Contents lists available at ScienceDirect

Inorganica Chimica Acta

journal homepage: www.elsevier.com/locate/ica

Neighbouring metal induced oxidative addition at the iron centre amongst the iron–arylpyridylphosphine complexes

Olalere G. Adeyemi^{a,b,*}, Ling-Kang Liu^{a,c}

^a Department of Chemical Sciences, College of Natural Sciences, Redeemer's University, KM 46, Lagos-Ibadan Expressway, Redemption City, Nigeria
 ^b Institute of Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan, ROC
 ^c Department of Chemistry, National Taiwan University, Taipei 10767, Taiwan, ROC

Department of chemistry, Hational Talwar Oniversity, Taper Toror, Tal

ARTICLE INFO

Article history: Received 28 March 2008 Received in revised form 24 April 2008 Accepted 24 April 2008 Available online 6 May 2008

Keywords: Oxidative addition Hydrides Iron complexes Arylpyridylphosphines

ABSTRACT

Complexes of the type $(\eta^4\text{-}BuC_5H_5)Fe(CO)_2(\mathbf{P})$ ($\mathbf{P} = PPh_2Py$ **3**, PPhPy₂ **4**, PPy₃ **5**; Py = 2-pyridyl) were satisfactorily prepared. Upon treatment of **3** with M(CO)₃(EtCN)₃ (M = Mo, **6a**; W, **6b**), the pyridyl N-atom could be coordinated to the metal M, which then eliminates a CO ligand from the Fe-centre and induced an oxidative addition of the *endo*-C-H of ($\eta^4\text{-}BuC_5H_5$). This results in a bridged hydrido heterodimetallic complex [($\eta^5\text{-}BuC_5H_4$)Fe(CO)(μ -*P*,*N*-PPh_2Py)(μ -H)M(CO)₄] (M = Mo, **7a**, 81%; W, **7b**, 76%). The reaction of **4** or **5** with **6a,b** did not give the induced oxidative addition, although these complexes contain more than one pyridyl N-atom. The reaction of **4** with M(CO)₄(EtCN)₂ (M = Mo, **9a**; W, **9b**) produced heterodimetallic complexes [($\eta^4\text{-}BuC_5H_5$)Fe(CO)₂(μ -*P*:*N*,*N'*-PPhPy₂)M(CO)₄] (M = Mo, **10a**, 81%; W, **10b**, 83%). Treatment of **5** with **6a,b** gave [($\eta^4\text{-}BuC_5H_5$)Fe(CO)₂(μ -*P*:*N*,*N'*,*N''*-PPy₃)M(CO)₃] (M = Mo, **12a**, 96%; W, **12b**, 78%).

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The coordination chemistry of arylpyridylphosphines $PPh_{3-n}Py_n$ (n = 1-3; Py = 2-pyridyl) has largely developed. It is of particular interest because of the use of metal complexes containing such ligands in homogeneous catalysis, especially with a potential application in aqueous media [1]. The presence of a basic N-atom in each pendant pyridine in $PPh_{3-n}Py_n$ ligands distinguishes it from PPh₃ ligand. Hence, there is enhanced acid-base chemistry involved by the presence of pyridyl N-atom(s) and more coordination modes are available for $PPh_{3-n}Py_n$ as ligand than only the P-donor mode in PPh₃. For instance, PPh₂Py could behave in mononuclear complexes as a P-donor ligand and in dinuclear complexes as a P,N-bridging ligand with or without metal-metal bonding. PPhPy₂ and PPy₃ can bind further with a variety of coordination modes: through two pyridyl groups (N,N'; PPh₂Py and PPy₃), through three pyridyl groups (N,N',N'' PPy₃), and via the phosphorus and two pyridyl groups (*P*,*N*,*N*'; PPhPy₂ and PPy₃) [2].

Few years ago we reported the synthesis of (η^4 -BuC₅H₅)Fe-(CO)₂(PPh_{3-n}Py_n) (n = 1-3). A three-component reaction was utilized to produce the complexes. The hydride abstraction of *endo*- hydrogen of $(\eta^4-BuC_5H_5)Fe(CO)_2(PPh_{3-n}Py_n)$ were smoothly carried out by Lewis acid, $HBF_4 \cdot OEt_2$ to give $[(\eta^5-BuC_5H_4)Fe-(CO)_2(PPh_{3-n}Py_n)]^+[BF_4]^-$ (n = 1-2) [3].

In this paper, we incorporated the PPh_{3-n}Py_n ligands into complexes of the type $(\eta^4-BuC_5H_5)Fe(CO)_2(PPh_{3-n}Py_n)$ and studied the effect of the presence of the dangling pyridyl N-atom(s), known to be able to coordinate to a second metal centre [2]. In the case of the PPh₂Py complex which contains one pyridyl N-atom, a neighbouring Mo or W metal originally with three labile ligands could induce an oxidative addition on the Fe-centre. Similar chemistry could not be observed for the PPhPy₂ and PPy₃ analogues.

2. Experimental

2.1. General

All manipulations were performed under an atmosphere of prepurified nitrogen with standard Schlenk techniques and a doublefold vacuum line. All solvents were distilled from an appropriate drying agent [4]. For instance, THF, Et₂O and *n*-hexane were dried over sodium benzophenone ketal. CH₃CN and CH₃CH₂CN were dried over P₂O₅ and CaH₂ was used for CH₂Cl₂. Infrared spectra were recorded in CH₂Cl₂ using CaF₂ optics on a Perkin–Elmer (FT-IR) Paragon 1000 spectrophotometer. The ¹H NMR and ¹³C NMR spectra were obtained on Bruker AC200/AC300 spectrometers, with chemical shifts reported in δ values, downfield positive, relative to the residual solvent resonance of CDCl₃ (¹H δ 7.24, ¹³C

^{*} Corresponding author. Address: Department of Chemical Sciences, College of Natural Sciences, Redeemer's University, KM 46, Lagos-Ibadan Expressway, Redemption City, Nigeria. Tel.: +234 805 5516450.

E-mail addresses: drlereadeyemi@yahoo.com, adeyemio@run.edu.ng (O.G. Adeyemi).

^{0020-1693/\$ -} see front matter \odot 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.ica.2008.04.040

NMR δ 77.0). The $^{31}\mathrm{P}$ NMR spectra were obtained on Bruker AC200/ AC300 spectrometers using 85% H_3PO_4 as an external standard (δ 0.00). The melting points were determined on a Yanaco MPL melting-point apparatus and are uncorrected. Mass spectra were recorded on a VG 70 - 250S mass Spectrometer, using fast atomic bombardment technique, independently operated by the Institute of Chemistry, Academia Sinica. Chemical analysis was performed on a Perkin-Elmer 2400 CHN elemental analyzer, also independently operated by the Institute of Chemistry, Academia Sinica. Compounds 1, [5], 2, 3, 4, 5 [3], 6a, b, [6] and 9a, b [7] were prepared according to literature procedure. Ligands PPh₂Py [8a], PPhPy₂ [8b], PPy₃ [8c] were prepared using Li-Br exchange method in good yield. PC1₃, PPhC1₂, PPh₂C1, and o-C₅H₄NBr were obtained from commercial sources, distilled twice and degassed prior to use. Other reagents were obtained from commercial sources and used without further purification.

2.2. [(η⁵-BuC₅H₄)Fe(CO)(μ-P:N-PPh₂Py)(μ-H)Mo(CO)₄] **7a**

Compound **3** (0.30 g, 0.60 mmol) reacted with **6a** (0.30 g, 0.87 mmol) and were dissolved in dry THF (30 mL). The mixture was warmed up to ensure complete dissolution, to give orange solution. The mixture was then stirred at room temperature for 2 h to give a deep orange solution which was filtered via a pad of dry celite under nitrogen and washed with dry ether until colourless to give clear orange solution. The solvent was removed under vacuum. The ensuing orange solid was dissolved in a little quantity of CH_2C1_2 and mixed well with a little quantity of Al_2O_3 before being pack on a short Al_2O_3 column. The orange band was eluted with 1:8–1:5 EtOAc/*n*-hexane mixtures. Bright orange powder of 7**a** was collected after removing the solvent under vacuum.

Compound **7a**: yield: 0.33 g, 81%; mp: 111 °C (dec.); IR (CH₂Cl₂) v_{CO} 2016 (m), 1927 (vs), 1896 (s), 1879 (sh), 1830 (s) cm⁻¹; ³¹P NMR (CDCl₃) δ 86.12 (s); ¹H NMR (CDCl₃) δ 9.25 (b, 1H, Py), 6.93–7.68 (m, 13H, Ph and Py), 4.75, 4.66, 4.41, 4.30 (4 × b, 4 × 1H, Cp), 0.87–2.42 (m, 9H, Bu), -16.46 (d, 1H, μ -H, ²J_{PH} = 56 Hz); MS *m*/*z* 678 (M⁺+1). *Anal.* Calc. for C₃₁H₂₈FeMoNO₅P: C, 54.95; H, 4.14; N, 2.07. Found: C, 55.24; H, 4.85; N 1.77%.

2.3. $[(\eta^5 - BuC_5H_4)Fe(CO)(\mu - P:N - PPh_2Py)(\mu - H)W(CO)_4]$ **7b**

Compound **3** (0.30 g, 0.60 mmol) and **6b** (0.30 g, 0.69 mmol) were dissolved in dry THF (30 mL). The procedure is similar to that of the reaction of the molybdenum analogue except that the purification was carried out using a silica gel column. The orange solid was dissolved in a small quantity of CH_2C1_2 and mixed well with a small quantity of silica gel before being packed on top of a silica gel column, and then eluted with a EtOAc/*n*-hexane mixture. The orange powder of **7b** was collected after solvent removal under vacuum.

Compound **7b**: yield: 0.35 g, 76%, mp: 120 °C (dec.); IR (CH₂C1₂) v_{CO} 2009 (m), 1927 (s) 1886 (vs, b), 1827 (s) cm⁻¹; ³¹P NMR (CDC1₃) δ 88.6 (s); ¹H NMR (CDC1₃) δ 9.38 (b, 1H, Py), 6.90–7.48 (m, 13H, Ph and Py), 4.77, 4.72, 4.51, 4.31 (4 × b, 4 × 1H, Cp), 0.87–2.63 (m, 9H, Bu), -14.21 (d, 1H, μ -H, ² J_{PH} = 54 Hz); MS *m*/*z* 766 (M⁺+1). *Anal.* Calc. C₃₁H₂₈FeNO₅PW: C, 48.63; H, 3.66; N, 1.83. Found: C, 48.78; H, 3.98; N, 1.75%.

2.4. $[(\eta^4-BuC_5H_5)Fe(CO)_2(\mu-P:N,N'-PPhPy_2)Mo(CO)_4]$ **10a**

Compound **4** (0.10 g, 0.20 mmol) and **9a** (0.10 g, 0.31 mmol) were completely dissolved in dry THF (10 mL). The colour changed to blood red immediately. The mixture was allowed to stir for 1.5 h before filtration over a bed of dry celite under nitrogen. The solvent was removed under vacuum and the red solid re-crystallized twice

with ether/*n*-hexane mixture (1:1) and filtered to give a brick red solid of **10a**. Using $(C_7H_8)Mo(CO)_4$ (80 mg, 0.27 mmol, C_7H_8 = bicy-clo [2,2] hepta-2,5-diene) to replace **9a**, the result is the same with very similar yields.

Compound **10a**: yield: 0.114 g, 81%, mp: 138 °C (dec.); IR (CH₂C1₂) v_{CO} 1977 (s), 1919 (vs) 1816 (s, b) cm⁻¹; ³¹P NMR (CDC1₃) δ 95.5 (s); ¹H NMR (CDC1₃) δ 9.24 (b, 2H, Py), ⁴J_{PH} = 4.95 Hz, 6.53–8.30 (m, 11H, Ph and Py), 4.95 (b, 2H, -CH=CHCHBu-), 2.49 (b, 1H, -CH=CHCHBu-), 2.22 (b, 2H, -CH=CHCHBu-), 0.51–1.08 (m, 9H, Bu), MS (*m*/*z*) 497 (M⁺-Mo(CO)₄ + 1), 441 (M⁺-Mo(CO)₆+1). *Anal.* Calc. C₃₁H₂₇FeMo-N₂O₆P: C, 52.69; H, 3.82; N, 3.97. Found: C, 52.16; H, 4.43; N, 3.65%.

2.5. $[(\eta^4 - BuC_5H_5)Fe(CO)_2(\mu - P:N,N' - PPhPy_2)W(CO)_4]$ **10b**

The procedure is similar to that of the reaction of the molybdenum analogue with **4** (0.30 g, 0.60 mmol) and **9b** (0.30 g, 0.74 mmol) in dry THF (10 mL). Dark purple solid of **10b** was collected after the necessary work-up.

Compound **10b** : yield: 0.40 g, 83%; mp: 143 °C (dec.); IR (CH₂C1₂) v_{CO} 1977 (s), 1912 (vs) 1813 (s, b) cm⁻¹; ³¹P NMR (CDC1₃) δ 97.9 (s); ¹H NMR (CDC1₃) δ 9.30 (b, 2H, Py), 6.40–8.28 (m, 11H, Ph and Py), 4.98 (b, 2H, –CH=CHCHBu–), 2.52 (b, 1H, – CH=CHCHBu–), 2.29 (b, 2H, –CH=CHCHBu–), 0.56–1.06 (m, 9H, Bu), MS *m*/*z* 767 (M⁺–CO+1) 497, (M⁺–W(CO)₄+1). *Anal.* Calc. for C₃₁H₂₇FeN₂O₆PW: C, 46.85; H, 3.40; N, 3.53. Found: C, 46.32; H, 3.66; N, 3.33%.

2.6. $[(\eta^4 - BuC_5H_5)Fe(CO)_2(\mu - P:N,N'N'' - PPy_3)Mo(CO)_3]$ **12a**

Compound **5** (0.20 g, 0.40 mmol) and **6a** (0.20 g, 0.58 mmol) were completely dissolved in dry THF (20 mL). The mixture turned purple immediately. The reaction was left for 1 h before being filtered under nitrogen through a pad of dry celite and washed with dry ether until colourless. The solvent was removed under vacuum, resulting in a dark purple solid, which was dissolved in a small quantity of CH_2C1_2 and mixed completely with a small quantity of alumina. The CH_2C1_2 was removed under vacuum. The residue was packed on top of an alumina column and then eluted with a 3:1 EtOAc/n-hexane mixture. A deep purple solid **12a** was collected.

Compound **12a**: yield: 0.26 g, 96%; mp: 158 °C (dec.); IR (CH₂C1₂) v_{CO} 1981 (m), 1924 (m), 1905 (vs), 1788 (s, b) cm⁻¹; ³¹P NMR (CDC1₃) δ 75.4 (s); ¹H NMR (CDC1₃) δ 9.47 (b, 3H), 8.48 (b, 3H), 7.85 (b, 3H), 7.20 (b, 3H) for pyridine, 5.35 (b, 2H, – CH=CHCHBu–), 3.27 (b, 2H, –CH=CHCHBu–), 3.04 (b, 1H, – CH=CHCHBu–), 0.83–1.15 (m, 9H, Bu), MS *m*/*z* 498 (M⁺–Mo(CO)₃). *Anal.* Calc. C₂₉H₂₅FeMoN₃O₅P: C, 51.33; H, 3.69; N, 6.19. Found: C, 50.38; H, 3.95; N, 5.73%.

2.7. $[(\eta^4 - BuC_5H_5)Fe(CO)_2(\mu - P:N,N'N'' - PPy_3)W(CO)_3]$ **12b**

Compound **5** (0.20 g, 0.40 mmol) and **6b** (0.20 g, 0.46 mmol) were dissolved in dry THF (10 mL). Again the mixture immediately changed to purple colour. The reaction was then left for 2 h. Other procedure and work-up were similar to those used in the molybde-num analogue.

Compound **12b**: yield: 0.24 g, 78%; mp: 165 °C (dec.); IR $(CH_2C1_2) v_{CO}$ 1982 (m), 1926 (s), 1895 (vs), 1782 (s, b) cm⁻¹; ³¹P NMR (CDC1₃) δ 77.2 (s); ¹H NMR (CDC1₃) δ 9.48 (b, 3H) 8.50 (b, 3H), 7.88 (b, 3H), 7.15 (b, 3H) for pyridine, 5.38 (b, 2H, -CH=CHCHBu-), 3.31 (b, 2H, -CH=CHCHBu-), 3.06 (b, 1H, -CH=CHCHBu-), 0.82-1.24 (m, 9H, Bu); MS *m*/*z* 498 (M⁺-W(CO)₃). *Anal.* Calc. for C₂₉H₂₅FeN₃O₅PW: C, 45.43; H, 3.26; N, 5.43. Found: C, 44.98; H, 3.63; N, 5.00%.

3. Results and discussion

3.1. Preparation of arylpyridylphosphine ligands

The preparation of PPh_{3-n}Py_n (n = 1-3) followed the literature procedures but with a slight local modification [8a,8b,8c]. In our own experience, the preparation of PPhPy₂ gave a yield of 19.7% when the Grignard reagent on the pyridyl side is used for coupling with PPhCl₂. The preparation of PPhPy₂ gave a much better yield of 54.5% by using the Li–Br exchange reaction between *n*-BuLi and *o*-C₅H₄NBr, then the coupling reaction with PPhCl₂. The preparation of PPh_{3-n}Py_n (n = 1-3) in the present study involved the *n*-BuLi route and the yields were satisfactory (PPh₂Py, 82%; PPhPy₂, 55%; PPy₃, 62%). Pure PPy₃ was stored in the dry box in order to avoid oxidation of the phosphine to Py₃P=O.

3.2. $(\eta^4$ -BuC₅H₅)Fe(CO)₂(PPh_{3-n}Py_n) complexes

The arylpyridylphosphine ligands were reacted with a stoichiometric amount of $(\eta^5-C_5H_5)Fe(CO)_2I$ (1) and a slight excess amount of *n*-BuLi, using the same conditions as those used in the preparation of $(\eta^4-BuC_5H_5)Fe(CO)_2(PPh_3)$ (2) [3]. With one basic N-atom in each pendant pyridine, the arylpyridylphosphines reacted smoothly in the three-component reaction and gave similarly $(\eta^4-BuC_5H_5)Fe(CO)_2(PPh_{3-n}Py_n)$ in good yields of relevant complexes (**3**, n = 1, 68%; **4**, n = 2, 72%; **5**, n = 3, 74%). The chemistry followed the same pathway as in the PPh₃ case [3].

Scheme 1 shows the two stages in the three-component preparation of compounds **2–5**. The first drop of *n*-BuLi acted as a reducing agent [9] to initiate an electron-transfer chain catalysis [10] of the replacement of iodide on **1** by PPh_{3–n}Py_n with the P-donor mode. The cation $[(\eta^5-C_5H_5)Fe(CO)_2(PPh_{3-n}Py_n)^+]$ (n = 0-4) is instantaneously obtained in this reaction [11]. The stoichiometric *n*-BuLi then acts as a normal nucleophile to add on to the $(\eta^5-C_5H_5)$ -ring [12,13]. The electron rich $(\eta^5-C_5H_5)$ -ring of neutral **1** did not react with the electron rich [Bu⁻] anion in an ordinary way. In its cationic form, the $(\eta^5-C_5H_5)$ -ring is more likely activated as a Lewis-acid. $[(\eta^5-C_5H_5)Fe(CO)_2(PPh_{3-n}Py_n)^+]$ is much more electrophilic towards [Bu⁻] and the addition of [Bu⁻] anion on the $(\eta^5-C_5H_5)$ -ring is favoured [3].

3.3. Heterodimetallic complexes

In the main synthetic routes to organo-transition metal hydrides, the intramolecular oxidative addition is a key to the facile loss of hydrogen, for example, in $(\eta^4-C_5H_6)Fe(CO)_3$ which proceeds with an intermediate formation of $(\eta^5-C_5H_5)Fe(CO)_2H$, to finally yield $(\eta^5-C_5H_5)Fe(CO)_2]_2$ [14]. Yet, it is possible to independently synthesize $(\eta^5-C_5H_5)Fe(CO)_2H$ from the acidification of $(\eta^5-C_5H_5)Fe(CO)_2Na$. In the literature, it was not synthesized directly

Scheme 1.

Scheme 2.

from $(\eta^4-C_5H_6)Fe(CO)_3$ due to competing and/or consecutive reactions [15].

We discuss below a clean activation of the endo-C-H bond of 3 that was formally a $(\eta^4$ -cyclopentadiene)-Fe complex in PPh₂Py derivative. When **3** is reacted with $M(CO)_3(EtCN)_3$ (M = Mo, **6a**; W, **6b**) with the labile EtCN to be replaced by the pyridyl N-atom and others, the result is the hydridobridged heterodimetallic complex $[(\eta^5 - BuC_5H_4)Fe(CO)(\mu - P:N - PPh_2Py)(\mu - H)M(CO)_4]$ (M = Mo, **7a**, 81%; W, **7b**, 76%) with six-membered heterocyclic ring (Scheme 2).

The environments around Fe and M in **7a,b** changed substantially from the starting environments of **3** and **6a,b** as shown by the complete disappearance of all the original IR v_{CO} bands: the 1966 (s) cm^{-1} bands for the two CO ligands connected to Fe in **3**, the 1921 (s), 1801 (s) cm⁻¹ for the three CO ligands connected to Mo in **6a**, and the 1910 (s), 1793 (s) cm^{-1} for the three CO ligands connected to W in **6b**. The ¹H NMR data also indicated that the 2:1:2 integration ratios for the $(\eta^4$ -BuC₅H₅) fragment of **3** disappeared. Whereas a 4-peak, equal-intensity pattern characteristic of a $(\eta^5$ -BuC₅H₄) connected to a chiral metal centre appeared (*cf.* at δ 4.75, 4.66, 4.41, 4.30 in **7a** and at δ 4.77, 4.72, 4.51, 4.31 in **7b**). The doublet hydrides at δ –16.5 with ${}^{2}J_{PH}$ = 56 Hz in **7a** and at δ –14.2 with ²J_{PH} = 54 Hz in **7b** were observed in the ¹H NMR spectra. The molecular structure of **7a,b** was finalized on the basis of a similar compound $[(\eta^4-MeC_5H_4)Fe(CO)(\mu-P:P'-PPh_2CH_2PPh_2) (\mu$ -H)M(CO)₄] (M = Mo and W) [16] that was prepared from **6a,b** and a $[(\eta^4-MeC_5H_5)Fe(CO)_2(\eta^1-PPh_2CH_2PPh_2)$ with the dangling PPh₂ working the same way as the present pyridyl N-atom. The dppm analogue revealed very similar spectroscopic data in the IR and ¹H NMR spectra to those of **7a,b**, especially those of the hydride and $(\eta^5-MeC_5H_4)$ ligands connected to a chiral metal centre. Earlier, the origin of the hydride and additional CO on M-centre of $[(\eta^{5}-MeC_{5}H_{4})Fe(CO)(\mu-P:P'-PPh_{2}CH_{2}PPh_{2})(\mu-H)M(CO)_{4}] \quad (M = Mo$ and W) [16] was assigned as intramolecularly converted from the endo-H and the CO on Fe-centre, based on quantitative yield during synthesis. The hydride remained un-changed with the deuterium atoms of *d*-solvent when the reaction was performed in d^8 -THF. It is pertinent to state that, crystal suitable for X-ray crystallography for these compounds was attempted, but did not succeed.

Apparently in Scheme 2, it shows that, upon pyridyl N-atom ligation to the second metal (M = Mo, W), this neighbouring metal M induces an oxidative addition of the endo-C-H of cyclopentadiene on the initial Fe-centre, by taking away a CO ligand from the Fe-centre. Originally the Fe-centre in **3** is penta-coordinate. The loss of CO to M-centre results in a tetra-coordinate Fe(0), ready to activate the nearby endo C-H bond. Along the reaction coordinate, Fe(0) then changes to a hexa-coordinate Fe(II). At a later stage, the second metal M traps the newly formed Fe-H bond in the form of "3c–2e" M–H–Fe structure. The relative conformation with respect to Fe and M is not vet clear during the stage of the pyridyl N-atom ligation or during the stage of the CO-migration. The final conformation with respect to Fe and M is in a *syn*-form in 7a.b.

Scheme 3.

Scheme 4.

With two pyridyl N-atoms, **4** gave no hydride formation when it was reacted with **6a,b**. There was no spectroscopic evidence to support the structure $[(\eta^5-BuC_5H_4)Fe(CO)(\mu-P:N-PPhPy_2)(\mu-H)-M(CO)_4]$ (M = Mo, **8a**; W, **8b**) (Scheme 3).

When **4** was treated with $M(CO)_4(EtCN)_2$ (M = Mo, **9a**; W, **9b**) as shown in Scheme 3, the *N*,*N*'-chelated heterodimetallic complex was collected in high yield, i.e., $[(\eta^4-BuC_5H_5)Fe(CO)_2(\mu-P:N,N'-PPhPy_2)M(CO)_4]$ (M = Mo, **10a**, 81%; W, **10b**, 83%) (C₇H₈Mo(CO)₄ (C₇H₈ = bicyclo [2,2] hepta-2,5-diene) replacing **9a** gave the same result). Alternative route to the synthesis of **10a**, **b** was achieved when CO (1 atm) was bubbled into the solution of **4** and **6a,b** to produce variable yields of **10a,b**.

The reaction of **5** and **6a,b** shown in Scheme 4, did not give compound $[(\eta^5-BuC_5H_4)Fe(CO)(\mu-P:N-PPY_3)(\mu-H)M(CO)_4]$ (M = Mo, **11a**; W, **11b**), but the *N,N'N"*-coordinated heterodimetallic complex $[(\eta^4-BuC_5H_5)Fe(CO)_2(\mu-P:N,N',N''-PPY_3)M(CO)_3]$ (M = Mo, **12a**, 96%; W, **12b**, 78%).

The IR v_{CO} data for the two CO ligands connected to Fe exhibit a shift to higher wave numbers upon attachment of $M(CO)_3$ to the three pyridyl N-sites of PPy₃, i.e., from 1969, 1909 cm⁻¹ in **5** to 1981, 1924 cm⁻¹ in **12a** and 1982, 1926 cm⁻¹ in **12b**. Upon attachment of $M(CO)_4$ to the two pyridyl N-sites of PPhPy₂, similar shifts are found in **10a,b**, to 1977, 1919 cm⁻¹ and 1977, 1912 cm⁻¹, respectively, comparing with 1967, 1907 cm⁻¹ in **4**. It was observed that, complexes **10a,b** and **12a** were not excellently stable when expose to air. This could attributes to high values recorded for carbon in the elemental analysis results.

4. Conclusion

Organo-transition metal hydrides could be produced through the intramolecular oxidative addition reaction between *endo*-C-H of cyclopentadiene iron with one pyridyl N-atom and $M(CO)_3L_3$ (M = Mo, W; L = labile ligand). Yet, there is no hydride formation with complexes of more than one pyridyl N-atoms e.g. (η^4 -BuC₅H₅)Fe(CO)₂(PPhPy₂) and (η^4 -BuC₅H₅)Fe(CO)₂(PPy₃). The CO transfer from Fe to M shown in Scheme 2 is more likely to be the slow step than the pyridyl N-ligation to M, to the state, ready for oxidative addition of Fe(0) in the reaction coordinate. Apparently, in **4** and **5**, extra pyridyl N-atom(s) are involved to mask the migration of CO ligand from Fe-centre to M-centre. Accordingly, these two compounds do not exhibit an induced activation of the *endo*-C-H bond of the cyclopentadiene on Fe-centre.

Acknowledgement

Thanks are due to the National Science Council and Academia Sinica for the kind financial support.

References

- [1] (a) A. Steiner, D. Stalke, Organometallics 14 (1995) 2422;
 - (b) G.R. Newkome, Chem. Rev. 93 (1993) 2067;
 - (c) Y. Xie, C.L. Lee, Y. Yang, S.J. Rettig, B.R. James, Can. J. Chem. 70 (1992) 751; (d) P. Espinet, K. Soulantica, Coord. Chem. Rev. 193–195 (1999) 499–556.
- [2] (a) J.A. Casares, P. Espinet, R. Hernando, G. Ituobe, F. Villafane, Inorg. Chem. 36
- (1997) 44; (b) C. Abu-Gnium, I. Amer, J. Mol. Catal. 85 (1993) L275;
- (c) S. Gladiali, L. Pinna, C.G. Arena, E. Rotondo, F. Faraone, J. Mol. Catal. 66 (1991) 183:
- (d) R. Gregorzik, J. Wirbser, H. Vahrenkamp, Chem. Ber. 125 (1991) 1575;
- (e) F.R. Kenn, M.R. Snow, P.J. Stephenson, E.R.T. Tiekink, Inorg. Chem. 27 (1988) 2040;
- (f) J.P. Farr, M.M. Olmstead, F.E. Wood, A.L. Balch, J. Am. Chem Soc. 105 (1983) 792;
- (g) M.M. Olmstead, A. Maisonnet, J.P. Farr, A.L. Balch, Inorg. Chem. 20 (1981) 4060;

(h) K. Boggess, D.A. Zatko, J. Coord. Chem. 4 (1975) 217;

- (i) R.P. Schutte, S.J. Rettig, A.M. Joshi, B.R. James, Inorg. Chem. 36 (25) (1997) 5809.
- [3] (a) L.-K. Liu, L.-S. Luh, Organometallics 13 (1994) 2816;
- (b) L.-S. Luh, L.-K. Liu, Bull. Inst. Chem., Acad. Sin. 41 (1994) 39; (c) L.-K. Liu, L.-S. Luh, P.-C. Chao, Y-T.Y.-T. Fu, Bull. Inst. Chem., Acad. Sin. 42 (1995) 1;
- (d) L.-S. Luh, U.B. Eke, L.-K. Liu, Organometallics 14 (1995) 440;
 - (e) L.-S. Luh, L.-K. Liu, Organometallics 14 (1995) 1514;
- (f) O.G. Adeyemi, L.-K. Liu, Synth. React. Inorg. Met. Org. Chem. 31 (2001) 737.
- [4] D.D. Perrin, W.L.F. Armarego, D.R. Perrin, Purification of Laboratory Chemicals, Pergamon Press, Oxford, UK, 1981.
- [5] (a) B.D. Dombek, R.J. Angelici, Inorg. Chim. Acta 7 (1973) 345;
 (b) T.J. Meyer, E.C. Johnson, N. Winterton, Inorg. Chem. 10 (1971) 1673;
 (c)Inorg. Synth. 12 (1971) 36;
 (d)Inorg. Synth. 7 (1963) 110;
 - (e) R.B. King, M.B. Bisnette, J. Organomet. Chem. 2 (1964) 15.
- [6] G.J. Kubas, Inorg. Chem. 22 (1983) 692.
- [7] W. Strohmeier, G. Schonauer, Chem. Ber. 94 (1961) 1346.
- [8] (a) A. Maisonnet, J.P. Farr, M.M. Olmstead, C.T. Hunt, A.L. Balch, Inorg. Chem. 21 (1982) 3961;
 - (b) F.G. Mann, J. Watson, J. Org. Chem. 13 (1948) 502;
 - (c) K. Kurtev, D. Ribola, R.A. Jones, D.J. Cole-Hamilton, G. Wilkinson, J. Chem Soc., Dalton Trans. 56 (1980).

- [9] (a) L.-K. Liu, Y.H. Liao, U.B. Eke, Organometallics 18 (1999) 1154;
 (b) E.C. Ashby, T.N. Pham, B. Park, Tetrahedron Lett. 26 (1985) 4691;
 (c) H. Yamataka, N. Fujimura, Y. Kawafuji, T. Hanafusa, J. Am. Chem. Soc. 109 (1987) 4305;
 (d) P.M. Treichel, R.L. Shubkin, Inorg. Chem. 6 (1967) 1328;
 - (e) M.Y. Darensbourg, J. Organomet. Chem. 38 (1972) 132.
- [10] (a) D. Austruc, Electron Transfer and Radical Process in Transition Metal Chemistry, VCH, Weinheim, Germany, 1995;
- (b) O.G. Adeyemi, L. -K.L.-K. Liu, Inorg. Chim. Acta 360 (2007) 2464.
- [11] (a) L.-K. Liu, U.B. Eke, M.A. Mesubi, Organometallics 14 (1995) 3958;
 (b) S.L. Gipson, L.-K. Liu, R.U. Soliz, J. Organomet. Chem. 526 (1996) 393;
 (c) Z. Liu, S.L. Gipson, J. Organomet. Chem. 553 (1998) 269;
 (d) L.-K. Liu, Bull. Inst. Chem., Acad. Sin. 46 (1999) 31.
- [12] F.A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry, 5th ed., Wiley, New York, 1988. pp. 58-61.
- [13] M.M. Rahman, H.-Y. Liu, K. Eriks, A. Prock, W.P. Giering, Organometallics 8 (1989) 1. and references therein for quantitative analysis of ligand effects..
- [14] (a) C. Elschenbroich, A. Salzer, Organometallics, 2nd ed., VCH, Weinheim, Germany, 1992;
 - (b) A. Davison, M.L.H. Green, G. Wilkinson, J. Chem. Soc. (1961) 3172;
 (c) R.K. Kochlar, R. Pettit, J. Organomet. Chem. 6 (1966) 272;
 (d) T.H. Whitesides, J. Shelly, J. Organomet. Chem. 92 (1975) 215.
- [15] T.A. Shackleton, S.C. Mackie, S.B. Fergusson, L.J. Johnson, M.C. Baird,
- Organometallics 9 (1990) 2248. and relevant references therein.. [16] C.W. Liu, Y.-S. Wen, L.-K. Liu, Organometallics 16 (1997) 155.