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Abstract

A problem of allocation of measurements for a linear calibration process is consid-
ered in this article. It is assumed that a total of N measurements are made some of
which may be measurements on two distinct standards while the remaining measure-
ments are of m different unknown specimens. We discuss the optimal allocations of
the N measurements for the two standards and m unknown specimens based on the
A-optimal criterion applied to the asymptotic variances of the maximum likelihood
estimates of the true values of the m unknown specimens. Since the optimal allocation
depends on the true values of unknown specimens, the investigator is able to get a
locally or Bayesian A-optimal design based on some reasonable prior information on
the values of the unknown specimens. The situation that the measurement process is
budgeted within a given cost is also discussed.
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1 Introduction

A measurement process is typically subject to errors which are generally classified as sys-
tematic, or random, or a combination of both. The random errors are defined to have a zero
expected value, and the systematic errors are defined to be due to biases in the measure-
ment process. Typically, the instrument is considered to have a linear systematic error in
which the measured value of an unknown specimen {*“unknown” for short} is described by
the following model

w=a+Pr+¢ (1.1)

where o and 3 are parameters of the systematic error; v represents the true value of the
unknown being measured; and ¢; represents the random error.



Since “standards” have known true values, the errors associated with the measurement
process are observed whenever a standard is measured. Therefore, the known standards are
always used to estimate the parameters & and 8. The calibration problem for the estimation
procedure has been extensively studied. The main results can be seen in Fuller (1987} and
Brown (1993). Literature pertaining to calibration problems involving the allocation of the
measurements appears to begin with Pepper (1973). He discussed the measurement designs
for the process described by a simple additive model of the form

yi =7+ (b + )

where the quantity (b; + ;) represents random errors. b; arise from a random walk process
and 7; are identical and independent normal random variables with 0 mean and a common
constant variance. Perng and Tong (1977) considered the linear calibration model of (1.1).
They presented a sequential procedure, observing either standard or unknown at each time,
for the optimal allocation of the measurements for the interval estimation of the single one
unknown so that the probability of coverage is maximized. Liao, Taylor and Iyer (2000)
discussed optimum balanced designs for the additive model with correlated errors arising
from a first order autoregressive process (AR(1}).

In this paper, we simply consider the linear calibration model of (1.1} with random errors
being assumed to be identical and independent normal random variables with 0 mean and
a common variance. We discuss the optimal allocation of the N measurements for the two
standards and m unknowns when N is large. In the next section, we describe our problem.
In section 3, we present the maximum likelihood estimation for the parameters «, 5 and
the true values of the unknowns. In sections 4 and 5, we discuss some possible optimal
measurement designs for the problem treated in the paper. Finally, we extend the results to
the situation that a cost constraint is considered in the measurement process.

2 The problem

Let the number of measurements of the two distinct standards Sp and S be denoted by ap

and q,, respectively, and the number of measurements of unknown j is denoted by n;, for
T

j=1,2,- -, m. Thus, the total number of measurements N=ap+a +Z nj. Let po and
J=1

be the true values of the standards Sy and S), respectively. up and y, are certainly known.

Also let 7; denote the true value of unknown j, for j = 1,2,--,m. Define the indicator

functions &, and &, by
1 if § = 0 and observation ¢ is of the standard Sp
S.

67 = ¢ 1 if j =1 and observation i is of the standard 5
0 otherwise.



and
sV = { 1 ifje {1,2,---,m} and observation i is of unknown j

: 0 otherwise.

Then, the model described in (1.1) can be rewritten as

y,—fx+ﬁ(55°p,g+55‘p1+2(5 i)+ e, fori=1,2,. (2.1)
=1
The random errors ¢; are now assumed to be independent and arise from a N{0,¢?} distri-
bution. This paper is concerned with obtaining optimal allocation of ag, @1, 71, na, ..., 7y
such that the true values of unknowns 7,7, . . ., 7sn can be estimated most efficiently. In par-
ticular, we consider the A-optimality criterion according to which the average of asymptotic
variances of the MLEs of the true values is minimized.

3 MLEs and their asymptotic variances

‘The log-likelihood function corresponding to the observed data of (2.1) is given by

N
{= ——log(zﬂ*) - Eiog Z[y, BEP o + 67 g + Zd "’rj . (3.1)
j=1
After differentiating the log-likelihood function and equating the derivatives to zero, we have
the following likelihood estimators.

&=g- By (3.2)
LA N
20— 9o — ) + 367 (v — ) — )
.B — i=1 =1 (33)
ag(tio — )% + a1 (p1 — p)?
Ty = nga’ forj=1,2,...,m, (3.4)
where
1 al 5 ad 55’
THE= 6‘0 .+ il il.
Y a0+al(i=21 i Yi ; ya).
_ Bot + a1 p
ag + ay
and .
253’%‘
g ==—— forj=1,2,...,m
LY



Clearly, the MLE for 7; given in (3.4) is the well known classical estimator computed from
& of (3.2) and 3 of (3.3}, which only depend on the observed data of the standards.

Computing the second derivative of the log-likelihood function of {3.1) with respect to
parameters a, 3, 71, T2, ..., Tm and o2, and taking expectations, we can obtain the Fisher
information matrix. By using the standard properties of partitioned matrices (Graybill,
1983), we can invert the Fisher information and obtain the asymptotic covariance matrix for
the MLEs of =, 73, ..., T, which are of primary interest, as follows

Var(f) = {vi}, 3=1,2,....,m; k=1,2,....m,

where + = [f1, T2, ..., T and
171 aafpo—1i )% +a1 (g —75)° e o
F[n_,- + ey ifj =4k
'Ujk =
1 reo{po—74) (o —T o (i — 75} —7) ce
EE[ ! aaalk{#o—m]}z ? ] if j # k.

4 Locally A-optimal measurement designs

It is easy to see that an explicit expression for the trace of the covariance matrix of Var(7)
is given by
PR N Tl N I S {1 — )

1 no1
Trace(Var(7)) = = ‘
Zl n; a1 ;5 (Mo — #1)2 ag 5= (po — (1o — p1)?

m o2 m _ 2
Let 8 = ZM and &, = Z(pl—m— Also let by = ay/N, b = a;/N and

J=1 (JU'O - P’l) J:l (ﬂ’ﬂ - 1“‘1)2
r; =mn,/N, for j =1,2,..., m. For obtaining A-optimal measurement designs for estimation
of 7, T, ..., T, it i5 needed to minimize the following function
&
f(bﬂsblarlarh"'!Tm>eﬂ:|91) _1'+_+Z_ {41]

subject to the constraint
bo +bl + z?‘j = 1.
i=1
For given values of #y and &, by using Lagrange multipliers, we have the following optimal
allocation of the measurements for the standards and unknowns

Vo
Vi + v +m (4.2)

4

by =




. v
bl_x/f%+\/ﬁ+m (4.3)

and

forj=1,2,...,m. (4.4)

. 1
r. = ,
7 Vilg+ O +m

Since the optimal ratios of &5, b, r1, r3, - - -, 77, given above depend on the parameters 7,
Ty, ***, Tm, the problem of allocation cannot be solved unless one has some prior information
on these parameters.

Therefore, we first consider the following particular case, which will be called “uniform
scheme”, for obtaining a locally A-optimal measurement design. There is a possibility to
designate the two distinct standards such that the range of [i, 1] is large enough to cover
the values of the unknowns. Suppose the values of 7, 7, ..., 7, are discrete and uniformly
distributed among the range of [y, 1], i.e.

BB forj=1,2,...,m. (4.5)

EA m+1

Then substitute the values of (4.5) in #y and &, we have

m(2m + 1)

bo=61= 6(m +1)

Thus, for fixed m, the allocation ratios of (4.2}, {4.3) and (4.4) can be computed by substi-

tuting these @ and #,. Table 4.1 displays some locally A-optimal allocations based on the
uniform scheme.

Table 4.1. The locally A-optimal allocations based on the uniform scheme for 1 < m < 5.

m by b 7]

1 .250 .250 .500
2 .214 214 .286
3 .192 192 .205
4 176 .176 .162
5 .165 .165 134

To evaluate how good the above locally A-optimal design is in estimating the true values
of the unknowns. The following simulation study is carried out. It is sufficient to consider
the single unknown case, i.e. m = 1. The simulation results are quite similar for various



values of a and J. Hence, we only report the case that ug = 0, vy =1, & = .2, 3 = 4
and o = .1. Table 4.2 displays the average of 7; values and their standard deviation of 500
simulated experiments for each various values of , = .1, .3, .5, .7, .9 and N = 20, 40, 60, 80
and 100.

Table 4.2. The average of 7; values and their standard deviation of the simulation study.

s N=20 N=40 N=60 N =80 N =100
1 Average .0886  .0979 0987 1012 0990
S.D. 1383 .0935 0766 0669 0574
3 Average .2938 .2986 3004 3020 3014
S.D. 1217 0838 0696 0605 05621
.5 Average 4991 5013 5021 5028 0037
S.D. 1138 .0804 0673 0581 0505
7 Average .T043 .7030 7039 7037 7061
S.D. 1163 .0840 0701 0602 0530
9 Average 9095  .9047  .8056 9045 9085
S.D. 1286 .0938 0774 0663 0530

The results show that the performance improves significantly as N larger than 20. For
fixed N, the minimum standard deviation occurs at 7, = .5 since the used design is the locally
optimal design for 7 being .5. More importantly, the locally A-optimal design is likely to be
robust for various 7; values, i.e. for fixed NV, the standard deviations for various ; values do
not fluctuate drastically. Therefore, we suggest that the locally A-optimal allocation based
on the uniform scheme could be a practical choice if the investigator does not have any prior
knowledge on the true values of the unknowns.

5 Bayesian A-optimal measurement designs

It is well known that optimal designs for the non-linear models, such as model (2.1), depend
on the values of unknown parameters. In this section, instead of the locally optimal designs,
a prior distribution for 7, 7, ..., 7 will be incorporated into the optimum criterion of
(4.1} to yield a Bayesian optimal design. A general theory regarding the optimum Bayesian
designs refers to Atkinson and Donev (1992).

It is reasonably assumed that 7, 79, ..., 7, are independently and arise from the con-
tinuous uniform distribution over the range [ug, 1] Then we take expectation of (4.1) over

6



this prior distribution to have the following

Eoo o [flbo, by, 71,79, .., T, 00, 1)) = 3—bu+ga+z_

We thus have the following optimal allocation of the measurements for the standards and
unknowns

m/3
by =b] =
\/m/3—+— \/m/B +m
and ]
Ty = forj=1,2,...,m

Tm3 4+ /m/3+ m’

The following table displays the Bayesian A-optimal measurement designs for 1 < m < 5.

Table 5.1. The Bayesian A-optimal allocations based on the continuous uniform
distribution over the range [pg, 1], for 1 <m < 5.

m by b

1 .268 .268 .464
2 225 225 .27
3 .200 .200 .200
4 183 .183 .158
5 .170 .170 .132

It is of interest to note that the results of Table 4.1 and Table 5.1 are pretty close, but
they still show the common-sense property that the weights of the standards increase as the
prior information for the unknowns become more dispersed.

6 Concluding remarks

The results discussed in sections 4 and 5 can be easily extended to the case that a cost
constraint is considered in the measurement process. Suppose that each measurement of
the standards Sy and S; cost ¢y and c; dollars, respectively; that each measurement of any



unknown costs ¢ dollars; and that the total cost is budgeted within B dollars. Then the
problem is to find ag, a; and n;, for = 1,2,...,m, such that the objective function

g & 1
f(a0>a'1!n‘11n23 ey Mg, 90:91) == _1 + _U -+ z "y
Iy 5] P ny

is minimized and subject to the constraint

!
Cpttg + C1ay + CZ iy < B.
=l

Similarly, we have the following optimal allocation for the budget being exactly equal to B

dollars.
ag = Bve
Va (Ve + e + ma/c)’
. BV,
1= el + ool + D)
and

*_
n; =

B
VelVebo + el +my/e)

In practice, ag, a; and n; can be taken to be the largest integers less than or equal to ag, o]
and n; respectively. The optimal allocation still depends on the true values of 7y, 72, -+, 7.
Therefore, the investigator is able to get some locally or Bayvesian A-optimal measurement
design according to some reasonable prior information on the values of the unknowns.
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