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Abstract

In a two-level factorial experiment, we consider the orthogonal designs of
median-resolution which can be used to estimate the grand mean, all main
effects and certain classes of two-factor interactions involving at least one of few
specified factors, assuming that the other factorial effects are negligible. We use
two approaches to constructing the designs under consideration. The first one
is to judiciously assign the nonnegligible factorial effects to the columns of the
Kronecker product of two Hadamard matrices. The second one is to consider
the construction from the class of parallel-flats designs. In this article, we
propose some general classes of orthogonal and saturated designs that include
some existing orthogonal main-effect plans of asymmetric factorials as special
cases.

Key words: Fractional factorial designs; Hadamard matrices; Main-effect
plans; Screening experiments.

1 Introduction

During the initial stage of experimentation, the two-level fractional factorial designs
are commonly used to screen for the important factors. These influential factors
usually involve larger main effects and most of low order interactions, particularly two-
factor interactions. Therefore, from a practical viewpoint, it is required to construct a
design to estimate some specified factorial effects, which might be the grand mean, all
main effects and some two-factor interactions, assuming that the other factorial effects
are negligible. A discussion how this problem occurs in industrial product designs and
quality improvement processes, along with some examples, can be seen in Wu & Chen
(1992). They discussed a graph-aided method designed to meet this requirement and
suggested an approach for computer implementation of their method. Some of the



earliest published works using the similar approach were the linear graphs presented
in Taguchi (1959, 1960).

Greenfield (1976) tackled this problem from an algorithm point of view. His
algorithm was later generalized by Franklin & Bailey (1977). The methods discussed
so far only searched the desired designs within the class of the regular two-level
fractional factorial designs. So these methods can only yield the designs with the run
sizes that are powers of 2.

Srivastava & Li (1996) constructed the designs of median-resolution from a wider
class of designs called parallel-fitas designs (PFDs). They presented three classes of
orthogonal two-level factorial designs which can be used to estimate the grand mean,
all main effects and some specified two-factor interactions which can be classified into
the following three categories.

(i) Two-factor interactions within some subgroups of factors.
(ii) Two-factor interactions between some subgroups of factors.

(iii) Two-factor interactions within some subgroups of factors and two-factor
interactions between some subgroups of factors.

Note that some of designs in Srivastava & Li (1996) are not the designs with the
number of runs being a power of 2. Liao, Iyer & Vecchia (1996) further developed
an algorithm for construction of orthogonal PFDs for user-specified resolution. Inter-
estingly, their simulation study showed that the 48-run designs are plentiful in some
median-resolution designs where each two-factor interaction are forced to include at
least one of few specified factors. This motivates us to investigate the construction of
some specified median-resolution designs of saturated type.

In the next section, we introduce the notation used in the article; review the defi-
nitions of the Hadamard matrices and PFDs; and describe a necessary and sufficient
condition for a PFD to be orthogonal for any arbitrary set of factorial effects. In
section 3, we propose some classes of orthogonal and saturated designs of median-
resolution similar to the category (iii) described above. Finally, we point out that
some existing orthogonal main-effects plans are special cases of the designs obtained
in this paper.

2 Preliminaries

Let Fi, Fy, . .., F, denote the n two-level factors. Asis common practice, Fy, Fy, ..., F,
will also represent the main effects. The expression F7'F3? ... Ff" will represent a
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general factorial effect with e;s being 0 or 1. If e; is 1 then F; appears in the factorial
effect, otherwise it does not. The vector e = [ey, ..., e,] is called the defining vector
for the general factorial effect Fy'F5? ... F¢*. The defining vector e = [0,0,...,0] is
for the grand mean .

2.1 Linear model

Let 3 denote the vector of factorial effects that are not assumed to be zero. The
corresponding linear model for the observations from an experiment using a design
D of run size N may be written in the form

y=XpB+e (2.1)

where the error vector € consists of random variables which are assumed to have zero
means and are pairwise uncorrelated with a common variance 2. The entries of the
design matriz X are +1 or —1 which can be described as

X = [1]X1]X)]

where 1 is the NV x 1 column consisting of all +1 and corresponds to the grand mean;
X, is the N x n matrix, corresponding to the n main effects, whose (¢, j) entry is +1
or —1 according to whether factor j occurs at its high level or low level, respectively,
in treatment combination #; and the columns of X5, corresponding to the remaining
nonnegligible low-order interactions, are determined by the Schur product of the
columns of X ;. The Schur product of u = (uy,us,...,uy) and v = (vy,vs,...,UN)
is defined to be w = (ujvy,usvy,...,unyvy). The Schur product of the columns
corresponding to main effects F; and F} in X results in the column corresponding
to the two-factor interaction F;F; in X,. Similarly, the columns corresponding to
higher order interactions can be determined by the same way.

The design D is said to be orthogonal for B if the information matriz XX = NI,
where I is the identity matrix. Obviously, for the specified set of factorial effects 3,
the construction of an orthogonal design for the 3 is equivalent to obtaining a design
matrix whose columns are pairwise orthogonal.

2.2 Hadamard matrices

A square matrix of order d, Hy, is said to be a Hadamard matrix if its entries are
+1 or —1 provided that its columns are pairwise orthogonal; in other words,

HTH,=dI.



A necessary condition for the existence of a Hadamard matrix is its order must be 1,
2 or a multiple of 4. Also any Hadamard can be converted to the Hadamard matrix
whose first column or first row consists of all +1. For more details regarding the
construction of hadamard matrices and their applications refer to Heydayat & Wallis
(1978). In this article, we shall only use the fact that the Kronecker (direct) product
of two Hadamard matrices results in another Hadamard matrix.

2.3 Parallel-flats designs

A parallel-flats two-level design actually is the ‘union’ of several, say f, regular frac-
tional factorial designs. Let D; be the set consisting of the treatment combinations
t = (t1,to,...,t,) satisfying t = z; + Bv over GF[2], the Galois Field of order 2,
where the matrix B is n X k of rank &, the vector v ranges over all possible vectors
of length k (there are 2¥ such vectors) and z; are n x 1 vectors, fori = 1,2,...,f. A
PFD D determined by the (B, Z) is obtained by taking all the D; together, where
Z is the n x f matrix whose columns are 21, 29, ..., 25. Clearly, the PFD consists of
N = f x 2F runs.

For the PFD used for estimating the 3, the element of the information matrix
M = XTX of model (2.1) corresponding to the row indexed by the factorial effect

whose defining vector is e; = [e1y,...,e1,] and the column indexed by the factorial
effect whose defining vector is ey = [esy, . .., €2,] is m(eq, e3) given by
f
mier, e2) = [} (-1 @[3 (-1)@ren Y] (22)
=1 v

The following describing a necessary and sufficient condition for a PFD being
orthogonal for the B can be directly verified by (2.2). See Liao et al. (1996).

Lemma 2.1. Let a PFD D be determined by the (B, Z). Also let e; and e; be two
defining vectors for any two distinct factorial effects of 3. Then D is orthogonal for
B if and only if (e; + e3)B = 0 implies that the vector (e; + e3)Z consists of equal
frequency of 0 and 1, i.e. (e; + e3)Z is an orthogonal array of strength 1.

3 Orthogonal and saturated designs

In this section, we first consider the construction of some orthogonal and saturated
designs of median-resolution based on the Kronecker product of two Hadamard ma-
trices. Then we propose another class of designs constructed from PFDs whose rows
of the Z matrix are appropriately chosen from the rows of Hadamard matrices. It
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is interesting to note that the presented class of PFDs cannot be generated directly
from the Kronecker product of two Hadamard matrices.

Theorem 1. For Hadamard matrix H 4, there is an orthogonal and saturated design
with N = 2d for the following 3.

,3 = {,U,; Fl,FQ, N ,Fn} U {FlFJIF} S Gl}

Let the number of factors in the set G; be |G1| =n;. Thenn; <d—1and n+n; =
2d — 1.

Proof. Consider the following Kronecker product of two Hadamard matrices.

_ _ +1 +1| | +Hy +H,
H2d—Hd®H2—Hd®[+l —1J_[+Hd —Hd:l (3.1)
where the first column of the H 4 consists of all +1.
Interpret the Hadamard design H o4 of (3.1) as the design matrix in which
(a) the first column corresponds to the grand mean ;
(b) the (d + 1)** column corresponds to Fi;
(c) the 27, 37 .. (14 n;)* columns correspond to the main effects in G,

where ny <d —1;

(d) the (d + 2)*, (d+ 3)*, ..., (d+n,)™ columns correspond to the two-factor
interactions F1Fj for F; € Gy; and the remaining columns correspond to the
other main effects.

The above is feasible since for j = 2,3, ..., d, the Schur product of the j** and (d+1)*

columns equals to the (d + j)** column in the above construction.

Theorem 2. For Hadamard matrix H,, there exists an orthogonal and saturated
design with N = 4d for the following 3.
8= {/i; Fi,Fy, ..., Fn} U {F1F2} U {F]F}IFJ € Gl} U {FQE,IFJ € GQ}

Let |G| = n; and |G3| = ny. Without loss of generality, it is assumed that ny < n;.
Also let Glg = G1 N G2 and |G12| = N12. Then N9 S d— 1, ni S 2(d —-1- 'n,2) + n19
and n + ny +ng = 4d — 2.

Proof. Consider the following Kronecker product of two Hadamard matrices.

+1 +1 +1 +1 +Hy +Hq +Hg +Hy

B _ +1 41 -1 -1| | +Hy +H; —H,; —Hy
Hyy=H;®@Hy=H;® W1 -1 41 -1 || +Hy -Hy +H, —Hy (3.2)

+1 -1 -1 +1 +H; -H; —-H; +Hy



where the first column of the H4 consists of all +1.

Then we have the following observations on the above H 4.

(i) The Schur product of the j™ and (d + 1)** columns equals to the (d + j)*
column, for j =2,3,...,d.

(ii) The Schur product of the j** and (2d+ 1)** columns equals to the (2d + j)*
column, for 7 = 2,3,...,d.

(iii) The Schur product of the (d + 1)** and (2d + j)** columns equals to the
(3d + ) column, for j =1,2,3,...,d.

Based on the above observations, we successfully generate a desired orthogonal
design by interpreting the H 44 of (3.2) as the design matrix in which

(a) the 1% column corresponds to grand mean ;

(b) the (d + 1)** and (2d + 1)** columns correspond to the main effects F} and
F5, respectively; the (3d+1)*" column corresponds to the two-factor interaction
F1Fy;

(c) the 274, 37 . (1+mny3)* columns correspond to the main effects of factors
in Gyg, where njps < np, <d-—1;

(d) the (d+ 1+ 5)** and (2d+ 1+ 5)** columns, for j = 1,2, ...,n;s, correspond
to the two-factor interactions F1F; and FyFj, respectively, for F; € Gig;

(e) the (1 + ni2 + j)™ columns, for j = 1,2,...,(ny — niy), correspond to the
main effects of the factors in the set of (Go — G12) which consists of the factors in
G, but not in Gy; and the (2d+1+4n12+7)™ columns, for j = 1,2, ..., (no—ny3),
correspond to the two-factor interactions FyF; for Fj € (G2 — G12).

(f) If ng = d — 1, then this implies that G; = Gy = G2 (n; = nja = ny). Let
the remaining columns correspond to the other main effects. This completes
the construction.

(g) If no < d— 1, then this implies that (n; —n12) < 2(d — 1 — ny). We need to
consider the following two cases.

(gl) When (n; —ny3) < (d—1—ny). Let the (1+ny+ 7)™ and (d+1+ny+5)
columns, for j = 1,2,...,(n; — ny2), correspond to the main effects of F; and
the two-factor interactions Fi F}, respectively, for F; € (G — Gi2). Then let the
remaining columns correspond to the other main effects. This completes the
construction.



(g2) When (d — 1 —ny) < (n; —ng2) < 2(d — 1 —ny). Let the (1 + ny + j)*
and (d + 1 + ng + j)** columns, for j = 1,2,...,(d — 1 — ny), correspond to
the main effects of F; and the two-factor interactions FiF}, respectively, for
F; € (G1— G12); and the (2d+ 1+ ny+ j)* and (3d+ 1+ ny + 7)™ columns, for
j=12,...,(n1—n12)—(d—1—ny), correspond to the main effects of F; and the
two-factor interactions FiF}, respectively, for the remaining F; € (G; — Gi2).
Finally, let the remaining columns correspond to the other main effects. This
completes the construction.

Theorem 3. For Hadamard matrix Hy, there exists an orthogonal and saturated
design with N = 4d for the following 3.

B = {uwF\,F)F,... FYU{FF, F1Fs, F2F3, FiFoFs}
U{FlF'lej c Gl} U {FQFJIF] € G2}
Let |G1| = ny and |G3] = ny. Without loss of generality, it is assumed that ny < n;.

Also let G12 = Gl N GQ and ,G12I = N12. Then N9 < d— 2, ny S 2(d -2 ng) + N9
and n 4+ n; +ngy = 4d — 2.

Proof. This class of designs can be directly transformed from that of Theorem 2.
Construct the designs of Theorem 2 and let the 2"¢ column correspond to the main
effect of F3; and the (d+2)%, (2d+2)** and (3d+2)** columns correspond to the two-
factor interactions FyF3, FoF3 and the three-factor interaction F;F,F3, respectively.
This completes the construction.

Theorem 4. For Hadamard matrix H,4, there exists an orthogonal and saturated
design with N = 4d for the following 3.

8= {,u,; Fi, By F5, ... ,Fn} U {Flfrj,F] € Gl} U {FQE,IF] € GQ} U {FgF,IE; S G3}

where none of Fy, F; and Fj is in the sets of G, G5 and G3. Let |G| = ny, |Ga| = ns
and |G3| = ng. Also let G},3 = G1 UGy U G3 and |Gig;] = nigs. Then njyy < d —1
andn+ny+ng+n3=4d— 1.

Proof. Consider the Hadamard matrix H 44 of (3.2). In addition to the observations
of (i) and (ii) in Theorem 3, we need another observation on the H 44 given by

(iv) The Schur product of the j* and (3d+ 1) columns equals to the (3d+ ;)™
column, for 7 =2,3,...,d.

Based on these observations, we successfully generate a desired orthogonal design by
interpreting the H 44 of (3.2) as the design matrix in which

a) the 1% column corresponds to y;
f
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(b) the (d + 1), (2d + 1) and (3d + 1)** columns correspond to the main
effects Fy, Fy and F3, respectively;

(c) the 27 34 .. (14n}y,)™ columns correspond to the main effects of factors
in G793, Where njy; < d —1;

(d) for the k* column corresponding to main effect of F; € Gi, i =1,2,3, the
(i x d+1+k)* column simultaneously corresponds to the two-factor interaction
FF; for Fj € Gy

(e) the remaining columns correspond to the other main effects.

Theorem 5. For Hadamard matrix Hg4, there exists an orthogonal and saturated
PFD with N = 4d and f = d for the following 3.
B = {uwF,FyF, Fy,...,FoYy U{F1Fy, F1F3, FoF3, FyFo Fy}
U{F1F}|Fj € G1} U{F2Fj|F; € Ga} U{F3F}|F; € Gs}

Let lGl, =ni, ,GQI = Ng and IG;;I = ng. Also let G;:% = G1UG2UG3 and ,0;23' = 7’),;23.
Then niy;; <d—2and n+n; +ny+ng =4d - 5.

Proof. This class of designs cannot be directly generated from the Kronecker product
of two Hadamard matrices. We first obtain a PFD which is orthogonal and saturated
for the following set of factorial effects.
ﬁ* = {N;F17F2,F37F43"'aFn}U{FIFQ’F1F37F2F37F1F2F3}
U{F1F}|F; € G1} U{F;F}|F; € G2} U{F3F}|F; € Gs}

wheren=d+1and Gy =Gy =Gs = {Fy, Fs,..., Fy1}.

Recall that a PFD can be determined by the (B, Z), where B is n x k and Z is
n x f over GF[2]. For convenience, let

bl a;
b a

B = _2 and Z = ,2 \
b, a,

where the vectors b; and a; are of size 1 x k and 1 x f, respectively. Each pair of
(b;, a;) corresponds to factor ¢, for i = 1,2,...,n. By replacing +1 by 0 and —1 by
1 in the Hadamard matrices, we have the following

h{ ]
hi
Hy=| k|,

i ha ]
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where h; denotes the zero vector of size 1 x d over GF[2] and the last d—1 rows consist
of an orthogonal array of strength 2, briefly denoted by L44. The L4y indicates that
any 2 rows of the last d — 1 rows of the H; contain all possible 2 x 1 columns of (0, 0),
(0,1), (1,0) and (1,1) with the same frequency.

Then we consider the following PFD. For the B matrix, let b; = [1,0], b = [0, 1],
by =[1,1] and b; = [0,0], for i = 4,5,...,d+ 1. For the Z matrix, let a; = a; = hy,
a3 = h] and a; = h]_,, for ¢ = 4,5,...,d + 1. It can be easily verified, by using
Lemma 2.1, that the PFD is orthogonal for the 3.

Suppose X is the design matrix determined by the orthogonal PFD for the 38*.
Compare the elements between 3 and B*. Let the columns of X, corresponding to
those two-factor interactions of F1Fj, FyF;, F3F; which are in 8* but not in 3, be
changed to correspond to those main effects which are in 8 but not in 3*. This gives
the design matrix for the 8 and automatically an orthogonal and saturated design
for the 3.

4 Concluding remarks

It is obvious that the designs provided in the previous section are those of inter-effect
orthogonality for the hierarchical models discussed in Dey & Mukerjee (1999). As
proved in their paper, these designs are universally optimal, and hence in particular,
are A-optimal, D-optimal and E-optimal for estimating 3 within the class of designs
with the fixed N.

Since the treatment combinations of the PFDs satisfying the equation t = z;+ Bw,
by taking B to be the zero matrix, the PFDs can be regarded as a general class of
designs including all possible designs. Therefore, the classes of designs of Theorem
1 to Theorem 4 might also be constructed from the PFDs. But this can make the
presentation somewhat unnecessarily complicated. However, the classes of designs
provided in this paper should prove useful in practice and the study also sheds light
on how the orthogonal designs of median-resolution with run size N = 48 are plentiful,
pointed out in Liao et al. (1996). Note that it should be fruitful to investigate the
designs with the larger run size, e.g. N = 8d or N = 16d. But these larger run size
designs may not be practical since they can lead to an uneconomical experimentation.

Some existing orthogonal main-effect plans (OMEPs) of asymmetrical factorial
designs in Dey (1985) are special cases of the designs obtained in this paper. Let the
main effects of a 4-level factor and an 8-level factor be represented by the main effects
and all interactions involving 2 and 3 two-level pseduo-factors, respectively. Then the
OMEPs of 4-2%4—4 factorials are exactly the designs of Theorem 1 for n; = 1. Clearly,
both the OMEPs of 42 - 2497 and 43 - 244-10 factorials belong to the class of designs



of Theorem 4. Finally, the OMEPs of 8 - 244-8 factorials are the designs of Theorem
3 for n; = ny = 0 or of Theorem 5 for n; = ny = ng3 = 0.
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