Inorganica Chimica Acta

trans-Effect of dialkyl sulfide on a $\mathrm{Pt}(\mathrm{III})-\mathrm{Pt}(\mathrm{III})$ bond. Synthesis, spectroscopy and X-ray crystal structure of $\left[\mathrm{Bu}_{4} \mathrm{~N}_{2}\left[\mathrm{Pt}_{2}\left(\mathrm{P}_{2} \mathrm{O}_{5} \mathrm{H}_{2}\right)_{4}\left(\mathrm{SEt}_{2}\right)_{2}\right]\right.$

Chi-Ming Che ${ }^{\text {a,b,* }}$, Ming-Chu Cheng ${ }^{\text {b }}$,
Yu Wang ${ }^{\text {b }}$ and Harry B. Gray ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong (Hong Kong)
${ }^{\text {b }}$ Department of Chemistry, National Taiwan University, Taipei (Taiwan)
${ }^{c}$ Arthur Amos Noyes Laboratory, California Institute of Technology, Pasadena, CA 91125 (USA)

(Received September 13, 1991)

Recent spectroscopic and structural studies on the $\left[\mathrm{Pt}_{2}\left(\mathrm{P}_{2} \mathrm{O}_{5} \mathrm{H}_{2}\right)_{4}(\mathrm{XY})\right]^{n-}$ system (XY= $\mathrm{Cl}_{2}, \mathrm{Br}_{2}, \mathrm{I}_{2}, \mathrm{CH}_{3} \mathrm{I}$, $\left.(\mathrm{SCN})_{2},\left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2}\right)_{2},\left(\mathrm{NO}_{2}\right)_{2},\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\right)$ established significant axial σ-electronic delocalization between the $\mathrm{d} \sigma(\mathrm{Pt})$ and $\sigma(\mathrm{X}) / \sigma(\mathrm{Y})$ orbitals [1]. The extent of chargetransfer mixing between the $\mathrm{Pt}-\mathrm{Pt}$ and $\mathrm{Pt}-\mathrm{X} / \mathrm{Pt}-\mathrm{Y}$ bonds can be correlated with the $\mathrm{Pt}-\mathrm{Pt}$ distances where long $\mathrm{Pt}-\mathrm{Pt}$ bonds are usually found with those axial ligands X and Y having strong σ-donor strengths [1, 2]. Herein is described the synthesis and X -ray structure of $\left[\mathrm{Pt}_{2}\left(\mathrm{P}_{2} \mathrm{O}_{5} \mathrm{H}_{2}\right)_{4}\left(\mathrm{SEt}_{2}\right)_{2}\right]^{2-}$, illustrating that are neutral $\mathrm{Et}_{2} \mathrm{~S}$ is an even better σ-donor to $\mathrm{Pt}(\mathrm{III})$ than are anionic ligands such as SCN^{-}and I^{-}. The photochemical reactions of $\left[\mathrm{Pt}_{2}\left(\mathrm{P}_{2} \mathrm{O}_{5} \mathrm{H}_{2}\right)_{4}\right]^{4-}$ with dialkyl sulfides have been described previously [3].

Experimental

$\left[\mathrm{Bu}_{4} \mathrm{~N}\right]_{4}\left[\mathrm{Pt}_{2}\left(\mathrm{P}_{2} \mathrm{O}_{5} \mathrm{H}_{2}\right)_{4}\right]$ was prepared by the literature method [4]. All reagents (analytical grade) for synthesis and spectroscopic measurements were obtained from Aldrich Co. Ltd. UV-Vis and ${ }^{31} \mathrm{P}$ NMR spectra were recorded on a Shimadzu UV-240 spectrophotometer and a Jeol model FX 90Q spectrometer (90 MHz), respectively.

[^0]$\left[\mathrm{Bu}_{4} \mathrm{NH}_{2}\left[\mathrm{Pt}_{2}\left(\mathrm{P}_{2} \mathrm{O}_{5} \mathrm{H}_{2}\right)_{4}\left(\mathrm{SEt}_{2}\right)_{2}\right]\right.$
A methanolic solution (20 ml) containing $\left[\mathrm{Bu}_{4} \mathrm{~N}_{4}\left[\mathrm{Pt}_{2}\left(\mathrm{P}_{2} \mathrm{O}_{5} \mathrm{H}_{2}\right)_{4}\right](0.5 \mathrm{~g})\right.$ and $\mathrm{Et}_{2} \mathrm{~S}(1 \mathrm{~g})$ was treated with $\mathrm{H}_{2} \mathrm{O}_{2}(30 \%, 2 \mathrm{ml})$ at room temperature. After effervescence ceased, the solution was left to stand in air for 15 min . Addition of diethyl ether to the solution gave the orange product in high yield ($>80 \%$). Crystals of $\left[\mathrm{Bu}_{4} \mathrm{~N}\right]_{2}\left[\mathrm{Pt}_{2}\left(\mathrm{P}_{2} \mathrm{O}_{5} \mathrm{H}_{2}\right)_{4}\left(\mathrm{SEt}_{2}\right)_{2}\right]$ were obtained by vapor diffusion of diethyl ether into acetonitrile solution.

X-ray structure determination

The $\left[\mathrm{Bu}_{4} \mathrm{~N}\right]_{2}\left[\mathrm{Pt}_{2}\left(\mathrm{P}_{2} \mathrm{O}_{5} \mathrm{H}_{2}\right)_{4}\left(\mathrm{SEt}_{2}\right)_{2}\right]$ complex was recrystallized by diffusion of diethyl ether into acetonitrile. Crystal data: $M=1623.25$, monoclinic, space group $P 2_{1} / c, a=11.240(2), \quad b=12.700(3), c=22.101(6) \AA$, $\beta=91.27(2)^{\circ}, V=3154(1) \AA^{3}, Z=2, D_{\text {calc }}=1.713 \mathrm{~g} \mathrm{~cm}^{-3}$, $F(000)=1628$, crystal dimensions $=0.20 \times 0.30 \times 0.40$ mm . The intensity data were measured on a CAD-4 diffractometer using Mo $K \alpha$ radiation ($\lambda=0.7107 \AA$) using the $\omega / 2 \theta$ scan mode at 297 K with $2 \theta_{\text {max }}=50^{\circ}$. Cell dimensions were obtained from 25 reflections with 2θ angle in the range of $19.28-23.82^{\circ}$. A total of 6142 reflections was measured and 3294 reflections were observed ($I>2.0 \sigma(I)$). Absorption corrections ($\mu=48$ cm^{-1}) were made according to Ψ curves of 3 selected reflections. The minimum and maximum transmission factors are 0.73 and 1.0. The structure was solved by the Patterson method and refined by least-squares. Full matrix least-squares refinement on 334 parameters converged to yield agreement indices $R(F)=0.055$, $R_{\mathrm{w}}(F)=0.053$ and $G O F=2.74$. Table 1 lists the atomic coordinates of non-hydrogen atoms.

Results and discussion

As with other $\left[\mathrm{Pt}_{2}\left(\mathrm{P}_{2} \mathrm{O}_{5} \mathrm{H}_{2}\right)_{4} \mathrm{XY}\right]^{n-}$ complexes [2a], oxidation of $\left[\mathrm{Pt}_{2}\left(\mathrm{P}_{2} \mathrm{O}_{5} \mathrm{H}_{2}\right)_{4}\right]^{4-}$ with $\mathrm{H}_{2} \mathrm{O}_{2}$ in the presence of excess $\mathrm{Et}_{2} \mathrm{~S}$ gave $\left[\mathrm{Pt}_{2}\left(\mathrm{P}_{2} \mathrm{O}_{5} \mathrm{H}_{2}\right)_{4}\left(\mathrm{SEt}_{2}\right)_{2}\right]^{2-}$. The ${ }^{31} \mathrm{P}$ NMR spectrum of $\left[\mathrm{Pt}_{2}\left(\mathrm{P}_{2} \mathrm{O}_{5} \mathrm{H}_{2}\right)_{4}\left(\mathrm{SEt}_{2}\right)_{2}\right]^{2-}$ shows a pseudo triplet with $\delta=25.1 \mathrm{ppm}$ (relative to $\mathrm{H}_{3} \mathrm{PO}_{4}$) and $J_{1}(\mathrm{Pt}-\mathrm{P})=2040 \mathrm{~Hz}$, which are characteristics of the $\left[\mathrm{Pt}_{2}\left(\mathrm{P}_{2} \mathrm{O}_{5} \mathrm{H}_{2}\right)_{4} \mathrm{XY}\right]^{n-}$ system. Figure 1 shows the ORTEP plot of the complex anion with atom numbering. There are two cations and one complex anion in an asymmetric unit. The $\left[\mathrm{Bu}_{4} \mathrm{~N}\right]^{+}$ion is in a regular tetrahedral symmetry. The complex anion shown in Fig. 1 has a C_{i} molecular symmetry with i at the midpoint of the $\mathrm{Pt}-\mathrm{Pt}$ bond. Four bridging diphosphite ligands are bonded to two Pt atoms in a rough $C_{4 v}$ symmetry with two axial $\mathrm{Et}_{2} \mathrm{~S}$ ligands trans to the $\mathrm{Pt}-\mathrm{Pt}$ bond. The $\mathrm{Pt}-\mathrm{Pt}-\mathrm{S}\left(\mathrm{SEt}_{2}\right)$ group is essentially linear ($\left.\mathrm{Pt}-\mathrm{Pt}-\mathrm{S}=173.41(14)^{\circ}\right)$. As in the cases of other $\left[\mathrm{Pt}_{2}\left(\mathrm{P}_{2} \mathrm{O}_{5} \mathrm{H}_{2}\right)_{4} \mathrm{XY}\right]^{n-}$ complexes [2], the PtP_{4} units are

TABLE 1. Atomic parameters x, y, z and $B_{\text {iso }}$ (e.s.d.s refer to the last digit printed)

	x	y	z	$B_{\text {iso }}$
Pt	0.10848(6)	0.51001(5)	0.03022(3)	2.57(3)
S	$0.2908(4)$	0.5404(4)	0.0930 (3)	5.0(3)
P1	0.0254(5)	0.4532(5)	0.1224 (3)	5.8(3)
P2	0.0634(6)	0.6838(4)	0.0606(3)	6.3(4)
P3	0.2022(5)	0.5654(5)	-0.0590(3)	5.9(3)
P4	0.1629(6)	0.3351 (5)	$0.0037(4)$	7.2(4)
Ol	-0.1194(12)	$0.4544(14)$	$0.1175(6)$	8.3(11)
O2	-0.0771(12)	0.7074(12)	$0.0524(7)$	8.0(9)
O11	$0.0627(16)$	$0.3440(12)$	0.1411 (8)	$9.8(12)$
O 12	$0.0517(13)$	$0.5337(14)$	0.1750(5)	8.3(10)
O21	0.0766(14)	0.6990(12)	0.1293 (7)	8.8(10)
O22	0.1349 (14)	0.7669(10)	$0.0227(10)$	10.4(13)
O31	$0.2313(14)$	$0.6833(11)$	-0.0598(7)	8.1(9)
032	$0.3146(10)$	0.4978(16)	-0.0727(6)	8.4(10)
O41	0.2898(12)	0.3315(12)	-0.0253(8)	8.5(10)
O42	0.1611(16)	$0.2589(10)$	0.0602(9)	10.6(11)
C1	$0.3737(25)$	0.4156(18)	0.1106 (14)	11.8(20)
C2	$0.4577(23)$	$0.4277(20)$	$0.1590(15)$	11.9(20)
C3	0.4067(19)	$0.6164(18)$	$0.0567(9)$	6.5(13)
C4	0.442(3)	$0.7087(18)$	0.0845(15)	13.9(25)
N	$0.1881(14)$	0.0088(13)	$0.1924(7)$	5.9(9)
C11	$0.1578(23)$	-0.1033(19)	0.2209(12)	9.1(17)
C12	0.2452(22)	-0.1669(22)	0.2488(12)	$9.5(18)$
C13	0.216(3)	-0.2631(18)	0.2732(12)	9.5(18)
C14	$0.305(3)$	-0.3338(24)	$0.2865(15)$	13.6(24)
C21	0.206(3)	0.0888(21)	$0.2444(14)$	12.2(21)
C22	0.230(3)	$0.1836(24)$	$0.2521(18)$	17.1(30)
C 23	0.255(4)	0.2423(24)	$0.3014(16)$	17.8(30)
C24	0.277 (4)	0.329(3)	$0.3085(19)$	21.7(39)
C31	0.286(4)	0.016(3)	0.1424(14)	19.6(32)
C32	$0.400(5)$	$0.068(4)$	0.1232(24)	35.0(57)
C33	0.470(3)	0.051(3)	0.0856(12)	16.1(28)
C34	0.500(5)	0.148(3)	0.0538(18)	28.1(48)
C41	0.058(4)	$0.0416(21)$	0.1693(13)	16.6(31)
C42	-0.008(3)	-0.0146(23)	$0.1200(12)$	13.0(22)
C43	-0.107(3)	0.0430(22)	$0.0925(13)$	12.2(20)
C44	-0.171(3)	-0.014(3)	$0.0507(11)$	14.0(25)

essentially planar (Pt-Pt-P angles, 91.39(16)$\left.91.75(15)^{\circ}\right)$. The most interesting structural feature is the $\mathrm{Pt}-\mathrm{Pt}$ distance of 2.766 (1) \AA. This $\mathrm{Pt}-\mathrm{Pt}$ distance is the longest reported for the $\left[\mathrm{Pt}_{2}\left(\mathrm{P}_{2} \mathrm{O}_{5} \mathrm{H}_{2}\right)_{4} \mathrm{XY}\right]^{n-}$ system [1]. It is even longer than that for $\left[\mathrm{Pt}_{2}\left(\mathrm{P}_{2} \mathrm{O}_{5} \mathrm{H}_{2}\right)_{4}(\mathrm{SCN})_{2}\right]^{4-}$ and $\left[\mathrm{Pt}_{2}\left(\mathrm{P}_{2} \mathrm{O}_{5} \mathrm{H}_{2}\right)_{4} \mathrm{I}_{2}\right]^{4-}$ where the respective $\mathrm{Pt}-\mathrm{Pt}$ distances are $2.760(1)$ [2a] and $2.754-2.746(1)[2 \mathrm{~b}] \AA$. This finding suggests that σ electronic delocalization of the $\mathrm{Pt}(\mathrm{III})-\mathrm{Pt}(\mathrm{III})$ with the $\mathrm{Pt}-\mathrm{SEt}_{2}$ bond is even more pronounced than that with $\mathrm{Pt}-\mathrm{SCN}$ and $\mathrm{Pt}-\mathrm{I}$. The $\mathrm{Pt}-\mathrm{S}\left(\mathrm{SEt}_{2}\right)$ distance of $2.479(5)$ \AA is comparable to that of $2.466(4) \AA$ [2a] for $\mathrm{Pt}-\mathrm{S}(\mathrm{SCN})$ in $\left[\mathrm{Pt}_{2}\left(\mathrm{P}_{2} \mathrm{O}_{5} \mathrm{H}_{2}\right)_{4}(\mathrm{SCN})_{2}\right]^{4-}$. Figure 2 shows the UV-Vis absorption spectrum of $\left[\mathrm{Pt}_{2}\left(\mathrm{P}_{2} \mathrm{O}_{5} \mathrm{H}_{2}\right)_{4}\left(\mathrm{SEt}_{2}\right)_{2}\right]^{2-}$ in acetonitrile at room temperature. The intense band at 342 nm with $\epsilon_{\max }=3.2 \times 10^{4} \mathrm{~mol}^{-1} \mathrm{dm}^{3} \mathrm{~cm}^{-1}$ is un-

Fig. 1. ORTEP plot of $\left[\mathrm{Pt}_{2}\left(\mathrm{P}_{2} \mathrm{O}_{5} \mathrm{H}_{2}\right)_{4}\left(\mathrm{SEt}_{2}\right)_{2}\right]^{2-}$ with atom numbering. $\mathrm{Pt}_{\mathrm{P}} \mathrm{Pt}_{\mathrm{a}}, 2.766(1) ; \mathrm{Pt}-\mathrm{S}, 2.479(5) ; \mathrm{Pt}-\mathrm{P}(1), 2.372(6) ; \mathrm{Pt}-\mathrm{P}(2)$, 2.365(5); $\mathrm{Pt}-\mathrm{P}(3), ~ 2.364(6) ; \mathrm{Pt}-\mathrm{P}(4), 2.381(6) ; \mathrm{P}(3)-\mathrm{O}(1)$ $1.629(14) ; \mathrm{P}(3)-\mathrm{O}(31), 1.533(15) ; \mathrm{P}(3)-\mathrm{O}(32), 1.563(15) \AA$. $\mathrm{Pt}_{\mathrm{a}}-\mathrm{Pt}-\mathrm{S}, \quad 173.41(14) ; \quad \mathrm{Pt}_{\mathrm{a}}-\mathrm{Pt}-\mathrm{P}(1), \quad 91.56(14) ; \quad \mathrm{Pt}_{\mathrm{a}}-\mathrm{Pt}-\mathrm{P}(2)$, 91.75(15); $\quad \mathrm{Pt}_{\mathrm{a}}-\mathrm{Pt}-\mathrm{P}(3), \quad 91.66(14) ; \quad \mathrm{Pt}_{\mathrm{a}}-\mathrm{Pt}-\mathrm{P}(4), \quad 91.39(16) ;$ S-Pt-P(1), 84.41(19); S-Pt-P(2), 82.85(20); S-Pt-P(3), 92.44(19); S-Pt-P(4), 93.96(20); P(1)-Pt-P(2), 87.09(25); P(1)-Pt-P(3), 176.71 (20); $\mathrm{P}(1)-\mathrm{Pt}-\mathrm{P}(4), 92.0(3) ; \mathrm{Pt}-\mathrm{S}-\mathrm{C}(1), 112.7(8) ; \mathrm{Pt}-\mathrm{S}-\mathrm{C}(3)$, 115.2(7); $\mathrm{Pt}-\mathrm{P}(1)-\mathrm{O}(1), 110.6(6)^{\circ}$.

Fig. 2. UV-Vis absorption spectrum of $\left[\mathrm{Pt}_{2}\left(\mathrm{P}_{2} \mathrm{O}_{5} \mathrm{H}_{2}\right)_{4}\left(\mathrm{SEt}_{2}\right)_{2}\right]^{2-}$ in acetonitrile at room temperature.
doubtedly due to the $\sigma\left(\mathrm{SEt}_{2}\right) \rightarrow \mathrm{d} \sigma^{*}(\mathrm{Pt})$ charge-transfer transition. This energy is also lower than that for the $\sigma(\mathrm{SCN}) \rightarrow \mathrm{d} \sigma^{*}(\mathrm{Pt})(337 \mathrm{~nm})$ in $\left[\mathrm{Pt}_{2}\left(\mathrm{P}_{2} \mathrm{O}_{5} \mathrm{H}_{2}\right)_{4}(\mathrm{SCN})_{2}\right]^{4-}$ $[2 \mathrm{a}]$ or $\sigma(\mathrm{I}) \rightarrow \mathrm{d} \sigma^{*}(\mathrm{Pt})(338 \mathrm{~nm})$ in $\left[\mathrm{Pt}_{2}\left(\mathrm{P}_{2} \mathrm{O}_{5} \mathrm{H}_{2}\right)_{4} \mathrm{I}_{2}\right]^{4-}$ [2b]. Thus the spectroscopic data correlate with the X -ray result that the energy of the o(SEt_{2}) orbital is even higher than that for the $\sigma\left(\mathrm{SCN}^{-}\right)$and $\sigma\left(\mathrm{I}^{-}\right)$ orbitals.

Supplementary material

Full tables of bond lengths and angles, H -atom coordinates, thermal parameters and structure factors are available from Yu Wang (Taiwan).

Acknowledgements

Financial support from the University of Hong Kong, the Croucher Foundation and the National Research Council of Taiwan is gratefully acknowledged.

References

1 D. M. Roundhill, H. B. Gray and C. M. Che, Acc. Chem. Res., 22 (1989) 55.
2 (a) C. M. Che, W. M. Lee, T. C. W. Mak and H. B. Gray, J. Am. Chem. Soc., 108 (1986) 4446; (b) K. A. Alexander, S. A. Bryan, F. R. Fronczek, W. C. Fultz, A. L. Rheingold, D. M. Roundhill, P. Stein and S. F. Watkins, Inorg. Chem., 24 (1985) 2803.
3 C. M. Che, L. G. Butler, P. J. Grunthaner and H. B. Gray, Inorg. Chem., 24 (1985) 4662.
4 C. M. Che, H. L. Kwong and K. C. Cho, Inorg. Chem., 27 (1988) 3691.

[^0]: *Author to whom correspondence should be addressed.

