EJ52-1985-17

PHOTOCHEMICAL REACTION OF DECACARBONYLDIRHENIUM WITH THIOPHENE AND CRYSTAL STRUCTURE OF TETRADECACARBONYLHYDRIDOTRIRHENIUM

C.S. YANG (楊宗信) AND C.P. CHENG* (陳秋炳)

Department of Chemistry, National Tsing Hua
University, Hsinchu, Taiwan, R.O.C.

L.W. Guo (郭麗雯) AND Y. WANG* (王瑜)

Department of Chemistry, National Taiwan

University, Taipei, Taiwan, R.O.C.

Key Word Index—Photochemistry; rehenium; crystal structure.

The photochemical reaction of Re₂(CO)₁₀ with thiophene in hexane solution was investigated under vacuum. Three rhenium clusters: H₃Re₃(CO)₁₂, HRe₃(CO)₁₄ and Re₄(CO)₁₅(OH)₄ were isolated. The structure of Fellmann-Kaesz cluster Complex HRe₃(CO)₁₄ was determined by use of the X-ray diffraction method. The three rhenium atoms form a plane of symmetry and L:Re₁Re₂Re₃ is 107°. The ten carbonyl groups bonded to the two terminal rhenium atoms Re₁ and Re₃, are staggered with respect to the central rhenium atoms. The bond lengths are 3.10 Å for Re₂-Re₃ and 3.34 Å for Re₁-Re₂. The bridging hydride is between Re₁ and Re₂.

Reduction of Re₂(CO)₁₀ with sodium borohydride yields several rhenium carbonyl cluster compounds: [H₂Re₃ $(CO)_{12}^{-1}$, $H_3Re(CO)_{12}^{2}$, $HRe_3(CO)_{12}^{2-3}$, $[H_6Re_4]$ $(CO)_{12}^{2-4}$ and $[Re, (CO)_{12}^{2-5}]$. The other major reaction pathway leading to the formation of rhenium carbonyl cluster compounds is the reaction between Re2 (CO), and ethanolic potassium hydroxide. It yields the unsaturated cluster com-[H₃Re₃(CO)₁₀]²⁻⁶, [H₃Re₃(μ_3 -O) [H₄Re₄(CO)₁₃]⁻²⁷ and [H₆Re₄ pounds: (CO), $]^{2-6}$, [H,Re,(CO), $]^{-27}$ and [H,Re,(CO), $]^{2-6}$. Most of other known rhenium carbonyl cluster compounds are prepared using the above cluster compounds as example, starting reagents. For refluxing acetone, H₃Re₃(CO)₁₂ can converted to H₄Re₄(CO)₁₂9). [H₃Re₃(CO)₁₀I] and $[H_2Re, (CO)_{10}I]^{2-}$ can be prepared from $[H_3Re, (CO)_{10}]^{2-10}$. This work will report that the rhenium carbonyl cluster compounds can also be prepared from photochemical reaction of Re₂(CO)₁₀ thiophene.

Most of the known rhenium carbonyl cluster compounds have been characterized by X-ray structural determination. There are exceptions, though, which include the relatively simple compounds: H₃Re₃(CO)₁₂ and HRe₃(CO)₁₄. The crystal disorder of H₃Re₃(CO)₁₂ prevents a meaningful X-ray structural determination. However, its main structural features can be deduced from $[HRe(CO)_{12}]^{2-11}$ and $[H_2Re_3(CO)_{12}]^{-1}$. A detailed structure of the Fellmann-Kaesz complex, HRe₃(CO)₁₄, known since 1966, on the other hand, has never been reported. It is the main product in the photochemical reaction between Re₂(CO)₁₀ and thiophene. It is our intention to determine the structure of this product.

EXPERIMENTAL

(A) Photochemical Reaction of Re₂(CO)₁₀ with Thiophene:

0.4 mM Re₂(CO)₁₀ (obtained from the

Strem Chemical Co.) and excess ($\approx 5 \text{ } mM$) thiophene (obtained from the Aldrich Chemical Co.) were dissolved in 20 ml of hexane (purified by standard procedure). After standard vacuum degassing procedure, the solution was irradiated, under vacuum, with a Hanovia 450 W medium pressure mercury lamp. The gas generated in the reaction was pumped away in a vacuum line every 30 minutes. After photolysis for 10 hours, the solvent was vacuum distillation. The removed by yellowish-brown residue was dissolved in ethylacetate. Separation was accomplished by preparative TLC made from silica gel 60 PF₂₅₄ with hexane-benzene (6:1) mix solvent as eluent. Four compounds were obtained, besides 45% of unreacted Re₂ The instruments used to obtain (CO)10. various spectra of those compounds were Perkind Elmer 580 for IR; Jeol JNM-FX 100 for NMR; and Jeol JMS-D-100 (12eV) for Mass. The detailed spectroscopic data of three of the four compounds are presented below. The fourth compound, with a 7% yield, could not be identified.

Compound I: White solid stable in air. Easily sublimable at 60°C under vacuum. R_f : 0.65 (hexane-benzene 6:1 mix solvent). Purified yield: 4.5% $\nu_{C=0}$ and $\nu_{R_{I-H}}$ (in cyclohexane): 2093 (m), 2030 (vs), 2005 (m), 1982 (m) cm^{-1} . ¹H NMR: δ (CDCl₃): -16.98 ppm. Mass: 899, 898, 897, 896, 895, 894, 893 (M-nH, M=H,Re₁(CO)₁₂); 870, 868, 866, 864 (M-CO-2H); 842, 840, 838, 836 (M-2CO-2H); 814, 812, 810, 808 (M-3CO-2H); 785, 783, 781, 779 (M-4CO-3H); 654, 652, 650; 626; 624, 622; 598, 596, 594; 570, 568, 566; 542, 540, 538; 514, 512, 510; 486, 482; 458, 456, 454; 431, 429, 427; 327, 325; 299, 297.

Compound II: Yellow crystal, stable in air. m.p.: 115° C. R_f : 0.45 (in hexane-benzene 6:1 mix solvent). Yield: 17%. $\nu_{c=0}$ and ν_{R_f-H} (in cyclohexane): 2140 (vw), 2100 (w), 2040 (vs), 2008 (m), 1990 (s), 1978 (m), 1965 (w), 1930 (m) cm^{-1} . H NMR (acetone-d*): -15.96 ppm. Mass: 954, 952, 950, 948 (M=HRe, (CO)₁₄); 926, 924. 922, 920 (M-CO); 898, 896, 894, 892 (M-2CO); 870, 868, 866, 864 (M-3CO). There are low mass peaks

starting from 654. These peaks are identical to those presented in compound I.

Compound III: Light yellow crystal. R_f (hexane-benzene 4:1 mix solvent): 0.35. Yield: 7.3%. Decomposition temperature: 80°. $\nu_{C\equiv0}$ (CHCl₃): 2020 (s), 1920 (vs). cm^{-1} . ¹H NMR: 3.34 ppm. ¹³C NMR: 196.4 ppm. Mass: 108, 90, 74, 73, 64, 58, 46, 44, 30, 18. Found Re: 63.4% (neutron activation analysis).

(B) X-ray Stuctural Determination of HRe₃(CO)₁₄

A $0.1 \times 0.4 \times 0.5$ mm crystal of compound II was chosen for study by X-ray diffraction of the molecular and crystal structure. Compouad II crystalizes in orthorhomic cell Pnma with a=9.812 (1), b=12.582 (3), c=17.010 (3) Å, z=4. A total of 3458 reflections were measured by $w/2\theta$ scan technique, the scan range was calculated according to $(1.6+0.7\tan\theta)^{\circ}$. The absorption corrections were applied on the basis of measured faces, the trasmisnsion coefficients varied from 0.019 to 0.177 (μ =175 cm⁻¹, Mok α). The calculated and experimental \(\mathbf{V} \) rotation on 3 reflections do give very good agreement. The structure was solved by means of the heavy atom Three Re atoms are on the crystallographic mirror plane. All the carbonyl groups appeared in the subsequent Fourier synthesis maps. The model was then refined by the least square process based on 1217 reflections ($I \ge 3\sigma(I)$). The process, however, was not successful. Nevertheles, the agreement indicies (R= 0.088, R_{μ} =0.075) are acceptable. Thus the model is believed to be correct; the failure of the refinement is probably due to the inconsistency of the relative intensities which may be resulted from the contamination of the impurity.

Such a phenomenon is known for other Re compounds. The crystal structure analysis of this very compound, HRe, (CO), has been mentioned in the literature. But the completed work did not appear later on in the literature. It is somewhat

the same and the same

doubtful that the analysis of other Re compourds encountered the similar problems.

RESULTS AND DISCUSSION

After photolysis of a hexane solution containing Re₂(CO)₁₀ and thiophene using a 450W mercury lamp for ten hours, four compounds I-IV were obtained, besides the unreacted Re2(CO)10 (45%). On comparison with the reported IR data2, Compound I was identified to be H₃Re₃(CO)₁₂. Based on the IR data12,113), Compound II was identified as HRe₃(CO)₁₁. The mass data furnished further spectroscopic support of the identification. Though the molecular ion M+ peaks of H,Re,(CO),2 were not detected, the deprotonated peaks (M-nH)+ could be observed between 899 and 893. The (M-nCO-mH)+ peaks were also detected for n up to 4. The M^+ of HRe₂(CO), could be easily recognized at 954, 952, 950 and 948 with an intensity ratio 4.9:8.8:5.2:1 as expected from the isotope abundance distribution. The decarbonyl-[M-CO]*, [M-2CO]²⁺ peaks: ated [M-3CO]+, were clearly observed HRe₃(CO)₁₄. Both compounds decomposed in the mass spectrometer to yield Re₂(CO)₁₀, which was responsible for the mass peaks observed between 654 and 297.

The simple IR spectrum of Compound III is identical to the reported spectrum of Re₄(CO)₁₂(OH)₄, 14) The 1H NMR signal at 3.34 ppm and 13C NMR signal at 196.4 ppm are also the characteristics of Re₄(CO)₁₂(OH)₄. The result of elemental analysis of Re (Found: 63.4%, Calc. 64.8%) leaves no doubt that compound III is Re₄(CO)₁₂(OH)₄. The parent peak and other peaks with m/e above 1000 could not be observed because of the limitation of our mass spectrometer. However, no mass peak containing rhenium could be observed below 1000. It is indicated that the decomposition of Re₄(CO)₁₂(OH)₄ does not go through the Re2(CO)10 intermediate as observed for H₃Re₃(CO)₁₂ and HRe₃(CO)₁₄.

Thus, the photochemical reaction between Re₂(CO)₁₀ and thiophene can be expressed as:

Re₂ (CO)₁₀+
$$\frac{h\nu}{hexane}$$
 \rightarrow H₃Re₃(CO)₁₂
+HRe₃(CO)₁₄
(17%)
+Re₄(CO)₁₂(OH)₄
(7.3%)

The numbers in the parenthesis are the purified yield based on the amount of reacted Re₂(CO)₁₀.

After photolyzing a sealed NMR tube containing Re₂(CO)₁₀ and thiophene, a ¹H NMR signal at -14.7 ppm. different from those of $H_3Re_3(CO)_{12}$ (-16.98 ppm) and $HRe_3(CO)_{14}$ (-15.96 ppm), was observed. This signal is very close to the signal of bridging hydride in (µ-H) Re₂(CO)₅(CO)₆ $(\mu - C_5 H_4 N)^{15}$ (-14.52 ppm), and $(\mu - H)$ Re₂(CO)₈ $(\mu - CH = CH_2)^{16}$ (-14.72 ppm). Thus, one of the key intermediates in the photoreactions of Re₂(CO)₁₀ with thiophene is very likely to be $(\mu-H)$ Re₂(CO), $(\mu-C_4H_4S)$. This intermediate then decomposed to yield HRe(CO), which reacted further to produce various rhenium carbonyl cluster compounds. This proposed mechanism is similar to that proposed by Graham12) et al. to account for the production of HRe₃(CO)₁₄ in the photochemical reaction of Re₂(CO)₁₀ with HSiCl.

The molecular structure of HRe₃(CO)₁₄ is shown in Fig. 1, the atomic coordinates are given in Table 1. Bond lengths and angles are listed in Table 2. There are slightly distorted octahedral geometries around the three Re atoms: the terminal Re₁, Re₃ atoms have one carbonyl group on the mirror plane trans to Re-Re bond, the other two pairs of carbonyl groups are on a plane perpendicular to the Re-Re bond. The central Re₂ atom has two carbonyl groups on the mirror plane trans to Re-Re bonds, the other pair serves as axial ligands perpendicular to this plane. The on-plane Re-C distances (1.71-1.93 Å)

Table 1. Fractional atomic coordinates and thermal⁺ parameters* (×10⁻²Å²)

Atom	x	Y		Z
Re,	0.0359(3)	0.25	500	0.0753(5)
Re₂	0.3568(4)	0.25	500	0.0137(4)
Re3	0.3508(4)	0.2500		-0.1628(4)
O_{11}	-0.250	0.2	50	0.158
O_{12}	0.150	0.4	32	0.190
O_{13}	-0.083	0.0	77	-0.042
C_{11}	-0.134	0.250		0.134
C_{12}	0.140	0.352		0.156
C_{i3}	-0.036	0.137		0.001
C_{2i}	0.411	0.250		0.117
C_{22}	0.544	0.250		-0.008
C_{23}	0.350	0.4	09	0.001
O_{21}	0.432	0.2	50	0.192
O_{22}	0.669	0.2	50	-0.011
O_{23}	0.345	0.503		-0.008
O_{31}	0.350	0.250		-0.337
O_{32}	0.570	0.422		-0.161
O_{33}	0.134	0.062		-0.149
C_{31}	0.355	0.250		-0.269
C_{3z}	0.495	0.363		-0.157
C_{a3}	0.217	0.125		-0.154
H_1	0.185	0.2	50	0.025
Atom	Uii	U22	U_{33}	Ü,3
Reı	2.5(2)	5.7	2.8(5)	-0.2(4)
Re2	1.5(2)	6.3(5)	3.1(5)	-0.1(3)
Re₃	3.0(5)	5.2(6)	1.4(5)	0.2(3)

^{*} U12=U23=0 for Re atoms.

trans to carbonyl groups. This may be explained as better back-bonding on the carbonyl groups which are trans to Re-Re bond than on those trans to another carbonyl group. The carbonyl groups around Re₁ and Re₂ atoms are staggered from those of Re₂. The torsion angles between the carbonyl groups on neighbo-

Table 2. Selected bond lengths (Å) and angles (°)

angles ()				
Re ₁ -Re ₂ 3.34(1)	Re ₂ -Re ₃ 3.10(1)			
Re _i -H _i 1.70	Re ₂ -C ₂₁ 1.84			
Re ₁ -C ₁₁ 1.93	Re ₂ -C ₂₂ 1.84			
Re ₁ -C ₁₂ 2.00	Re_z-C_{z3} 2.02			
Re ₁ -C ₁₃ 2.02	Re ₂ -H ₁ 1.74			
Re ₃ -C ₃₁ 1.71	C11-O11 1.21			
Re ₃ -C ₃ , 2.02	C ₁₂ -O ₁₂ 1.24			
Re ₃ -C ₃₃ 2.04	C13-O13 1.15			
C21-O21 1.28	C31-O31 1.16			
C22-O22 1.23	C ₃₂ -O ₃₂ 1.05			
C ₂₃ -O ₂₃ 1.18	C ₃₃ -O ₃₅ 1.13			
Re ₂ -Re ₁ -C ₁₁ 167	Re1-Re2-Re3 107			
Re ₂ -Re ₁ -C ₁₂ 84	Re ₁ -Re ₂ -C ₁₂ 88			
Re ₂ -Re ₁ -C ₁₃ 98	Re ₂ -Re ₁ -C ₁₃ 98			
Re ₂ -Re ₂ -C ₂₁ 173	C11-Re1-C12 90			
C-11-Re1-C13 91	Re ₃ -Re ₂ -C ₂₁ 165			
C_{12} -Re ₁ - C_{12} 80	$Re_{3}-Re_{2}-C_{22}$ 80			
C_{12} -Re ₁ - C_{13} 175	Re ₃ -Re ₂ -C ₂₃ 84			
C_{12} -Re ₁ - C_{13} 96	C_{21} -Re ₂ - C_{22} 85			
C_{13} -Re ₁ - C_{13} 89	C21-Re2-C23 97			
Re ₂ -Re ₃ -C ₃₁ 177	C_{22} -Re ₂ - C_{23} 91			
$Re_z-Re_3-C_{3z}$ 83	C23-Re2-C23' 167			
$Re_2-Re_3-C_{33}$ 84	$Re_1-H_1-Re_2$ 156			
C ₃₁ -Re ₃ -C ₃₂ 94	Re-C-O 168-179°			
C_{31} -Re ₃ - C_{33} 98				
C_{32} -Re ₃ - C_{32} / 89				
C_{32} -Re ₃ - C_{33} 16				
C_{32} -Re ₃ - C_{33} ' 84				
C ₃₃ -Re ₃ -C ₃₃ ' 100				

The estimated standard deviation of Re-Cis 0.02 Å and of C-O is 0.03 Å.

ring Re atoms are 42-45°. The angle of Re₁-Re₂-Re₃ (107°) is larger than that of Re₁-Re₂-Mn in HMnRe₂(CO)₄ ²²⁾.

The distance between Re₂ and Re₃ atoms (3.10Å) is longer than that in Re₂(CO)₁₀ ¹⁷⁾ (3.02 Å) and the other known rhenium cluster compounds¹⁸⁾. The distance between Re₁ and Re₂ atoms (3.34Å) is even longer, which is comparable with hydrogen bridged Re-Re distances. Such distances do vary over a wide range, e.g. 3.09Å in H₁Re₂(CO)₁₃ ²¹⁾, 3.144Å in (HRe₃(CO)₁₂)²⁻²,

The isotropic thermal parameters are fixed at $0.06 \ A^2$ for carbon and oxygen atoms and at $0.08 \ A^2$ for hydrogen atom.

 $T = \exp \left[-2\pi^2 (U_{11}h^2a^{*2} + \cdots + 2U_{12}hka^*b^* + \cdots) \right]$

^{.+} The estimated standard deviation for non-rhenium atoms is 0.003-0.006.

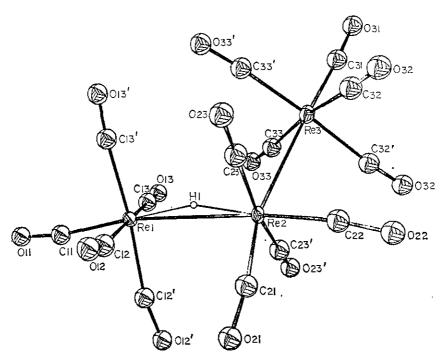


Fig. 1.

2.16Å in (H,Re,(CO)₁₃)²⁻⁷) and 3.39Å in HMnRe,(CO)₁₂²²). The variation in bond lengths is believed to be correlated with the variation in Re-H-Re angles. Unfortunately, the location of hydrogen atoms in the X-ray analysis is not well-defined enough for confirmation.

There are some subtle structural differences between the two very similar compounds: HR₃(CO)₁₄ (II) and HMnRe₂(CO)₁₄ (V). Their simplified structures are depicted in Fig. 2.

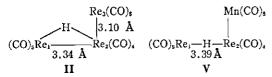


Fig. 2. The simplified structure of HRe₃(CO);, and HMnRe₂(CO);.

The Re₁-Re₂ bond distances are 3.34Å in (II) and 3.39Å in (V). The carbonyl groups around Re₁ and Re₂ assume the staggered configuration in (II) and eclipsed configuration in (V). The bond length of Re₂ and Re₃ in (II) is the longest of all

known simple Re-Re bonds, while the Re₂-Mn bond length of (V) is that expected from Re₂(CO)₁₀ and Mn₂(CO)₁₀. The eclipsed carbonyl configuration in (V) indicates that the carbonyl groups interact only weakly through van der Waals force,¹⁹ while the staggered configuration suggests a possible direct interaction between the Re₁ and Re₂. The bond lengths between the central Re₂ and the other metal atoms may be a reflection of the different degree of interaction between Re₁ and Re₂.

REFERENCES

- M.R. Churchill, P.H. Bird, H.D. Kaesz, R. Bau and B. Fontal, J. Am. Chem. Soc., 90, 7135 (1968).
- (2) D. K. Huggins, W. Fellmann, J. M. Smith and H. D. Kaesz, J. Am. Chem. Soc., 86, 4841 (1964).
- (3) W. Fellmann and H.D. Kaesz, Inorg. Nucl. Chem. Letters, 2, 63 (1966).
- (4) H. D. Kaesz, B. Fontal, R. Bau, S. W. Kirtley and M. R. Churchill, J. Am. Chem. Soc., 91, 1021 (1969).

- (5) a) R. Bau, B. Fontal, H. D. Kaesz and M. R. M. R. Churchill, J. Am. Chem. Soc., 89, 6374 (1967).
 - b) M. R. Churchill and R. Bau, Inorg. Chem.,2, 2606 (1968).
- (6) A. Bertolucci, M. Freni, P. Romiti, G. Ciani, A. Sironi and V.G. Albano, J. Org. Chem., 113, C61 (1976).
- (7) a) V. G. Albano, G. Ciani, M. Freni and P. Romiti, J. Org. Chem., 96, 259 (1975).
 - b) G. Ciani, G. D'Alfonso, M. Freni, P. Romita and A. Sironi, J. Org. Chem., 152, 85 (1978).
- (8) G. Ciani, A. Sironi and V. Albano, J. Org. Chem., 136,-339 (1977).
- (9) R.D. Wilson and R. Bau, J. Am. Chem. Soc., 98, 4687 (1976).
- (10) G. Ciani, G. D'Alfonso, M. Freni, P. Romitti and A. Sironi, J. Org. Chem., 186, 353 (1980).
- (11) G. Ciani, G. D'Alfonso, M. Freni, P. Romitti and A. Sironi, J. Org. Chem., 157, 199 (1978).
- (12) J. K. Hoyand W. A. G. Graham, Inorg. Chem., 11, 1265 (1972).
- (13) B. H. Byers and T. L. Brown, J. Am. Chem. Soc., 97, 3260 (1975).

- (14) a) M. Herberhold and G. Süss, Angew. Chem. Int. Ed. Engl., 14, 700 (1975).
 - b) M. Herberhold, G. Süss, J. Ellermann and H. Gabelein, Chem. Ber., 111, 2931 (1978).
 - c) D. J. Gard and T. L. Brown, J. Am. Chem. Soc., 104, 6340 (1982).
- (15) D. R. Gard and T. L. Brown, Org., 1, 1143 (1982).
- (16) P. O. Nubel and T. L. Brown, J. Am. Chem. Soc., 104, 4955 (1982).
- (17) a) L.F. Dahl, E. Ishishi and R.E. Runde, J. Chem. Phys., 23, 1750 (1957).
 - b) M. R. Churchill, K. N. Amoh and H. J. Wasserman, Inorg., Chem. 20, 1609 (1981).
- (18) B. F. G. Johnson, "Metal Cluster Compound", John Wiley & Sons, N.Y., (1980).
- (19) L. B. Handy, J. K. Ruff and L. F. Dahi, J. Am. Chem. Soc., 92, 7313 (1970).
- (20) H.D. Kaesz, Bond Length Data Quoted, Chem. Brit., 9, 344 (1973).
- (21) A. Bertolucci, G. Ciani, M. Freni, R. Romiti, V. G. Albano and A. Albinati, J. Org. Chem., 117, C37 (1976).
- (22) H. D. Kzesz, R. Bau and H. R. Churchill, J. Am. Chem. Soc., 89, 2775 (1967).
 (Received November 5, 1984)

