Rhenium(I) Tellurolate, Telluroether and Bidentate-Telluroether Complexes: Crystal Structures of Re(CO)₃Br(PhTe(CH₂)₃TePh), PhTeRe(CO)₅, Re₂(μ-SePh)₂(CO)₈ and [(PhTeMe)Re(CO)₅][BF₄] Wen-Feng Liaw**(廖文峰), Yih-Chern Horng*(洪義盛), Der-Shiaw Ou*(歐德孝), Chih-Yuan Chuang*(莊智媛), Chen-Kang Lee*(李成康), Gene-Hsiang Lee*(李錦祥) and Shie-Ming Pengb(彭旭明) *Department of Chemistry, National Changhua University of Education, Changhua, Taiwan 50058, R.O.C. *Department of Chemistry, National Taiwan University, Taipei, Taiwan 10763, R.O.C. The monomeric rhenium(I) complex with bidentate telluroether ligand Re(CO)₃Br(PhTe(CH₂)₃TePh) (1) was accessible via reaction of the PhTe(CH₂)₃TePh with Re(CO)₅Br. This chelate complex crystallized in triclinic space group P\overline{1} with a = 9.390(5) Å, b = 10.961(3) Å, c = 11.849(4) Å $\alpha = 63.30(3)^{\circ}$, $\beta = 87.49(4)^{\circ}$, $\gamma = 69.31(4)^{\circ}$, V = 1009.5(7) Å³, Z = 2, R = 0.033, and R_w = 0.034. Reaction of Re(CO)₅Cl with NaTePh yielded the Re(I) species PhTeRe(CO)₅ (2). This complex crystallized in triclinic space group P\overline{1} with a = 7.085(1) Å, b = 9.203(1) Å, c = 11.341(1) Å, $\alpha = 107.24(1)^{\circ}$, $\beta = 100.56(1)^{\circ}$, $\gamma = 96.47(1)^{\circ}$, V = 683.2(2) Å³, Z = 2, R = 0.027, R_w = 0.022. Reaction of PhTeRe(CO)₅ and (PhSe)₂ in ThF at 65 °C yielded a product that was confirmed crystallographically to be the known species Re₂(µ-SePh)₂(CO)₈ (3), in which two phenylselenolate ligands bridge the two Re(I). Compound 3 crystallized in monoclinic space group P2₁/n with a = 7.210(2) Å, b = 18.862(6) Å, c = 9.083(3) Å, $\beta = 107.48(3)^{\circ}$, V = 1178.2(7) Å³, Z = 2, R = 0.046, and R_w = 0.051. Methylation of PhTeRe(CO)₅ with [Me₃O][BF₄] afforded Re(I) product [(PhTeMe)Re(CO)₅][BF₄] (4). This monodentate telluroether species crystallized in monoclinic space group P2₁/n with a = 8.405(1) Å, b = 13.438(3) Å, c = 15.560(2) Å, $\beta = 92.59(1)^{\circ}$, V = 1755.5(5) Å³, Z = 4, R = 0.035, and R_w = 0.035. #### INTRODUCTION Complexes containing tellurolate and telluroether ligands¹ were synthesized by tellurolysis via reaction of metal alkyls and tellurol,² by insertion of tellurium into a metal-carbon bond,³ by nucleophilic attack of a metal hydride on diorganylditellurides,⁴ and by oxidative addition of diorganylditellurides to metal complexes.⁵ A typical procedure is to treat transition-metal halides with [cation][TeR] ligands, even though conventional metathesis reactions commonly result in formation of diorganylditelluride and metal fragment.² According to the literature, the coordination chemistry of transition metals with multidentate telluroethers/telluroether is much neglected,^{1,6} and in particular little is reported about the reactivity of metal tellurolates.^{2,7} We recently demonstrated an exceptional mode of coordination in MeTe(CH₂)₃TeMe/RTeTeR and prepared polymeric coordination complexes [Ag((MeTe(CH₂)₃-TeMe)_{1/2})₄]₁₀[BF₄]_n, [Cu(μ -Cl)(μ -MeTeTeMe)_{1/2}]_n, and diorganylditelluride-multiply-bridged [Ag₂(NCCH₃)₄(μ -(p-C₆H₄F)TeTe(p-C₆H₄F))₂][BF₄]₂. To extend the range of transition-metal telluroethers and tellurolates, we used facile synthetic routes to prepare bidentate telluroether-, tel- lurolate-, and monodentate telluroether-rhenium(I) species; reactivity experiments provided insight into comparison of bond strengths of Re-Se and Re-Te. ### RESULTS AND DISCUSSION Monomeric transition-metal complex $Re(CO)_3Br-(PhTe(CH_2)_3TePh)$ 1 containing bidentate telluroether was synthesized in high yield by reaction of $Re(CO)_5Br$ with chelate ligand $PhTe(CH_2)_3TePh$ in THF at 65 °C (Scheme Ia). This colorless, air-sensitive matelial is slightly soluble in polar organic solvents. Compound 1 can also be prepared from reaction of $Re_2(\mu-Br)_2(CO)_6(THF)_2$ with $PhTe(CH_2)_3$ -TePh in stoichiometric proportions via bridge splitting in THF at ambient temperature (Scheme Ib). The stoichiometric proportions of the splitting in the stoichiometric proportions of the splitting in the stoichiometric proportions via bridge splitting in the structure of Re(CO)₃Br(PhTe(CH₂)₃TePh) was confirmed by X-ray diffraction measurements on a single crystal. The infrared spectrum of compound 1 shows bands in the carbonyl stretching region at 2027 vs, 1942 s, and 1904s cm⁻¹ in THF. This pattern is well documented for a facial tricarbonyl complex in THF at ambient temperature containing an unsymmetrical bonding environment around 60 the rhenium(I) atom. ^{10,11} In ¹H NMR spectra, a methylene multiplet (-Te-CH₂-, 3.00-3.27 (m) ppm, overlapping sets of triplets) also indicated a six-membered ring ReTe₂C₃ possessing conformational isomers (boat-configuration (meso, dl) \Leftrightarrow chair-configuration (meso, dl) in CD₂Cl₂ solution at ambient temperature (structural isomerism was observed in solution for the chalcogenether complexes). ⁶ #### Scheme I The conventional metathetical reaction between Re(CO)₅Cl and NaTePh, achieved by dropwise addition of NaBH₄ in ethanol to (PhTe)₂ in ethanol at 0 °C, ¹⁰ in ethanol at ambient temperature provides a straightforward route to thenium(I)-tellurolate PhTeRe(CO)₅ 2 with a high yield (Scheme Ic). Rhenium(I)-tellurolate PhTeRe(CO)₅ is an orange solid that is stable indefinitely when stored under nitrogen at room temperature or when heated in THF at 65 °C for 1 h (Scherne Id). By contrast, the analogous Me-TeRe(CO)₅ is stable for prolonged periods (four days) in the solid state in the absence of air at ambient temperature. In THF solution MeTeRe(CO)₅ was converted into Re₂(CO)₈(μ-TeMe)₂ in one hour at 65 °C (Scheme Ie) or overnight at ambient temperature. 13 PhTe(CH2)3TePh and (PhTe)₂ ligands catalyzed the formation of Re₂(µ-TePh)₂(CO)₈ on heating PhTeRe(CO)₅ and PhTe(CH₂)₃TePh or (TePh)₂ individually in THF at 65 °C. Examination of the reactivity of this rhenium(I)-tellurolate species indicates that the reaction of PhTeRe(CO)₅ with (PhSe)₂ totally removed the tellurolate ligand and yielded a dimer Re₂(CO)₈(μ-SePh)₂ 3 bridged by only phenylselenolates with formation of diphenylditelluride as judged by the color, ¹H NMR spectra, and the structure of a single crystal (Scheme If). ^{10,14} Nucleophilic reaction of PhTeRe(CO)₅ with hard alkylating reagent [Me₃O][BF₄] in equimolar proportions in acetonitrile at ambient temperature for 3 min yielded monodentate telluroether rhenium(I) derivative [(PhTeMe)Re(CO)₅]-[BF₄] **4** (Scheme Ig). ¹H NMR spectra of [(PhTeMe)Re-(CO)₅][BF₄] at room temperature become even more straightforward to confirm methylation of tellurium. The hydrogen (TeCH₃) nuclei couple to ¹²⁵Te (I = 1/2, 6.99%) producing one set of satellites (2.73 (s) ppm, $J_{1H-C.125Te} = 24$ Hz) that provide valuable structural information. ⁹ In contrast to the reaction of [Me₃O][BF₄] and PhTeRe(CO)₅, the reaction of PhTeRe(CO)₅ with MeI produces the well known Re(CO)₅I (v_{CO} (cm⁻¹) (hexane) 2146 w, 2093 w, 2038 s, 1990 m) and PhTeMe (¹H NMR (CD₃CN): δ 2.63 (s) (CH₃), 7.20-7.79 (m) ppm (C₆H₅)) (Scheme Ih). ¹⁵ # Structure of Re(CO)₃Br(PhTe(CH₂)₃TePh) As depicted in Fig. 1, compound 1 has one bidentate telluroether chain chelated to a Re(I) center. The Te(1)-Re-Te(2) angle is 89.42(4)° so to produce distorted octahedral coordination around the metal. The Re-Te distances average 2.761(2) Å in compound 1, smaller than another Re-Te distance 2.773(1) Å in [(PhTeMe)Re(CO)₅][BF₄]. The Re-C bond of length 1.920(9) Å (average of Re-C(2) and Re-C(3)) is longer than the Re-C(1) bond of length 1.902(10) A. The most remarkable feature of compound 1 is the stereochemistry of the chelating telluroether chain. The chelate ring on rhenium adopts a boat-like conformation with two phenyl rings lying on the same side of the chelating chain and Re-Te(1)-C(4) bond angle 107.6(3)°, Re-Te(2)-C(6) 107.3(3)°, Te(1)-C(4)-C(5) 117.6(6)°, Te(2)-C(6)-C(5) 118.1(6)°. A top view of compound 1 shows the Br atom to be significantly tilted toward two tellurium atoms (Te(1)-Re-Br 83.37(4)° and Te(2)-Re-Br 85.19(6)°) and indicates a Fig. 1. ORTEP drawing and labeling scheme of Re(CO)₃Br(PhTe(CH₂)₃TePh) with thermal ellipsoids drawn at the 50% probability level. meso conformation in the solid state. ### Structure of PhTeRe(CO)₅ Compound 2 has an almost regular octahedral coordination geometry (Fig. 2). The Re-Te bond of length 2.813(1) Å in compound 2 is larger than the terminal Re-Te bond of length 2.773(1) Å in compound 4, 2.761(2) Å (average) in compound 1, and also longer than the Re-TeH bond of length 2.743(1) Å in Cp*Re(H)(CO)₂(TeH). The Re-Te-C(6) bond angle $101.6(2)^{\circ}$ indicates a slightly distorted tetrahedral disposition of electron pairs about the tellurium atom. Re-C distances of two distinct kinds are seen. The larger distance 1.993(9) Å (average) is typical of Re-C bonds for carbonyls trans to π -acceptor carbonyl ligands. The smaller Re-C(3) distance (1.920(8)) Å is observed for carbonyl trans to σ -bonding phenyltellurolate ligand. ### Structure of Re2(µ-SePh)2(CO)8 The core geometry of compound 3 is best described as a Re₂Se₂ planar rhombus with two phenyl groups adopting a trans configuration in the solid state (Fig. 3). The molecule is symmetrical due to a crystallographically imposed inversion center. Four terminally bonded carbonyl groups and bridging selenolates define the distorted octahedral geometry of each rhenium atom, leading to an acute angle Se-Re-Se' 83.37(4)°. An interesting aspect of this structure is that the selenium atom adopts a severely distorted tetrahedral ar- Fig. 2. ORTEP drawing and labeling scheme of PhTeRe(CO)₅ with thermal ellipsoids drawn at the 50% probability level. rangement of three bonding pairs and one lone pair of electrons because of the sharp bridge angle Re-Se-Re' 96.63(4)°.166 The Re-Se distance (average 2.680(1) Å) compares well with the Re-Se distance 2.604(4) Å in the rhenium(I) dimer $Re_2(CO)_6(\mu-Br)_2(\mu-Se_2Ph_2)$.16c ### Structure of [(PhTeMe)Re(CO)5]+ The structure of the compound 4 unit in its BF_4 salt is shown in Fig. 4. The compound crystallizes as discrete cations of $[(PhTeMe)Re(CO)_5]^*$ and anions BF_4 . In crystals of this monodentate telluroether complex, the coordination geometry around the rhenium(I) center is a distorted octahedron. The length 2.773(1) Å of the Re-Te bond in com- Fig. 3. ORTEP drawing and labeling scheme of Re₂(μ-SePh)₂(CO)₈ with thermal ellipsoids drawn at the 50% probability level. Fig. 4. ORTEP drawing and labeling scheme of [(PhTeMe)Re(CO)₅]* with thermal ellipsoids drawn at the 50% probability level. ### **SUMMARY** We present an account of preparation and characterization of chelate-telluroether-, tellurolate- and monodentate-telluroether-rhenium(I) derivatives, including X-ray structures, and the reactivities of PhTeRe(CO)₅ toward (PhSe)₂, (PhTe)₂, PhTe(CH₂)₃TePh, [Me₃O][BF₄], and MeI. Reactivity experiments provided insight into the comparison of bond strengths of Re-Se and Re-Te. #### **EXPERIMENTAL** Manipulations, transfer and reactions of samples were carried out under standard Schlenk techniques (N2 atmosphere) and in a glovebox with a nitrogen atmosphere. Solvents were distilled under N2 from appropriate drying agents (hexane and tetrahydrofuran (THF) from Na/benzophenone; ethanol from Mg/I2; diethyl ether from calcium hydride; acetonitrile from CaH₂/P₂O₅) and then stored in dried, N2-filled flasks over activated 4 Å molecular sieve. A nitrogen purge was used on these solvents before use and transfers to reaction vessels were made via stainless-steel cannula under N2 at positive pressure. The reagents rhenium pentacarbonyl bromide, tellurium powder, sodium borohydride, 1,3-dibromopropane, trimethyloxonium tetrafluroborate, diphenyldiselenide, methyl lithium, phenylmagnesium bromide (Aldrich) were used as received. Infrared spectra were recorded on a spectrometer (Bio-Rad FTS-7 FTIR) using sealed solution cells (0.1 mm) with KBr windows. NMR spectra were recorded on a Bruker AC 200 spectrometer; chemical shifts for 125Te NMR spectra are relative to Me₂Te. Analyses of carbon, hydrogen were obtained with a CHN analyzer (Heracus). ### Preparation of PhTe(CH2)3TePh To a solution of NaTePh, obtained by slow addition of NaBH₄ (76 mg, 2 mmol) to (PhTe)₂ (0.407 g, 1 mmol)¹⁹ in ethanol at 0 °C, was added 1,3-dibromopropane (0.1 mL, 1 mmol) in ethanol (15 mL) at ambient temperature. The reaction mixture was stirred for 10 min and the color of the solution became light yellow. The solvent was removed under vacuum. Hexane (15 mL) and degassed H₂O (5 mL) were added individually and the top layer hexane solution was carefully transferred into another flask via cannula. The orange-yellow oily product PhTe(CH₂)₃TePh (0.91 g, 98%) was obtained after removing hexane solvent under vacuum.⁹ H NMR (CD₃COCD₃): δ 2.94 (t), 2.26 (q), 7.76-7.14 (m) ppm. ¹³C NMR (CD₃COCD₃): δ 33.98 (s) (satellite, $J_{\rm ^{13}C-C-^{125}Te}$ = 33.28 Hz), 10.97 (s) (satellite, $J_{\rm ^{13}C-Te}$ = 108.19 Hz), 137.90, 129.62, 127.71, 112.56 ppm. ## Synthesis of Re(CO)₃Br(PhTe(CH₂)₃TePh) 1 Re(CO)₅Br (82 mg, 0.2 mmol) was loaded into a Schlenk flask (50 mL) and dissolved in THF (10 mL) at ambient temperature. Orange-yellow oily PhTe(CH2)3TePh (91 mg, 0.2 mmol) was syringed into the mixture. The reaction mixture was stirred and refluxed for two hours, yielding a colorless solution. This solution, layered with hexane (4fold portion), was then placed in a refrigerator (-10 °C) for three weeks. Colorless crystals (0.155 g, 97%) were obtained suitable for X-ray crystallography. IR v_{co} (THF) 1904 s, 1942 s, 2027 vs cm⁻¹. ¹H NMR (CD₂Cl₂): δ 3.00-3.27 (m) (Te-CH₂), 2.15-2.34 (m) (Te-CH₂-CH₂-), 7.28-8.00 (m) ppm (C_6H_5). ¹³C NMR (CD_2Cl_2): δ 12.31, 12.46, 12.59, 15.07, 27.01 (Te-CH₂-CH₂-), 137.69, 137.14, 136.31, 130.78, 130.62, 130.39, 130.26, 129.72, 113.27, 111.73, 111.47 (C₆H₅), 187.9, 189.6 ppm (CO). Anal. Calc for C₁₈H₁₆O₃BrTe₂Re: C, 26.97; H, 2.01. Found: C, 27.11; H, 2.11. # Synthesis of PhTeRe(CO)₅ 2 A solution of NaTePh (0.5 mmol) in ethanol (15 mL) was added to Re(CO)₅Cl (0.181 g, 0.5 mmol) at ambient temperature. The clear solution immediately turned orange. After stirring the resulting solution for 0.5 h, the solvent was removed under vacuum, and hexane (30 mL) was added to extract the product. Recrystallization by dissolving the product in a minimum amount of hexane and then cooling to -10 °C for two weeks afforded orange crystals of PhTeRe(CO)₅ (0.241 g, 91%). PhTeRe(CO)₅ (0.241 g, 91%). A 7.0-7.85 (m) ppm. 125 Te NMR (CD₃COCD₃): δ 7.0-7.85 (m) ppm. 125 Te NMR (CD₃COCD₃): δ -493.3 ppm. 13 C NMR (CD₃COCD₃): δ 182.30, 183.37 (CO), 142.25, 130.18, 129.21, 127.75 ppm (C_6H_5). Anal. Calcd for $C_{11}H_5O_5$ TeRe: C, 24.88; H, 0.95. Found: C, 24.97; H, 1.09. ## Reaction of PhTeRe(CO)5 with Diphenyldiselenide PhTeRe(CO)₅ (0.266 g, 0.5 mmol) and (PhSe)₂ (75 mg, 0.25 mmol) in THF (10 mL) were reacted at 65 °C for 2 h. The orange solution turned red-orange. The solvent was removed under vacuum. Hexane was added to dissolve the red-orange solid that was identified as diphenylditelluride by ¹H NMR spectra and X-ray crystallography, ¹⁴ leaving a light yellow solid. Recrystallization by dissolving the light-yellow solid in a minimum amount of THF, layering it with hexane, and keeping in the refrigerator at -10 °C for three weeks afforded light yellow crystals Re₂(μ -SePh)₂(CO)₈ 3 (0.19 g, 84%). ²¹ IR ν_{CO} (THF) 2087 w, 2013 s, 1990 m, 1952 m cm⁻¹. ¹H NMR (CD₃COCD₃): δ 7.27-7.74 (m) ppm (C₆H₅). Anal. Calcd for C₂₀H₁₀O₈Sc₂Re₂: C, 26.44; H, 1.11. Found: C, 25.87; H, 1.23. ### Synthesis of [(PhTeMe)Re(CO)5][BF4] 4 PhTeRe(CO)₅ (0.266 g, 0.5 mmol) was loaded into a Schlenk flask (50 mL) with [Me₃O][BF₄] (74 mg, 0.5 mmol). Dried and degassed acetonitrile (10 mL) was added to give a light yellow solution. The reaction mixture was stirred at ambient temperature for 5 min. The reaction mixture was dried under vacuum, and THF was slowly added to precipitate the white solid. The mother liquor was removed via cannula. The residue was washed with THF several times and dried under vacuum. White solid [(PhTcMe)Re-(CO)₅][BF₄] 4 (0.25 g) was isolated in 80% yield. Recrystallization of the product from a minimum volume of CH₃CN and THF, layering it with diethyl ether in four-fold proportion, and then cooling to -10 °C for three weeks afforded colorless crystals of [(PhTeMe)Re(CO)₅][BF₄] suitable for X-ray crystallography. IR vco (THF) 2150 w, 2084 w, 2040 s, 1981 m cm⁻¹. ¹H NMR (CD₃CN): δ 2.73 (s) (satellite, $J_{1_{\text{H-C-}},125_{\text{Te}}} = 24 \text{ Hz}$), 7.30-7.76 (m) ppm (C₆H₅). ¹²⁵Te NMR (CD₃CN): δ 167.9 ppm. ¹³C NMR (CD₃CN): δ 181.6, 176.3 (CO); 134.6, 131.5, 131.1, 111.8 ppm (C₆H₅). Anal. Calcd for C₁₂H₈O₅BF₄TeRe: C, 22.78; H, 1.28. Found: C, 23.28; H, 1.49. ### Preparation of MeTeRe(CO)₅ and Re₂(µ-TeMe)₂(CO)₈ Into a Schlenk flask (50 mL) was charged Re(CO)₅Cl (0.181 g, 0.5 mmol) and a portion of LiTeMe in THF solution, prepared by addition of MeLi (0.32 mL, 1.6 M in diethyl ether, 0.5 mmol) to tellurium powder (0.064 g, 0.5 mmol) in THF at -90 to 15 °C. The reaction mixture was stirred for 0.5 h at ambient temperature. The THF solvent was removed under vacuum and the orange-red residue was extracted with hexane. Upon removal of hexane in vacuum, an orange-red solid MeTeRe(CO)₅ (0.206 g, 88%) was obtained. IR ν_{CO} (THF) 2127 w, 2070 w, 2020 s, 1985 m cm⁻¹. ¹H NMR (CD₃COCD₃): δ 1.78 (s) ppm (satellite, $J_{1_{\text{H-C}},125_{\text{Te}}}$ = 21.4 Hz). Neutral solid MeTeRe(CO)₅ is stable for prolonged periods (four days) in the absence of air at ambient temperature. In THF solution MeTeRe(CO)₅ transformed into yellow Re₂(μ -TeMe)₂(CO)₈ at 65 °C for 2 h. IR ν_{CO} (THF) 2074 m, 1996 s, 1985 sh, 1951 m cm⁻¹. ¹H NMR (CD₃COCD₃): δ 2.31 (s), 2.26 (s) ppm (CH₃). The spectral properties are consistent with formation of the Re₂(μ -TeMe)₂(CO)₈ dimer.²² # Reactions of PhTeRe(CO)₅ and (PhTe)₂/ PhTe(CH₂)₃TePh Heating PhTeRe(CO)₅ (0.107 g, 0.2 mmol) and (PhTe)₂ (82 mg, 0.2 mmol) (or PhTe(CH₂)₃TePh, 91 mg, 0.2 mmol) THF solution for 1 h produced a red-brown solution. This solution was dried under vacuum, and hexane was slowly added to dissolve the (PhTe)₂. The hexane was removed and light orange solid Re₂(μ -TePh)₂(CO)₈ was dried under vacuum. The carbonyl-stretching bands at 2080 m, 2008 vs, 1989 s, 1952 m cm⁻¹ (THF) were consistent with formation of Re₂(μ -TePh)₂(CO)₈. ¹H NMR (CD₃CN): δ 7.3-7.8 (m) ppm (C₆H₅). ### Crystallography Crystal data for compounds 1, 2, 3 and 4 are summarized in Table 1. The air-sensitive crystal Re(CO)₃Br(PhTe-(CH₂)₃TePh) chosen for diffraction measurement ca. 0.05 × 0.35×0.45 mm (moderately air-sensitive crystal PhTeRe(CO)₅, crystal dimension $0.05 \times 0.25 \times 0.45$ mm; air-stable crystal Re₂(μ-SePh)₂(CO)₈, crystal dimension $0.50 \times 0.50 \times 0.50$ mm; moderately air-sensitive crystal [(PhTeMe)Re(CO)₅][BF₄], crystal size $0.03 \times 0.28 \times 0.35$ mm) was mounted on a glass fiber and coated in epoxy resin. The unit-cell parameters were obtained from 25 reflections (25 °C) (18.00° $< 2\theta < 33.16$ ° for 1; 18.74° $< 2\theta <$ 36.18° for 2; $19.50^{\circ} < 2\theta < 38.28^{\circ}$ for 3; $19.84^{\circ} < 2\theta <$ 36.92° for 4). Diffraction measurements were carried out on a Nonius CAD 4 diffractometer with graphite-monochromated MoK_{α} radiation employing the $\theta/2\theta$ scan mode; ψ scan absorption correction was made. Structural determinations were made using the NRCC-SDP-VAX package of programs.23 Selected bond distances and angles are listed in Tables 2 and 3. W.E.P.S. Table 1. Crystallographic Data for Compounds 1, 2, 3 and 4 | compound | 1 | 2 | 3 | 4 | |------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------| | chemical formula | C ₁₈ H ₁₆ O ₃ BrTe ₂ Re | C ₁₁ H ₅ O ₅ TeRe | C ₂₀ H ₁₀ O ₈ Se ₂ Re ₂ | C ₁₂ H ₈ O ₅ BF ₄ TeRe | | formula mass/g | 801.63 | 530.96 | 908.62 | 632.80 | | cryst syst | triclinic | triclinic | monoclinic | monoclinic | | space group | P1 | $P\overline{1}$ | P2 ₁ /n | P2 ₁ /n | | $\lambda / \dot{A} (Mo, K_{\alpha})$ | 0.7107 | 0.7107 | 0.7107 | 0.7107 | | alÅ | 9.390(5) | 7.085(1) | 7.210(2) | 8.405(1) | | b/Å | 10.961(3) | 9.203(1) | 18.862(6) | 13.438(3) | | c/Å | 11.849(4) | 11.341(1) | 9.083(3) | 15.560(2) | | α/deg | 63.30(3) | 107.24(1) | 90 | 90 | | β/deg | 87.49(4) | 100.56(1) | 107.48(3) | 92.59(1) | | γ/deg | 69.31(4) | 96.47(1) | 90 | 90 | | V/ų | 1009.5(7) | 683.2(2) | 1178.2(7) | 1755.5(5) | | Z | 2 | 2 | 2 | 4 | | d _(calcd) /g cm ⁻³ | 2.637 | 2.581 | 2.561 | 2.394 | | μ/em ⁻¹ | 109.2 | 111.2 | 135.1 | 87.1 | | F(000) | 724 | 476 | 872 | 1152 | | no. of refles. $(I>2\sigma(I))$ | 3540(3123) | 2407(2139) | 2694(2247) | 3069(2415) | | no. of parameters | 227 | 164 | 146 | 218 | | R ^a | 0.033 | 0.027 | 0.046 | 0.035 | | R _w ^b | 0.034 | 0.022 | 0.051 | 0.035 | Table 2. Selected Bond Distances/Å and Angles/deg for (a) Compound 1. and (b) Compound 2 | pound 1 | and (b) Comp | ound 2 | | |------------------------------|----------------------------------------|------------------|------------| | (a) Re(CO) ₃ Br(P | hTe(CH ₂) ₃ TeP | h) | | | Re-Te(1) | 2.756(1) | Te(1)-C(4) | 2.171(10) | | Re-Te(2) | 2.765(2) | Te(1)-C(7) | 2.134(8) | | Re-C(1) | 1.902(10) | Te(2)-C(6) | 2.172(8) | | Re-C(2) | 1.923(9) | Te(2)-C(13) | 2.144(9) | | Re-C(3) | 1.916(8) | Re-Br | 2.638(2) | | Te(1)-Re-Te(2) | 89.42(4) | Re-Te(1)-C(7) | 106.18(24) | | Tc(1)-Re-Br | 83,37(4) | Re-Te(2)-C(6) | 107.3(3) | | Te(2)-Re-Br | 85.19(6) | Re-Te(2)-C(13) | 107.43(23) | | Te(1)-Re-C(1) | 96.74(23) | Te(1)-C(4)-C(5) | 117.6(6) | | Te(1)-Re-C(2) | 89.1(3) | Te(2)-C(6)-C(5) | 118.1(6) | | Te(1)-Re-C(3) | 170.3(3) | C(4)-Te(1)-C(7) | 92.9(3) | | Re-Te(1)-C(4) | 107.6(3) | C(6)-Te(2)-C(13) | 92.4(3) | | (b) PhTeRe(CO) ₅ | ; | | | | Re-Te | 2.813(1) | Re-C(5) | 1.996(8) | | Re-C(1) | 1.999(9) | Re-C(3) | 1.920(8) | | Re-C(2) | 1.997(8) | Te-C(6) | 2.132(7) | | Re-C(4) | 1.980(9) | | . , | | Te-Re-C(1) | 87.20(24) | Te-Re-C(4) | 86.44(22) | | Te-Re-C(2) | 84.74(21) | Te-Re-C(5) | 89.83(20) | | Te-Re-C(3) | 176.89(22) | Re-Te-C(6) | 101.61(18) | Table 3. Selected Bond Distances/Å and Angles/deg for (a) Compound 3 and (b) Compound 4 | (a) Re ₂ (µ-SePh) ₂ | (CO) ₈ | | | |-------------------------------------------|-------------------|-------------|-----------| | Re-Se | 2.679(1) | Re-C(4) | 1.965(12) | | Re-Se' | 2.681(1) | Re-C(2) | 1.916(13) | | Se-C(5) | 1.988(12) | Re-C(3) | 1.940(13) | | Re-C(1) | 1.975(12) | , . | , , | | Se-Re-Se' | 83.37(4) | Se-Re-C(3) | 93.6(4) | | Re-Se-Re' | 96.63(4) | Se-Re-C(4) | 90.2(4) | | Re-Se-C(5) | 107.1(3) | Se'-Re-C(1) | 90.4(3) | | Re'-Se-C(5) | 109.0(3) | Se'-Re-C(2) | 93.2(4) | | Se-Re-C(1) | 85.7(3) | Se'-Re-C(3) | 176.9(4) | | Se-Re-C(2) | 176.1(4) | Se'-Re-C(4) | 85.9(3) | | (b) [(PhTeMe)Re | e(CO)5][BF4] | | | | Re-Te | 2.773(1) | Re-C(2) | 2.008(9) | | Te-C(6) | 2.126(9) | Re-C(3) | 2.008(9) | | Te-C(12) | 2.127(10) | Re-C(4) | 2.007(10) | | Re-C(1) | 1.926(10) | Re-C(5) | 2.004(9) | | C(6)-Te-C(12) | 96.4(4) | Te-Re-C(2) | 87.8(3) | | Re-Te-C(6) | 100.52(24) | Te-Re-C(3) | 89.2(3) | | Re-Te-C(12) | 103.3(4) | Te-Re-C(4) | 89.0(3) | | Te-Re-C(1) | 179.2(3) | Te-Re-C(5) | 90.2(3) | | | | | | $[{]a \atop b} R = \sum |(F_o - F_c)| / \sum F_o$ ${b \atop b} R_w = [\sum (\omega (F_o - F_c)^2 / \sum \omega F_o^2]^{1/2}$ ### ACKNOWLEDGMENT We thank the National Science Council of the Republic of China (Taiwan) for support of this work. Received July 11, 1994. ### Key Words Rhenium(I)-tellurolate; -Telluroether. #### SUPPLEMENTARY MATERIALS Tables of crystallographic details, atomic coordinates, bond lengths and angles, and u(i, j) or U values for Re(CO)₃Br(PhTe(CH₂)₃TePh) (4 pages); (PhTeRe(CO)₅ (4 pages); Re₂(μ-SePh)₂(CO)₈ (4 pages); [(PhTeMe)Re(CO)₅]-[BF₄] (4 pages)) are available on request of G.-H. Lee, S.-M. Peng or W.-F. Liaw. ### REFERENCES - (a) Gysling, H. J. Coord. Chem. Rev. 1982, 42, 133. (b) Murray, S. G.; Hartley, F. R. Chem. Rev. 1981, 81, 365. - (a) Gindelberger, D. E.; Arnold, J. Inorg. Chem. 1993, 32, 5813. (b) Bonasia, P. J.; Gindelberger, D. E.; Arnold, J. Inorg. Chem. 1993, 32, 5126. (c) Christou, V.; Wuller, S. P.; Arnold, J. J. Am. Chem. Soc. 1993, 115, 10545. (d) Seligson, A. L.; Arnold, J. J. Am. Chem. Soc. 1993, 115, 8214. (e) Bonasia, P. J.; Arnold, J. Inorg. Chem. 1992, 31, 2507. (f) Christou, V.; Arnold, J. J. Am. Chem. Soc. 1992, 114, 6240. - McGregor, K.; Deacon, G. B.; Dickson, R. S.; Fallon, G. D.; Rowe, R. S.; West, B. J. Chem. Soc., Chem. Commun. 1990, 19, 1293. - (a) Liaw, W.-F.; Chiou, S.-J.; Lee, W.-J.; Lee, G.-H.; Peng, S.-M. J. Chin. Chem. Soc. (Taipei) 1993, 40, 361. (b) Liaw, W.-F.; Lai, C.-H.; Lee, C.-K.; Lee, G.-H.; Peng, S.-M. J. Chem. Soc., Dalton Trans. 1993, 2421. - (a) Liaw, W.-F.; Chiang, M.-H.; Liu, C.-J.; Harn, P.-J.; Liu, L.-K. *Inorg. Chem.* 1993, 32, 1536. (b) Liaw, W.-F.; Ou, D.-S.; Horng, Y.-C.; Lai, C.-H.; Lee, G.-H.; Peng, S.-M. *Inorg. Chem.* 1994, 33, 2495. (c) Liaw, W.-F.; Lai, C.-H.; Chiang, M.-H.; Hsieh, C.-K.; Lee, G.-H.; Peng, S.-M. *J. Chin. Chem. Soc. (Taipei)* 1993, 40, 437. (d) Dance, N. S.; Jones, C. H. W. *J. Organomet. Chem.* 1978, 152, 175. - (a) Kernmitt, T.; Levason, W.; Webster, M. Inorg. Chem. 1989, 28, 692. (b) Pathirana, H. M. K. K.; Downs, A. W.; McWhinnie, W. R. Inorg. Chim. Acta 1988, 161. (c) Hope, E. G.; Levason, W. Coord. Chem. Rev. 1993, 122, 109. - 7. Liaw, W.-F.; Horng, Y.-C.; Ou, D.-S.; Lee, G.-H.; Peng, S.-M. *J. Chin. Chem. Soc. (Taipei)* **1993**, *40*, 367. - 8. Liaw, W.-F.; Lai, C.-H.; Chiou, S.-J; Horng, Y.-C.; Chou, C.-C.; Liaw, M.-C.; Lee, G.-H.; Peng, S.-M. submitted to *Inorg. Chem.* - 9. Hope, E. G.; Kernmitt, T.; Levason, W. *Organometallics* 1987, 6, 206. - (a) Faraone, F.; Sergi, S.; Pietropaolo, R. J. Organomet. Chem. 1970, 24, 453. (b) Calderazzo, F.; Mavani, I. P.; Vitali, D.; Bernal, I.; Korp, J. D.; Atwood, J. L. J. Organomet. Chem. 1978, 160, 207. - 11. Liaw, W.-F.; Chiang, M.-H.; Lai, C.-H.; Chiou, S.-J.; Lee, G.-H.; Peng, S.-M. *Inorg. Chem.* **1994**, *33*, 2493. - 12. Gardner, S. A.; Trotter, P. J.; Gysling, H. J. J. Organomet. Chem. 1981, 212, 35. - 13. Osborne, A. G.; Stone, F. G. A. *J. Chem. Soc.* (A), 1966, 1143. - 14. Llabres, G.; Dideberg, O.; Dupont, L. *Acta Crystallogr.* 1972, *B28*, 2438. - (a) Liaw, W.-F.; Liu, C.-J.; Lai, C.-H. J. Chin. Chem. Soc. (Taipei) 1992, 39, 409. (b) Vancea, L.; Graham, W. A. G. J. Organon Let. Chem. 1977, 134, 219. - 16. (a) Herrmann, W. A.; Hecht, C.; Herdtweck, E.; Kneuper, H.-J. Angew. Chem. Int. Ed. Engl. 1987, 26, 132. (b) O'Neal, S. C.; Pennington, W. T.; Kolis, J. W. Can. J. Chem. 1989, 67, 1980. (c) Korp, J.; Bernal, I.; Atwood, J. L.; Calderazzo, F.; Vitali, D. J. Chem. Soc., Dalton Trans. 1979, 1492. - 17. Calderazzo, F.; Vitali, D.; Poli, R.; Atwood, J. L.; Rogers, R. D.; Cummings, J. M.; Bernal, I. J. Chem. Soc., Dalton Trans. 1981, 1004. - Pauling, L. "The Nature of the Chemical Bond" 3rd ed., Cornell University Press, Ithaca, N. Y. 1960, p 224, 260. - 19. Haller, W. S.; Irgolic, K. J. J. Organomet. Chem. 1972, 38, 97. - 20. Grobe, J.; Rau, R. J. Fluorine Chem. 1978, 11, 265. - 21. Abel, E. W.; Cross, B. C.; Hutson, G. V. J. Chem. Soc. A, 1967, 2014. - (a) Vahrenkamp, H. Chem. Ber. 1970, 103, 3580. (b) Küllmer, V.; Vahrenkamp, H. Chem. Ber. 1977, 110, 228 - 23. Gabe, E. J.; LePage, Y.; Chariand, J. P.; Lee, F. L.; White, P. S. J. Appl. Crystallogr. 1989, 22, 384.