0.078
0.015
0.014
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0.0r2
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0.0071 -

[
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=] 102 + 703 <o

N (zize)
104 A

o5 F /2

Fig. 2. Distribution of column lengths for a monogaussian distribution inferred from sampling points in Fig. 1. Solid line rep-

resents exact distribution.
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Table 2. Resufts of Distributions of Powder Size Inferred from
Generated Test Data

<N> VAR (N) S
Exact 70.0 3085 441
102 68 4 488.5 448
103 69.5 4351 445
104 69.8 412.6 443
105 690.8 4124 443
Exact 733 1020.0 4.52
203 63.5 1514.5 485
204 69.7 11524 4.63
205 736 1008.3 451
206 73.7 1001.6 450
Exact 60.2 1018.8 445
304 58.2 11725 438
305 58.6 1155.6 442
306 60.0 1007.2 443
307 0.7 1002.2 440
Exact 733 1020.0 452
223 63.0 1554.0 4.86
224 692 1197.2 4.62
225 735 10535.7 449
226 748 990.2 4,17

resulting distributions are shown in Fig. 6. The fit with four
and five multipliers (labeled 304 and 305) failed to account
for the bump about N = 70. The fit with seven multipliers
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gave a small shoulder around 70, but the fits become poorer
than the previous two cases.

The number and positions of data points chosen deter-
mine how reliable is the result. When we varied the number
of data points, the results confimmed the expectation that the
greater i the number, the better is the quality of fit obtained.

We investigated the effect of random noise in intensity
data as it is unavoidable in real experimental data. We set
the noisc level between 0 and 5% of signal. For a
monogaussiandistribution, even a 5% noise Ievel did not al-
ter the quality of the fit appreciably (<N> = 700.5 and var(N)
= 470). For a bigaussian distribution the noise affected the
resulting distribution appreciably; we illustrate this point in
Fig. 7 for noise level at 2%. Although a fit with five multi-
pliers is very good but six parameters made it worse because
the noises in the data induced an artificial bump in the distri-
bution. The entropy function shows an artificially small
value for the latter fit. This example shows that in order for
this method to work data smoothing may be necessary be-
fore the MAXENT treatment.

Finally we note that our algorithm is not only globally
convergent but also flexible in choosing constraints, as one
can choose freely the number and type of data points.

As in the work of Guerin et al.,'" the error in intensity
that one can tolerate in this method is probably about 5%, If
the background intensity is constant, there is no additional
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Fig. 3. Intensity profile for a bignassian distribution, squares are sampling points.
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PN

Fig. 4. Column length distribution for a bignassian distribution inferred from sampling points in Fig. 3. The notations are the
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problem, but if it is not constant, one has to subtract it care-
fully. We achicved an improvement on the work of Guerin
et al."' by introducing the method of simulated annealing
and showed that the MAXENT method can be applied to
mulli-size component distributions. This development will
make the method much more useful.

We used only a uniform prior distribution of crystallite
sizes in this work. In real crystal growth processes, we
prabably can have some prior knowledge beyond X-ray dif-
fraction data. A properly choscn prior probability will
likely enhance the convergence or limit the space to be
searched.

From the experimental point of view, a clear determi-
nation of crystallite size distribution from pure X-ray dif-
fraction profile is still wrought with many difficulties.
Firstly, highly accurate and deconvoluted profile data are
necessary. Acquisition of powder diffraction data with syn-
chrotron radiation source improves much peak-to-back-
ground intensity ratio;'® and one can hope profile analysis
will be more feasible in the future, Secondly, ong has to
separate size and strain effect. This is an intrinsically uncer-
tain process with many pitfalls.” The method of Warren-
Averbach® in an approximate way, is the most commonly
used method to deal with this problem. But usually in the
size analysis, Warren-Averbach method gives average in-
stead of distribution. Distribution can only be obtained with
accurate Fourier data which ofien is severly corrupted by
noise. And more, data acquisition in 2 theta range is limited
by the presence of neighboring reflections. This leads to a
truncation in the Fourier transformation. QOur approach in-
stead obtains distribution from a global analysis of intensity
and noise-iolerance is built in. Tn many cases, intensity pro-
file shows long tails in the two sides which, if truc, is due to
multiple-peaked size distribution as shown in this work.
The present method would help one to deal with such com-
plex distribution.
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