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The interactions of cell-surface glycoproteins and glycolipids
play important roles in cell–cell communication, proliferation,
and differentiation.[1] Combinations of saccharides, orientations
of glycosidic bonds, and branching patterns of linkages allow
complex carbohydrates to have a vast diversity of structures
for molecular recognition.[2] Thus, studies of carbohydrate-relat-

ed interactions might provide new insights into their biological
roles and reveal new possibilities for drug development.[3, 4] Dis-
closure of the carbohydrate-recognition sites by X-ray crystal-
lography and NMR spectroscopy has been a challenge due to
the difficulty of cocrystallization of targeting proteins and car-
bohydrates.[5] At present, most of the binding-epitope analysis
methodologies are time-consuming as they screen sets of
overlapping peptides spanning a known protein sequence.[6, 7]

The advent of an efficient, sensitive, general strategy to identi-
fy new carbohydrate-binding lectins and map epitopes is
awaited to unravel the complexities of carbohydrate recogni-
tion.

Recent developments in mass spectrometry have greatly ex-
panded the possibility of characterizing unknown proteins, in-
cluding mapping of protein glycosylation sites.[8] Despite the
advantages, the simultaneous characterization of the hundreds
to thousands of proteins present in a complex medium still re-
mains a challenge.[9] However, when mass spectrometry is
combined with a biologically active probe to rapidly and spe-
cifically target proteins of interest, this targeted proteomic ap-
proach can accelerate research for class-specific proteins or bi-
omarkers.[10] Recently, metal nanoparticles have been used in
biological separation and promise to be superior to microbe-
ads.[11] Furthermore, biomolecule-conjugated gold nanoparti-
cles (AuNPs) are the most popular probes because of their
readily assembling with thiolated molecules, their large area/
volume ratio for investigating three-dimensional interactions,
and their ease of separation by centrifugation.[12, 13] However,
the use of functionalized nanoparticles as probes combined
with mass spectrometry for carbohydrate–protein recognition
studies has not been explored.

We report here a new approach of using carbohydrate-en-
capsulated AuNP (c-AuNP) as an affinity probe for the efficient
separation and enrichment of target proteins, and then protein
identification and epitope mapping by MALDI-TOF MS. The
analytical scheme of the approach, nanoprobe-based affinity
mass spectrometry (NBAMS), is illustrated in Scheme 1. Unlike
other mass spectrometry-based affinity capture approaches
that make use of agarose beads[14] or biochips,[15] the core
component of our scheme is a nanosized biologically active af-
finity probe. Target proteins can be affinity captured from a
mixture by the nanoprobe and directly analyzed on-probe by
MALDI-TOF MS. Most significantly, once target proteins have
been captured, on-probe digestion followed by removal of un-
bound peptides allows rapid mapping of carbohydrate-recog-
nition peptide sequences in the proteins.

To demonstrate the general applicability of the NBAMS tech-
nique in tackling carbohydrate–protein interactions, proof-of-
principle was performed for the specific capture and identifica-
tion of the galactophilic lectin Pseudomonas aeruginosa lectin I
(PA-IL) by using c-AuNP. The medium-range affinity (Ka~3.4 �
104

m
�1)[16] of monomeric d-galactose for PA-IL was enhanced

by assembling sugars on nanoparticles. The resulting multiva-
lent interactions[17] between c-AuNP and PA-IL facilitated highly
specific and stable surface affinity separation. To probe the
subtle variations in the carbohydrate-binding domain of PA-IL,
two carbohydrates—galactose and Pk antigen (Gala1!
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4Galb1!4Glc; abbreviated as g-AuNP and Pk-AuNP, re-
spectively)—were encapsulated on the gold nanoparti-
cle as shown in Scheme 2. Compound 3 was synthe-
sized by glycosylation of bromide 2 with ethylene
glycol acceptor 7 and then treated with thioacetic acid,
followed by hydrolysis to give thiogalactosyl dimer
4.[18, 19] The g-AuNP 1 was prepared by treating HAuCl4

with 4 in the presence of NaBH4.[18, 19] The preparation
of Pk-AuNP 2 is similar to that of g-AuNP, except that Pk

dimer 6 was obtained by cou-
pling compound 5[20] with cysta-
mine 8. The average diameter of
both AuNPs, determined by
TEM, is 4�1 nm (Figure 1).
Before addition of PA-1L, the g-
AuNPs were dispersed on the
grid, whereas intermolecular
binding with multivalent PA-1L
induced g-AuNP agglutination.

To access the capture specific-
ity and enrichment effect of g-
AuNP 1, the nanoparticles were
incubated with a mixture of pro-
teins (PA-IL, enolase, alcohol de-
hydrogenase, and myoglobin) in

phosphate-buffered saline. After separation of the
nanoparticles by centrifugation, the pellet containing
g-AuNPs was washed with 25 mm ammonia bicar-
bonate followed by direct “on-g-AuNP” MALDI-TOF
MS analysis. The mass spectrum in Figure 2 A reveals
the specificity of NBAMS, with a single peak corre-
sponding to PA-IL at m/z = 12 758.8 (the theoretical
average mass is 12 762). The clean mass spectrum
demonstrates the advantages of NBAMS in providing
simultaneous on-g-AuNP protein isolation, enrich-
ment, and sample desalting without the necessity of
additional steps. No detectable background peak
was observed to arise from the g-AuNP in control ex-
periments (Figure 2 B). Figure 2 C shows the complex
MALDI spectrum of the protein mixture in which the
PA-IL was barely observed due to low abundance
(4 % of molar fraction) and the ion-suppression
effect.[21] Experiments to test the detection sensitivity
of the NBAMS approach demonstrated that femto-
mole concentrations of PA-1L (10 ng mL�1) were
readily detectable. A series of dilution experiments of
a 100 mL solution (4.7 mm–0.78 nm for the extraction
of PA-IL from the protein mixture) were performed,

Scheme 1. The analytical scheme of the NBAMS technique for the specific capture of target proteins and the
rapid mapping of binding-epitope-containing peptides.

Scheme 2. Synthesis of g-AuNP (1) and Pk-AuNP (2). a) 7, Ag2CO3, drierite, CH2Cl2, RT,
16 h; b) AcSH, azobisisobutyronitrile, MeOH, 75, 12 h; c) NaOMe (cat), MeOH, RT, 10 min.
d) HAuCl4, NaBH4. e) 8, 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride,
1-hydroxy 1H-benzotriazole, CH2Cl2, RT, 14 h.

Figure 1. TEM micrographs and size distribution of g-AuNP before (left) and 1 h after
(right) addition of 6 mm PA-1L. This image was measured from the agglutinated fraction.
The average diameter of AuNPs is 4�1 nm as determined by TEM and from a corre-
sponding size-distribution histogram.
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and we were able to detect
0.78 nm PA-1L, which is equiva-
lent to 78 fmol of PA-1L (see
also Supporting Information).

A major feature of the NBAMS
approach is the advantage of
on-probe identification of un-
known target proteins by mass
spectrometry. To confirm the
identity of the captured protein,
the g-AuNP pellet was subjected
to in situ digestion with chymo-
trypsin. Figure 3 A shows the
representative peptide mass fin-
gerprinting map of chymotryp-
tic peptides, matched to PA-IL
(Swiss-Prot Q05097) in Table 1.
Mass spectrometric protein
identification provides potential
applications in discovering
novel receptors and, particularly,
the simultaneous identification
of multiple class-specific pro-
teins.

To investigate whether the
new affinity approach can be a
rapid method for probing the
noncovalent carbohydrate-bind-
ing epitopes of the target pro-
tein, the g-AuNP-captured PA-IL
was subjected to direct in situ
g-AuNP digestion by chymo-
trypsin without denaturing the
native protein structure. Chymo-
trypsin was chosen because
many cleavage sites on the PA-
IL sequence can be accessed to
generate small proteolytic cleav-
age products. Thus, carbohy-
drate-binding sites can be locat-

ed precisely. After centrifugation, the peptides re-
maining affinity-bound to the g-AuNP were analyzed
by MALDI-TOF MS (Figure 3 B). The mass spectrum
revealed one dominant peak, R83–Y105 (P6) and two
minor peaks, A1–Y36 (P14) and R83–S121 (P15); this
indicated that at least two discontinuous domains of
PA-1L were involved in g-AuNP-specific recognition.

Recently, the high-resolution crystal structure of
tetrameric PA-IL with galactose and calcium was re-
ported,[16] and all the binding residues were observed
in the mass spectrum of g-AuNP-bound peptides
(Figure 3 B). The most intense peak (P6) suggests the
position of the relatively strongest binding site, in
which three binding residues—Asp100, Val101, and
Thr104—are involved in specific galactose recogni-
tion. Given the fact that PA-1L has only a moderate

Figure 2. MALDI-TOF mass spectra of specific binding of PA-IL with g-AuNP. A) Selective
enrichment and on-g-AuNP clean-up of PA-IL; B) g-AuNP; C) a mixture containing enolase
(26 mm), alcohol dehydrogenase (71 mm), myoglobin (1 mm), and PA-IL (5 mm).

Figure 3. Mapping galactose-binding peptides by protease digestion and the NBAMS technique. A) Peptide mass
fingerprinting map of PA-IL captured by g-AuNP. B) MALDI-TOF mass spectrum of the g-AuNP-binding peptides.
C) MALDI-TOF mass spectrum of the PK-AuNP-binding peptides. D) MS/MS spectrum of the g-AuNP-binding pep-
tide at m/z 2562.3.
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affinity for galactose and the shallowness of the binding site,[16]

why the 23-mer peptide (P6) was still bound to the g-AuNP
after digestion remains an interesting question. We believe
that the immobilization of galactose on AuNPs will increase
the ligand surface density and accessibility with a concomitant
enhancement in biocapture. The binding of NP with chymo-
tryptic peptides from digestion of free PA-1L was also evaluat-
ed; however, g-AuNP showed a lower binding capability with
free chymotryptic peptides. The binding of His50/Gln53 and
Asn107/Asn108 was observed in the peptides at P7 and P15,
respectively. Additionally, the peptide at P14 (the second most
intense peak) contains Tyr36, which makes hydrophobic con-
tact with C1 and C2 of galactose.[16] The unexpected observa-
tion of P10 (A1–W33) might be caused by an interaction be-
tween the peptide and the poly(ethene glycol) linker. Our re-
sults demonstrate that NBAMS is capable of analyzing discon-
tinuous binding epitopes in lectin; this reflects the three-di-
mensional carbohydrate–protein interaction in solution.

The general capability of the epitope-mapping technique
was also tested on the lower-affinity interaction of mannose
with Con A (Ka~103

m
�1).[22] The results were also in good

agreement with the literature (unpublished data).
It has been reported that the binding affinity of galactoside

(Gal) with PA-1L showed the descending order of Pk antigen>
a-monogalactoside>b-monogalactoside.[23] The different bind-
ing epitopes of PA-IL with the a-galactoside-containing trisac-
charide Pk were examined. Figure 3 C shows that the Pk-AuNP
binding peptides were similar to those of g-AuNP; this sug-
gests that Pk-AuNP interacts with PA-IL mainly through the ter-
minal Gal of the Pk antigen. Compared with the g-AuNP bind-
ing peptides, the major differences include the appearance of

two peptides A8–W42 (P13) and A1–W42 (P17), and the in-
creased relative intensities of three peptides, G43–M67 (P7),
A1–W33 (P10), and R83–S121 (P15). These might be due to a
subtle change in the orientation of the a-Gal of the Pk antigen
that results in enhanced binding affinity of PA-IL with Gal.
These results clearly demonstrated that the NBAMS approach
can reflect the change of interaction modes with different car-
bohydrates. Finally, the advantage of mass spectrometry as a
readout for peptide sequencing is shown in the MALDI-MS/MS
spectrum of the bound peptide (P6), which depicts several
fragment ion series,[24] an, bn, and cn (Figure 3 D), that confirmed
the sequence of the peptide R83–Y105 bound to galactose.

In summary, we have demonstrated the feasibility of carbo-
hydrate-functionalized nanoprobes for the simultaneous en-
richment and isolation of target proteins from a mixture at the
femtomole level, and subsequent protein identification and
mapping of the binding-epitope-containing peptides with min-
imum sample handling. Given the flexibility and ease of adapt-
ing functionalized nanoprobes to ligand-fishing of class-specif-
ic proteins, the rapid NBAMS approach shows promise in
profiling the proteome in a specific binding-dependent
manner. The effective identification of ligand-binding epitopes
will provide a wealth of information for understanding ligand–
receptor recognition.
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