A structural study on bis\{trans-[bis(diphenylphosphino)ethylene]\}tricarbonyliron(0) and cis-[bis(diphenylphosphino)ethylene]tricarbonyliron(0)

Lung-Shiang Luh and Ling-Kang Liu*
Institute of Chemistry, Academia Sinica, Taipei 11529 (Taiwan, ROC)
and Department of Chemistry, National Taiwan University, Taipei 10767 (Taiwan, ROC)

(Received July 27, 1992; revised November 16, 1992)

Abstract

Two routes have been employed in the synthesis of (trans $\left.-\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}\right)_{2} \mathrm{Fe}(\mathrm{CO})_{3}$ (1) and (cis$\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}$) $\mathrm{Fe}(\mathrm{CO})_{3}$ (2). Method A proceeds with the $\mathrm{Me}_{3} \mathrm{NO}$ oxidative decarbonylation of (maleic acid) $\mathrm{Fe}(\mathrm{CO})_{4}$, followed by a precipitation of maleate salt in the presence of either trans $-\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}$ or cis $-\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}$. Method B is a low temperature quenching of (cis-cyclooctene) $)_{2} \mathrm{Fe}(\mathrm{CO})_{3}$ with either trans$\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}$ or $c i s-\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}$. Complexes 1 and 2 have been characterized with spectroscopic methods and X-ray diffraction. X-ray crystallographic data for the title compounds: $1, \mathrm{C}_{55} \mathrm{H}_{44} \mathrm{FeO}_{3} \mathrm{P}_{4} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$, monoclinic, space group $P 2_{1} / c, a=11.532(2), b=20.454(2), c=22.652(6) ~ \AA, \beta=104.49(2)^{\circ}, V=5173(2) \AA^{3}, Z=4$; 2547 data with $I_{\mathrm{o}}>2.5 \sigma\left(I_{\mathrm{o}}\right)$ were refined to $R=0.049, R_{\mathrm{w}}=0.051 ; 2, \mathrm{C}_{29} \mathrm{H}_{22} \mathrm{FeO}_{3} \mathrm{P}_{2}$, monoclinic, space group $P 2_{1} /$ $c, a=10.064(1), b=15.164(2), c=17.379(2) \AA, \beta=101.17(1)^{\circ}, V=2602.2(5) \AA^{3}, Z=4 ; 2274$ data with $I_{o}>2.5 o\left(I_{\mathrm{o}}\right)$ were refined to $R=0.035, R_{w}=0.037$. Complex 1 has a trigonal-pyramidal $\mathrm{Fe}(0)$ center with two diaxiallycoordinated, unidentate trans $-\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}$. Compound 2 has a trigonal-pyramidal $\mathrm{Fe}(0)$ center with one chelating cis- $\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}$ occupying one axial and one equatorial site.

Introduction

Compounds of the type (diphosphine) $\mathrm{Fe}(\mathrm{CO})_{3}$ have been reported for a number of diphosphines, e.g. dppm, dppe, dppp, forming chelate rings with size $4,5,6$, etc. [1]. It is our aim to see to what extent other diphosphines exhibiting geometric differences affect the structure of bonding around a $\mathrm{Fe}(0)$ center. With the double-bond fixed phosphine orientations, the diphosphines trans $-\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}$ and cis$\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}$ would be expected to exhibit totally different coordination modes toward $\mathrm{Fe}(\mathrm{CO})_{3}$. The $1: 1$ trans $-\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}$ to $\mathrm{Fe}(\mathrm{CO})_{3}$ would be expected to form an adduct with oligomeric nature because two P donors are not able to coordinate to the same $\mathrm{Fe}(\mathrm{CO})_{3}$. The $1: 1$ cis $-\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}$ to $\mathrm{Fe}(\mathrm{CO})_{3}$ would form a chelated complex $\left(\right.$ cis $\left.-\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}\right) \mathrm{Fe}(\mathrm{CO})_{3}$ which has been reported by King and Eggers from the UV irradiation of a mixture of $\mathrm{Fe}_{2}(\mathrm{CO})_{9}$ and cis$\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}$ [2]. The trans $-\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}$ reaction with iron carbonyls has not been reported, however. The published synthetic procedures generally involve the reaction of a diphosphine with iron carbonyls

[^0]under various conditions [3]. In some cases, iron carbonyls are activated first. Here we report the synthesis of (trans $\left.-\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}\right)_{2} \mathrm{Fe}(\mathrm{CO})_{3}$ (1) from $1: 1$ trans $-\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}$ to $\mathrm{Fe}(\mathrm{CO})_{3}$ and an improved synthesis of $\left(\right.$ cis- $\left.\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}\right) \mathrm{Fe}(\mathrm{CO})_{3}$ (2) from $1: 1$ cis $-\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}$ to $\mathrm{Fe}(\mathrm{CO})_{3}$, with two different methods each. We also present the X-ray structure determinations of 1 and 2.

Experimental

All manipulations were performed under an atmosphere of prepurified nitrogen with standard Schlenk techniques, and all solvents were distilled from an appropriate drying agent [4]. IR spectra were recorded in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ using CaF_{2} optics on a Perkin-Elmer 882 spectrophotometer. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were obtained on a Bruker MSL 200 spectrometer using $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ as external standard. Mass spectra were obtained on a VG system, model 70-2503 spectrometer. Microanalytical data were obtained with the use of a Perkin-Elmer 240 C elemental analyzer. The melting points were measured on a Yanaco micro melting point apparatus. (MA) $\mathrm{Fe}(\mathrm{CO})_{4}, \mathrm{MA}=$ maleic acid, and (cis-
$\mathrm{COE})_{2} \mathrm{Fe}(\mathrm{CO})_{3}$, cis- $\mathrm{COE}=$ cis-cyclooctene, were prepared according to the literature procedures $[5,6]$. Other reagents were obtained from commercial sources, e.g. Nldrich, Merck, and used without further purification.

Preparation of trans $\left.-\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}\right)_{2} \mathrm{Fe}(\mathrm{CO})_{3}$, (1) and $\left(\mathrm{cis}-\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}\right) \mathrm{Fe}(\mathrm{CO})_{3}$ (2)

Method A

(MA) $\mathrm{Fe}(\mathrm{CO})_{4}$ ($284 \mathrm{mg}, 1 \mathrm{mmol}$) and the diphosphine
$\mathrm{L}(396 \mathrm{mg}, 1 \mathrm{mmol})$ were dissolved in THF (50 ml) and stirred for $1 / 2 \mathrm{~h}$ at $0{ }^{\circ} \mathrm{C} .\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NO} \cdot 2 \mathrm{H}_{2} \mathrm{O}(167$ mg, 1.5 mmol) in $\mathrm{CH}_{3} \mathrm{OH}(1 \mathrm{ml}) / \mathrm{THF}(15 \mathrm{ml})$ was added dropwise to the solution over a period of 2 h . The color of solution changed from yellow to dark brown. The solution was then refluxed at $70^{\circ} \mathrm{C}$ for 2 h before filtration and evaporation to dryness under vacuum. The resultant yellow crystals were purified by
chromatography $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right.$, eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / n$-hexane $)$ and recrystallization $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / n\right.$-hexane $)$ to give 1 and 2, respectively.
$1\left(\mathrm{~L}=\right.$ trans $\left.-\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}\right)$: yellow powder (297 $\mathrm{mg}, 31.8 \%$ yield). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 77.97(\mathrm{~s})$, $-6.75(\mathrm{~s})$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \nu(\mathrm{CO}) 1877 \mathrm{~cm}^{-1}$. m.p. 79-81 ${ }^{\circ} \mathrm{C}$. Mass (m / z) for $\mathrm{C}_{55} \mathrm{H}_{44} \mathrm{FeO}_{3} \mathrm{P}_{4}: M^{+} 932$ (parent ion). Anal. Calc. for $\mathrm{C}_{56} \mathrm{H}_{46} \mathrm{Cl}_{2} \mathrm{FeO}_{3} \mathrm{P}_{4}: \mathrm{C}, 66.08 ; \mathrm{H}, 4.52$. Found: C, $65.45 ; \mathrm{H}, 4.81 \%$. Crystals suitable for X-ray diffraction were grown by slow evaporation from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ / n-hexane.
$2\left(\mathrm{~L}=\right.$ cis $\left.-\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}\right)$: orange-yellow powder ($307 \mathrm{mg}, 57.3 \%$ yield). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 116.9(\mathrm{~s})$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \nu(\mathrm{CO}) 1987(\mathrm{~s}), 1915(\mathrm{~s}), 1898(\mathrm{~s}) \mathrm{cm}^{-1}$. m.p. $139-140{ }^{\circ} \mathrm{C}$. Mass $(\mathrm{m} / \mathrm{z})$ for $\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{FeO}_{3} \mathrm{P}_{2}: M^{+}$ 536(parent ion). Anal. Calc. for $\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{FeO}_{3} \mathrm{P}_{2}$: $\mathrm{C}, 64.93$; H, 4.10. Found: C, 64.82; H, 3.98\%. Crystals suitable

TABLE 1. Crystallographic data and refinement details for $\left(\text { trans }-\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}\right)_{2} \mathrm{Fe}(\mathrm{CO})_{3} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2} \quad$ (1) and $(c i s$ $\left.\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}\right) \mathrm{Fe}(\mathrm{CO})_{3}$ (2)

	1	2
Space group	$P 2_{1} / c$	$P 2_{1} / c$
a (\AA)	11.532(2)	10.064(1)
b (\AA)	20.454(2)	15.164(2)
$c(\AA)$	22.652(6)	17.379(2)
$\beta\left({ }^{\circ}\right.$)	104.49(2)	101.17(1)
$V\left(\AA^{3}\right)$	5173(2)	2602.2(5)
Empirical formula	$\mathrm{C}_{56} \mathrm{H}_{46} \mathrm{Cl}_{2} \mathrm{FeO}_{3} \mathrm{P}_{4}$	$\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{FeO}_{3} \mathrm{P}_{2}$
Crystal dimensions (mm)	$0.50 \times 0.25 \times 0.24$	$0.54 \times 0.22 \times 0.15$
FW	1017.61	536.28
Z	4	4
$F(000)$	2103.76	1103.85
$D_{\text {calc }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.307	1.369
Temperature (K)	298	298
$\mu\left(\mathrm{mm}^{-1}\right)$	0.56	0.73
$\lambda(\mathrm{Mo} \mathrm{K} \alpha$) (\AA)	0.7093	0.7093
2θ (max)	45	45
Diffractometer	Nonius CAD-4	Nonius CAD-4
Scan mode	$\theta / 2 \theta$	$\theta / 2 \theta$
Data ranges	$-12<h<12$	$\cdots 10<h<10$
	$0<k<22$	$0<k<16$
	$0<l<24$	$0<l<18$
Unique reflections	6750	3397
Observations	$2547 I_{\mathrm{o}}>2.5 \sigma\left(I_{\mathrm{o}}\right)$	$2274 I_{0}>2.5 \sigma\left(I_{0}\right)$
Absorption corrections	yes	yes
Transmission factors	0.940-0.998	0.939-0.999
Total atoms	112	57
Parameters	595	404
Weights ${ }^{\text {a }}$	counting statistics	counting statistics
Weight modifier	0.0001	0.0001
$R^{\text {b }}$	0.049	0.035
$R_{\text {w }}{ }^{\text {c }}$	0.051	0.037
Goodness of fit	1.63	1.51
Max $\Delta / \boldsymbol{\sigma}$	0.016	0.114
Peaks in D-map (e \AA^{-3})		
highest	0.570	0.260
deepest	-0.260	-0.200

${ }^{2} w=1 /\left[\sigma\left(F_{\mathrm{o}}\right)^{2}+0.0001\left(F_{\mathrm{o}}\right)^{2}\right], \sigma\left(F_{\mathrm{o}}\right)$ from counting statistics. $\quad{ }^{\mathrm{h}} R=\Sigma \| F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right| \Sigma\left|F_{\mathrm{o}}\right| . \quad{ }^{\mathrm{c}} R_{\mathrm{w}}=\left[\Sigma w\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2} / \Sigma w\left|F_{\mathrm{o}}\right|^{2}\right]^{(1 / 2)}$.
for X-ray diffraction were grown by slow evaporation from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / n$-hexane.

Method B

A solution of $(c i s-\mathrm{COE})_{2} \mathrm{Fe}(\mathrm{CO})_{3}(360 \mathrm{mg}, 1 \mathrm{mmol})$ in THF (30 ml) was stirred for 10 min at $-60^{\circ} \mathrm{C}$ before dropwise adding the diphosphine $\mathrm{L}(396 \mathrm{mg}, 1$ mmol) in THF (15 ml). After keeping the temperature at $-60^{\circ} \mathrm{C}$ for 2 h more, the solution was then allowed to warm up to room temperature. The solution was then filtered and evaporated to dryness under vacuum, resulting in yellow solids $\mathbf{1}$ and $\mathbf{2}$, respectively.

1 was further purified by chromatography $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right.$, eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / n$-hexane) and recrystallization $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / n\right.$-hexane) to give a yellow powder (516 mg , 55.3% yield).

2 was washed with n-hexane ($3 \times 30 \mathrm{ml}$) resulting in an orange-yellow powder ($465 \mathrm{mg}, 86.7 \%$ yield).

Structure analyses of (trans- $\left.\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}\right)_{2}$ $\mathrm{Fe}(\mathrm{CO})_{3}$ (1) and ($\mathrm{cis}-\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}$) $\mathrm{Fe}(\mathrm{CO})_{3}$ (2)
A summary of crystal data and refinement details is given in Table 1. Diffraction intensities were measured

Fig. 1. ORTEP diagram of 1 with thermal ellipsoids at 50% probability. The atomic numbering sequence is attached. The \mathbf{H} atoms are omitted for clarity. Selected bond lengths and angles: $\mathrm{Fe}-\mathrm{P}(1)=2.209(3), \quad \mathrm{Fe}-\mathrm{P}(2)=2.209(3), \quad \mathrm{Fe}-\mathrm{C}(1)=1.755(11)$, $\mathrm{Fe}-\mathrm{C}(2)=1.773(11), \quad \mathrm{Fe}-\mathrm{C}(3)=1.756(11), \quad \mathrm{C}(28)-\mathrm{C}(29)=$ $1.336(15), \quad \mathrm{C}(54)-\mathrm{C}(55)=1.340(15) \quad \AA ; \quad \mathrm{P}(1)-\mathrm{Fe}-\mathrm{P}(2)$ $=175.64(12), \quad \mathrm{P}(1)-\mathrm{Fc}-\mathrm{C}(1)-91.9(3), \quad \mathrm{P}(1)-\mathrm{Fe}-\mathrm{C}(2)=86.4(3)$, $\mathrm{P}(1)-\mathrm{Fe}-\mathrm{C}(3)=90.3(3), \quad \mathrm{P}(2)-\mathrm{Fe}-\mathrm{C}(1)=91.1(3), \quad \mathrm{P}(2)-\mathrm{Fe}-\mathrm{C}(2)$ $=89.4(3), \quad \mathrm{P}(2)-\mathrm{Fe}-\mathrm{C}(3)=90.9(3), \quad \mathrm{C}(1)-\mathrm{Fe}-\mathrm{C}(2)=118.3(5)$, $\mathrm{C}(1)-\mathrm{Fe}-\mathrm{C}(3)=121.0(5), \mathrm{C}(2)-\mathrm{Fe}-\mathrm{C}(3)=120.6(5)^{\circ}$.

Fig. 2. ORTEP diagram of 2 with thermal ellipsoids at 50% probability. The atomic numbering sequence is attached. The H atoms except $H(16)$ and $H(17)$ are omitted for clarity. Selected bond lengths and angles: $\mathrm{Fe}-\mathrm{P}(1)=2.205(2), \mathrm{Fe}-\mathrm{P}(2)=$ $2.217(2), \quad \mathrm{Fe}-\mathrm{C}(1)=1.758(6), \quad \mathrm{Fe}-\mathrm{C}(2)=1.768(6), \quad \mathrm{Fe}-\mathrm{C}(3)=$ $1.751(6), \mathrm{C}(16)-\mathrm{C}(17)=1.337(8) \quad \AA ; \quad \mathrm{P}(1)-\mathrm{Fe}-\mathrm{P}(2)=83.91(6)$, $\mathrm{P}(1)-\mathrm{Fe}-\mathrm{C}(1)=126.7(2), \quad \mathrm{P}(1)-\mathrm{Fe}-\mathrm{C}(2)=115.5(2), \quad \mathrm{P}(1)-\mathrm{Fe}-$ $\mathrm{C}(3)=89.1(2), \quad \mathrm{P}(2)-\mathrm{Fe}-\mathrm{C}(1)=91.1(2), \quad \mathrm{P}(2)-\mathrm{Fe}-\mathrm{C}(2)=$ 91.8(2), $\quad \mathrm{P}(2)-\mathrm{Fe}-\mathrm{C}(3)=172.7(2), \quad \mathrm{C}(1)-\mathrm{Fe}-\mathrm{C}(2)=117.7(3)$, $\mathrm{C}(1)-\mathrm{Fe}-\mathrm{C}(3)=91.4(3), \mathrm{C}(2)-\mathrm{Fe}-\mathrm{C}(3)=93.2(3)^{\circ}$.
with background counts made for half the total scan time on each side of the peak. Three standard reflections, remeasured after every hour, showed no significant decrease in intensity during data collection. Data were corrected for Lorentz-polarization and absorption (empirical psi corrections). The structures were solved by direct methods MULTAN [7]. Calculations and fullmatrix least-squares refinements were performed utilizing the NRCVAX program package [8] with anisotropic thermal parameters for all non-hydrogen atoms. Scattering factor curves of $\mathrm{Fe}, \mathrm{Cl}, \mathrm{P}, \mathrm{O}, \mathrm{C}$ and H were taken from the International Tables [9]. The hydrogen parameters of 1 were calculated ($\mathrm{C}-\mathrm{H}=1.00 \AA$). For 1, a solvent $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was also located at the anisotropic convergence. For 2, the hydrogen atoms were located in a D-map at the anisotropic convergence and included in the refinement isotropically. The final refinement converged to $R=0.049$ and $R_{\mathrm{w}}=0.051$ for 1, and to $R=0.035$ and $R_{\mathrm{w}}=0.037$ for 2 . For 1, the largest peak ($0.57 \mathrm{e} \AA^{-3}$) in the final difference map is found to be at ($0.483,0.298,0.106$) about $1.39 \AA$ from P3*.

[^1]TABLE 2. Final atomic fractional coordinates and equivalent isotropic displacement coefficients (\AA^{2}) for non-hydrogen atoms in (trans $\left.-\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}\right)_{2} \mathrm{Fe}(\mathrm{CO})_{3} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathbf{1})$

Atom	x	y	z	$B_{\text {iso }}{ }^{\text {a }}$
FE	0.86282(13)	$0.03664(7)$	$0.20272(6)$	3.49(7)
P1	0.80914(26)	$0.10907(13)$	0.12855(13)	3.80 (14)
P2	0.90428(23)	-0.04014(13)	0.27349(11)	3.49(14)
P3	0.54872(31)	0.26467(17)	0.15523(17)	6.32(20)
P4	0.64036(27)	-0.00145(17)	0.38793 (13)	5.00(17)
Cl 1	0.64672(47)	0.82959(24)	$0.03358(22)$	13.82(38)
Cl 2	0.89172(49)	0.85027(25)	0.03670(23)	14.77(40)
O1	0.9076(8)	0.1380(4)	0.2959(3)	6.7(5)
O2	0.6194(6)	-0.0138(4)	0.1606(3)	6.6(5)
O3	1.0546(7)	-0.0091(4)	0.1507(4)	$7.7(5)$
C1	0.8891 (10)	0.0980(5)	0.2586(5)	4.1(6)
C2	$0.7157(10)$	0.0049(5)	0.1775(4)	4.4(6)
C3	0.9780(11)	0.0086(6)	0.1711(5)	5.0(7)
C4	0.7549 (10)	$0.0725(5)$	0.0535(4)	4.0(6)
C5	0.8304(11)	0.0425(7)	0.0260(6)	7.6(9)
C6	0.7876(15)	0.0132(7)	-0.0323(7)	8.3(10)
C7	0.6694(15)	0.0140(8)	-0.0595(6)	8.2(10)
C8	0.5959(12)	0.0447(9)	-0.0329(7)	$9.1(11)$
C9	0.6387(13)	0.0737(7)	0.0240(6)	7.4(9)
C10	0.9144(10)	$0.1697(5)$	0.1147(5)	4.1(6)
C11	1.0166(11)	$0.1848(5)$	$0.1584(5)$	$5.1(7)$
C12	$1.0925(11)$	$0.2343(6)$	0.1470(7)	7.0(9)
C13	1.0703(14)	0.2653(7)	0.0933(7)	7.1(9)
C14	$0.9679(15)$	0.2511 (7)	0.0503(6)	8.1(10)
C15	0.8924(11)	0.2034(6)	$0.0603(5)$	6.4(8)
C16	1.0591(9)	-0.0486(5)	0.3182(4)	3.7(6)
C17	1.0924(10)	-0.0993(5)	0.3586(5)	4.4(6)
C18	$1.2097(12)$	-0.1051(6)	0.3927(5)	5.8(7)
C19	1.2927(10)	-0.0593(7)	$0.3866(5)$	6.7(8)
C20	$1.2617(10)$	-0.0077(7)	$0.3478(5)$	$7.2(8)$
C21	$1.1459(11)$	-0.0025(6)	0.3149(5)	5.6(7)
C22	0.8658(10)	-0.1235(5)	0.2435(4)	3.5(6)
C23	0.7482(10)	-0.1457(5)	$0.2336(5)$	$5.0(7)$
C24	0.7185(12)	-0.2053(6)	0.2074(6)	6.9(9)
C 25	$0.8001(17)$	-0.2442(6)	$0.1898(6)$	8.4(11)
C26	0.9151(14)	-0.2218(6)	0.1989(6)	7.1(9)
C27	0.9493(10)	-0.1617(6)	$0.2243(5)$	4.8(6)
C28	0.6810 (10)	$0.1553(5)$	$0.1377(4)$	4.4(6)
C29	0.6767(9)	$0.2203(5)$	0.1414(4)	$4.7(6)$
C30	0.6180(12)	$0.3094(6)$	0.2232(6)	5.7(8)
C31	0.5638(14)	0.3651(8)	0.2334(8)	10.5(13)
C32	0.6045(19)	$0.4026(10)$	0.2832(13)	13.9(20)
C33	0.7086 (18)	$0.3851(11)$	$0.3223(11)$	13.5(18)
C34	0.7681 (12)	0.3282(9)	0.3156(7)	9.0(11)
C35	$0.7205(14)$	$0.2903(7)$	0.2648(7)	7.4(9)
C36	$0.4684(11)$	0.2006 (6)	0.1822(6)	5.4(7)
C37	0.4953(11)	0.1752(7)	0.2407(7)	6.7(8)
C38	0.4323 (14)	0.1241 (7)	$0.2565(6)$	$7.5(9)$
C39	$0.3384(13)$	0.0975(7)	0.2158(8)	7.4(10)
C40	0.3074 (13)	0.1215(9)	0.1583(8)	8.4(10)
C41	0.3714(14)	0.1733(8)	0.1414(6)	7.3(9)
C42	0.7338(10)	-0.0459(6)	0.4524(5)	4.9(7)
C43	0.8310 (12)	-0.0188(6)	0.4943(6)	6.6(8)
C44	0.8977(11)	-0.0573(7)	0.5419(6)	7.3(8)
C45	0.8690(15)	-0.1208(7)	0.5472(6)	7.6(10)
C46	0.7688(15)	-0.1467(7)	0.5062(7)	8.1(10)
C47	$0.7049(11)$	-0.1098(7)	0.4590(6)	$6.1(8)$
C48	0.6413(11)	0.0827(6)	0.4130(5)	5.0(7)

(continued)

TABLE 2. (continued)

Atom	x	y	z	$B_{\text {iso }}{ }^{\text {a }}$
C49	0.5553(11)	0.1023(7)	0.4427(6)	6.3(8)
C50	0.5457(14)	0.1653(9)	0.4597(9)	10.1(12)
C51	0.6207(17)	0.2098(8)	0.4500(8)	9.3(11)
C52	0.7070(15)	0.1950(8)	$0.4212(7)$	9.1 (11)
C53	0.7175(12)	0.1313(7)	$0.4032(5)$	6.6(8)
C54	0.8244(8)	-0.0390(5)	$0.3339(4)$	4.1(5)
C55	0.7316 (9)	0.0007(5)	0.3331(4)	$4.2(6)$
C 56	0.7745(16)	0.8754(7)	0.0654(6)	10.8(12)

TABLE 3. Final atomic fractional coordinates and equivalent isotropic displacement coefficients $\left(\AA^{2}\right)$ for non-hydrogen atoms in $\left(\right.$ cis $\left.-\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}\right) \mathrm{Fe}(\mathrm{CO})_{3}$ (2)

Atom	x	y	z	$B_{\text {iso }}{ }^{\text {a }}$
FE	0.25127(6)	0.71730(4)	0.12135(4)	4.20(3)
P1	0.27985 (12)	0.82590 (7)	$0.20722(6)$	4.27 (6)
P2	0.12453(12)	0.65971 (8)	$0.19962(7)$	4.47(6)
O1	0.4094(3)	0.5556(2)	0.1249(2)	7.0(2)
O 2	0.0221(4)	0.7328(2)	-0.0096(2)	8.8(2)
O3	0.4339(4)	0.8076(2)	0.0365(2)	8.3(2)
C1	0.3474 (5)	0.6200(3)	0.1259(3)	4.9(2)
C2	$0.1101(5)$	0.7278(3)	0.0435(3)	5.4(3)
C3	$0.3604(5)$	0.7719(3)	0.0697(3)	5.4(3)
C4	$0.4395(4)$	0.8308(3)	0.2777(2)	4.2(2)
C5	0.5555(5)	0.8491(3)	0.2516(3)	5.3(3)
C6	$0.6795(6)$	0.8537(4)	$0.3026(4)$	6.3 (3)
C7	$0.6872(7)$	0.8384(4)	0.3803(4)	6.7(4)
C8	0.5736 (7)	0.8181(4)	0.4075(3)	7.3(4)
C9	0.4480(6)	0.8140(3)	$0.3567(3)$	6.0(3)
C10	$0.2586(4)$	0.9395(3)	0.1719(2)	4.0(2)
C11	$0.3147(5)$	1.0108(3)	0.2161(3)	5.4(3)
C12	$0.2922(6)$	1.0962(3)	0.1889(3)	6.1(3)
C13	0.2103(6)	1.1122(3)	0.1180(3)	5.9(3)
C14	0.1545 (6)	1.0428(4)	0.0736(3)	6.2(3)
C15	$0.1793(5)$	0.9581(3)	0.0995(3)	5.7(3)
C16	$0.1538(5)$	0.8178(3)	0.2678(3)	5.0(3)
C17	$0.0813(5)$	0.7452(3)	0.2632(3)	5.1(3)
C18	$0.1939(5)$	0.5780(3)	0.2741(2)	4.6(2)
C19	$0.3285(5)$	0.5842(4)	0.3112(3)	5.6(3)
C20	$0.3799(6)$	0.5294(5)	0.3730(3)	6.9(4)
C21	0.2999 (7)	0.4670(4)	0.3977(3)	7.6(4)
C22	0.1667 (7)	0.4591(4)	0.3619(4)	7.4(4)
C23	0.1137(6)	0.5156(4)	0.3006(3)	6.1(3)
C24	-0.0350(5)	0.6115(3)	0.1505(2)	4.7(2)
C25	-0.1560(5)	0.6550(4)	0.1480(3)	6.0(3)
C26	-0.2746(6)	0.6201(5)	$0.1061(4)$	7.8(4)
C27	-0.2736(8)	0.5422(5)	0.0678(4)	7.8(4)
C28	-0.1551(8)	0.4983(4)	0.0685(3)	7.0(4)
C29	-0.0342(6)	0.5330(4)	0.1098(3)	6.0(3)

Selected bond distances and angles of $\mathbf{1}$ and $\mathbf{2}$ are given in the captions of Figs. 1 and 2, and the final atomic fractional coordinates are given in Tables 2 and 3 , respectively.

Results and discussion

Synthesis

Two different procedures have been employed in this study for the synthesis of (diphosphine) $\mathrm{Fe}(\mathrm{CO})_{3}$. The overall scheme is shown in Scheme 1.

Method A proceeds with an oxidative decarbonylation, followed by the precipitation of a maleate salt in the presence of trans- or cis $-\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}[10]$. The oxidative decarbonylation step produces gaseous CO_{2} and NMe_{3}, then the leaving ligand MA reacts with NMe_{3} to form a salt $\left(\mathrm{HNMe}_{3}\right)+\mathrm{MA}^{-}$in refluxing THF. Mcthod B is a low temperature route by quenching $(\text { cis-COE })_{2} \mathrm{Fe}(\mathrm{CO})_{3}$ with trans- or cis$\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}$, respectively. Method B is a much neater and more efficient procedure in which (cis$\mathrm{COE})_{2} \mathrm{Fe}(\mathrm{CO})_{3}$ serves as a nice $\mathrm{Fe}(\mathrm{CO})_{3}$ transfer reagent at temperatures well below $0{ }^{\circ} \mathrm{C}$. Examples of cis-COE exchange by other ligands are the synthesis of (diene) $\mathrm{Fe}(\mathrm{CO})_{3}$ [11], (diphosphacyclobutadiene)$\mathrm{Fe}(\mathrm{CO})_{3}$ [12], metal clusters containing fragment of $\mathrm{Fe}(\mathrm{CO})_{3}[13]$, and (chelate- $\left.\mathrm{P}, \mathrm{S}\right) \mathrm{Fe}(\mathrm{CO})_{3}[14]$. For trans$\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}$, either method results in 1 and for cis $-\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}$, cither method gives 2 . The yields of 1 are 31.8% and 55.3%; those of 2 are 57.3% and 86.7% for methods A and B, respectively.

Spectroscopy

Both 1 and 2 have been characterized with ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR, IR, m.p., EA, mass, and X-ray structure analysis. With one $\nu(\mathrm{CO})$ band in the IR spectrum, $\mathbf{1}$ is expected to have two P atoms coordinated diaxially at trans positions around a tbp $\mathrm{Fe}(0)$ center, whereas with three $\nu(\mathrm{CO})$ absorptions in the IR spectrum, 2 is expected to have one P atom axial and the other P atom equatorial. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 1 shows two singlets of similar intensity at $\delta 77.97$ for the coordinated P
donor and at $\delta-6.75$ for the uncoordinated P donor. The P atoms of free trans $-\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}$ rcsonate at $\delta-6.75$. Since an uncoordinated ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ peak has been detected, 1 must have two unidentate diphosphine ligands. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 2 shows just one peak at $\delta 116.9$, instead of two peaks corresponding to one axial and one equatorial. The ${ }^{31} \mathrm{P}$ peak for free cis $-\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}$ is also at $\delta-6.75$. The coordination shift for cis $-\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}$ is much larger than that for trans $-\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}$. It is also reasoned that the fluxional exchange of 2 between its axial and the equatorial P donors is so fast that the time scale of ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR is unable to differentiate.

Structure

Figure 1 shows the X-ray structure of 1 , in which the tbp $\mathrm{Fe}(0)$ center is seen to be coordinated by two unidentate trans $-\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}$, each ligand has one P coordinating to the $\mathrm{Fe}(0)$ center and the other P dangling. The Fe-P distances are both $2.209(3) \AA$. The angle $\mathrm{P}(1)-\mathrm{Fe}-\mathrm{P}(2)$ is $175.64(12)^{\circ}$. The two $\mathrm{P}-\mathrm{Fe}$ bonds are $2.2(5)$ and $8.0(5)^{\circ}$, respectively, from a perfectly staggered conformation. The overall $\mathrm{P} \cdots \mathrm{P}$ geometry is $6.0(6)^{\circ}$ from the fully eclipsed conformation. This is the general geometry in known $\left(\mathrm{PR}_{3}\right)_{2} \mathrm{Fe}(\mathrm{CO})_{3}$ structures, e.g. trans-[(OMe) $\left.)_{3}\right]_{2} \mathrm{Fe}(\mathrm{CO})_{3}$ [15], trans$\left[\left(\mathrm{Me}_{2} \mathrm{~N}\right)_{3} \mathrm{P}\right]_{2} \mathrm{Fe}(\mathrm{CO})_{3} \quad[16]$ and trans- $\mathrm{P}\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{PFe}-$ $(\mathrm{CO})_{3} \mathrm{P}\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{P}$ [17]. The $\mathrm{P} \cdots \mathrm{P}$ distances in the trans $-\mathrm{P}-\mathrm{C}=\mathrm{C}-\mathrm{P}$ moiety have been calculated to be 4.519(4) and 4.543(4) \AA, respectively, which are probably too short to form a dimeric [(trans$\left.\left.\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}\right) \mathrm{Fe}(\mathrm{CO})_{3}\right]_{2}$. For two diphosphines to bridge two $\mathrm{Fe}(\mathrm{CO})_{3}$ groups in a dimeric form, a $\mathrm{P} \cdots \mathrm{P}$ distance of $7.539(3) \AA$ has been found in $\left\{\left[\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{PPh}_{2}\right] \mathrm{Fe}(\mathrm{CO})_{3}\right\}_{2}$ [1e]. The planar groups $\mathrm{P}(1)-\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{P}(3)$ and $\mathrm{P}(2)-\mathrm{C}(54)-\mathrm{C}(55)-\mathrm{P}(4)$ in 1 are cis to each other with an inter-planar angle of

Scheme 1.
$56.3(13)^{\circ}$. The torsional angle of $\mathrm{C}(28)-\mathrm{P}(1) \cdots$ $\mathrm{P}(2)-\mathrm{C}(54)$ is $6.5(5)^{\circ}$. Should these inter-planar constraints also exist in a cyclic oligomer, [(trans-$\left.\mathrm{P}-\mathrm{C}=\mathrm{C}-\mathrm{P}) \mathrm{Fe}(\mathrm{CO})_{3}\right]_{n}, n$ would be approximately 3 or 6 , taking molecular inter-planar angles of $120(180-60)$ or 60°, respectively. This static oligomer is unfavorable to the entropy consideration and to the fluxional behavior around tbp $\mathrm{Fe}(0)$ centers. Other structural parameters for the ligands are in the expected range for distances and angles involving P or C atoms.
The X-ray structure of 2 as shown in Fig. 2 reveals a tbp $\mathrm{Fe}(0)$ center with the chelating diphosphine occupying one axial and one equatorial site, consistent with a cis form. The $\mathrm{P}(1)-\mathrm{Fe}-\mathrm{P}(2)$ angle is $83.92(5)^{\circ}$, compared with $85.81(3)^{\circ}$ in $\left[0-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{PPh}_{2}\right)_{2}\right] \mathrm{Fe}(\mathrm{CO})_{3}$ $[18], 87.9(1)^{\circ}$ in $\left[\mathrm{OCCH}=\mathrm{CHC}(\mathrm{O}) \mathrm{O}\left(\mathrm{PPh}_{2}\right)_{2}\right] \mathrm{Fe}(\mathrm{CO})_{3}$ [2e] and $84.4(1)^{\circ}$ in $(\mathrm{CO})_{3} \mathrm{Fe}\left[\mu-\left(\mathrm{Ph}_{2} \mathrm{P}_{2} \mathrm{C}_{6} \mathrm{H}_{2}\left(\mathrm{PPh}_{2}\right)_{2}\right]-\right.$ $\mathrm{Fe}(\mathrm{CO})_{3}$ [19]. These diphosphines all have two cis PPh_{2} moieties linked by a partial double bond or an aromatic $\mathrm{C}-\mathrm{C}$ bond. The corresponding $\mathrm{Fe}(\mathrm{CO})_{3}$ complexes have a slightly distorted tbp around the $\mathrm{Fe}(0)$ center. In this series, 2 exhibits the smallest diphosphine bite angle, attributable to the shortest $\mathrm{C}-\mathrm{C}$ length (1.315(7) \AA). The $\mathrm{C}-\mathrm{C}$ bond lengths are $1.385(4) \AA$ in $\left[o-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{PPh}_{2}\right)_{2}\right] \mathrm{Fe}(\mathrm{CO})_{3}, 1.325(4) \AA$ in $\left[\mathrm{OCCH}=\mathrm{CHC}(\mathrm{O}) \mathrm{O}\left(\mathrm{PPh}_{2}\right)_{2}\right] \mathrm{Fe}(\mathrm{CO})_{3}$ and $1.412(7)$ \AA in $(\mathrm{CO})_{3} \mathrm{Fe}\left[\mu-\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{2}\left(\mathrm{PPh}_{2}\right)_{2}\right] \mathrm{Fe}(\mathrm{CO})_{3}$. The saturated counterpart (dppe) $\mathrm{Fe}(\mathrm{CO})_{3}$ shows a tremendously different geometry: its $\mathrm{P}-\mathrm{Fe}-\mathrm{P}$ angle is $84.1(1)^{\circ}$ [1b], seemingly the same as that in 2 , but its largest angle of $\mathrm{P}-\mathrm{Fe}-\mathrm{C}$ is only $143.3(2)^{\circ}$, significantly different from the axial $\mathrm{P}-\mathrm{Fe}-\mathrm{C}$ angle $172.5(2)^{\circ}$ in 2.

The application of the τ test $[20,21]$ has revealed that 2 and (dppe) $\mathrm{Fe}(\mathrm{CO})_{3}$ conform to different bonding geometries ($\tau=0$ defines a perfect square pyramid, sp , and $\tau=1$, a regular tbp). Using the largest angle around a penta-coordinate $\operatorname{Fe}(0)$ center as α and the second largest angle as β yields $\tau=(\alpha-\beta) / 60$. For 2 the geometry is pseudo-tbp: the τ value being 0.76 . For (dppe) $\mathrm{Fe}(\mathrm{CO})_{3}$, however it is pseudo-sp: the τ value being 0.35 .

In complex 2, $P(1)-C(16)-C(17)-P(2)$ is planar to within $0.02 \AA$ and Fe is displaced from the plane by $0.490(4) \AA$, forming an enveloped five-membered heterocyclic ring. Other structural parameters for the ligands are in the expected range for distances and angles involving \mathbf{P} or C atoms.

Supplementary material

For the two structures 1 and 2, listings of positional and anisotropic thermal parameters and complete bond distances and angles (13 pages); and listings of $F_{\mathrm{o}} / F_{\mathrm{c}}$ (36 pages) are available from author L.-K.L.

Acknowledgements

The partial financial support from the National Science Council, ROC, is acknowledged. We thank Mr Yuh-Sheng Wen for assistance with the single crystal X-ray diffraction data collection and Ms Li-Hong Tzeng for detection of ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra.

References

1 (a) F. A. Cotton, K. I. Hardcastle and G. A. Rusholme, J. Coord. Chem., 2 (1973) 217; (b) L. P. Battaglia, M. Nardelli, D. Delledonnc, C. Pclizzi, G. Prcdieri and G. P. Chiusoli, J. Organomet. Chem., 330 (1987) 101; (c)T. A. Manuel, Inorg. Chem., 2 (1963) 854; (d) M. Akhtar, P. D. Ellis, A. G. Macdiarmid and J. D. Odom, Inorg. Chem., 11 (1972) 2917; (e) L.-S. Luh, Master Thesis, Department of Chemistry, National Chung-Hsing University, Taichung, Taiwan, 1990.
2 R. B. King and C. A. Eggers, Inorg. Chim. Acta, 2 (1968) 33.

3 (a) W. K. Cullen and D. A. Harbourn, Can. J. Chem., 47 (1969) 3371; (b) T. S. A. Hor and L. T. Phang, J. Organomet. Chem., 381 (1990) 121; (c) J. P. Collman, R. G. Komoto and W. O. Siegl, J. Am. Chem. Soc., 95 (1972) 2389; (d) W. E. Carroll, F. A. Deeney, J. A. Delaney and F. J. Lalor, J. Chem. Soc., Dalion Trans., (1973) 718; (e) D. Fenske, Chem. Ber., 112 (1979) 363; (f) G. R. Langford, M. Akhtar, P. D. Ellis, A. G. Macdiarmid and J. D. Odom, Inorg. Chem., 14 (1975) 2937; (g) J. A. Claucas, R. H. Dawson, P. A. Dolby, M. M. Harding, K. Peason and A. K. Smith, J. Organomet. Chem., 311 (1986) 153; (h) J. J. Brunct, F. B. Kindcla and D. Neibecker, J. Organomet. Chem., 368 (1989) 209.

4 D. D. Perrin, W. L. F. Armarego and D. R. Perrin, Purification of Laboratory Chemicals, Pergamon, Oxford, 1981.
5 E. Weiss, K. Stark, J. E. Lancaster and H. D. Murdoch, Helv. Chem. Acta, 46 (1963) 288.
6 H. Fleckner, F.-W. Grevels and D. Hess, J. Am. Chem. Soc., 106 (1984) 2027.
7 P. Main, in G. M. Sheldrick, C. Krueger and R. Goddard (eds.), Crystallographic Computing 3: Data Collection, Structure Determination, Proteins and Database, Clarendon, Oxford, 1985, pp. 206-215.
8 E. J. Gabe, Y. Le Page and F. L. Lee, in G. M. Sheldrick, C. Krueger and R. Goddard (eds.), Crystallographic Computing 3: Data Collection, Structure Determination, Proteins and Database, Clarendon, Oxford, 1985, pp. 167-174.
9 J. A. Ibers and W. C. Hamilton, International Tables for X ray Crystallography, Vol. 4, Kynoch, Birmingham, UK, 1974, pp. 71-147.
10 L.-K. Liu, S. K. Yeh and C. C. Lin, Bull. Inst. Chem. Acad. Sin., 35 (1988) 45.
11 (a) P. Eilbracht, C. Hittinger, K. Kufferath, A. Schmitz and H.-D. Gilsing, Chem. Ber., 123 (1990) 1089; (b) P. Eilbracht, C. Hittinger and K. Kufferath, Chem. Ber., 123 (1990) 1071; (c) P. Eilbracht, C. Hittinger, K. Kufferath and G. Henkel, Chem. Ber., 123 (1990) 1079; (d) P.-J. Colson, M. FranckNeumann and M. Sedrati, Tetrahedron Lett., 30 (1989) 2393;
(e) A. Rubello and P. Vogel, Helv. Chim. Acta, 72 (1989) 158.

12 P. Binger, B. Biedenbach, R. Schneider and M. Regitz, Synthesis, (1989) 960.
13 (a) X. Meng, A. K. Bandyopadhyay, T. P. Fehlner and F. W. Grevels, J. Organomet. Chem., 394 (1990) 15; (b) W. Rohde, J. Fischer and A. D. Cian, J. Organomet. Chem., 393 (1990) C25; (c) E. J. Wucherer, M. Tasi, B. Hansert, A. K. Powell, M.-T. Garland, J.-F. Halet, J.-Y. Saillard and H. Vabrenkamp, Inorg. Chem., 28 (1989) 3564; (d) E. Delgado, J. Hein, J. C. Jeffery, A. L. Ratermann, F. G. A. Stone and L. J. Farrugia, J. Chem. Soc., Dalton Trans., (1987) 1191; (e) M. E. Garcia, J. C. Jeffery, P. Sherwood and F. G. A. Stone, J. Chem. Soc., Dalton Trans., (1987) 1209; (f) M. Green, J. A. K. Howard, A. P. James, A. N. de M. Jeffs, C. M. Nunn and F. G. A. Stone, J. Chem. Soc., Dalton Trans., (1986)

1697; (g) E. Delgado, J. Hein, J. C. Jeffery, A. L. Ratermann and F. G. A. Stone, J. Organomet. Chem., 307 (1986) C23.
14 J. A. Adeleke and L.-K. Liu, J. Chinese Chem. Soc., 39 (1992) 61.

15 D. Ginderow, Acta Crystallogr., Sect. B, 30 (1974) 2798.
16 A. H. Cowley, R. E. Davis, M. Lattman, M. Mckee and K. Remadna, J. Am. Chem. Soc., 101 (1979) 5090.
17 D. A. Allison, J. Clardy and J. G. Verkade, Inorg. Chem., 11 (1972) 2804.
18 J. T. Lin, Y. F. Lin, S. Y. Wang, J. S. Sun and S. K. Yeh, Bull. Inst. Chem., Acad. Sin., 36 (1989) 63.
19 G. Hogarth, J. Organomet. Chem., 406 (1991) 391.
20 D. K. Mills, Y. M. Hsiao, P. J. Farmer, E. V. Atnip, J. H. Reibenspies and M. Y. Darensbourg, J. Am. Chem. Soc., 113 (1991) 1421.

21 A. W. Addition, R. T. Nageswara, J. Reedijk, J. van Rijn and G. C. Verschoor, J. Chem. Soc., Dalton Trans., (1984) 1349.

[^0]: *Author to whom correspondence should be addressed.

[^1]: *An attempt to refine this position as an oxygen atom has resulted in unreasonably large thermal parameters ($U_{i j}=0.37$, $0.65,0.49,0.09,0.11$ and 0.15) even at 30% occupancy. This residual peak may be rationalized with a very minor co-crystallization of the corresponding phosphine oxide in the crystal.

