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Partially Replicated Two-level
Fractional Factorial designs

C. T. Liao

Division of Biometry
Institute of Agronomy
National Taiwan University
Taipei, Taiwan

Abstract

In a two-level factorial experiment, we consider the designs with partial
duplication which permits the estimation of the grand mean, all main effects
and some specified nonnegligible two-factor interactions, assuming the other
effects are negligible. The best advantage of this kind of experiments is that
we are capable of conducting a lack-of-fit test based on pure error. In this
study, we consider the construction of the desired designs from the class of four
parallel-flats designs in which two parallel flats are identical. It is shown that
the designs obtained can have a very simple covariance structure and high D-
efficiency. A series of practical designs with run-size N = 16 is generated from
an algorithm proposed.

Key words: Parallel-flats designs; Fractional factorial designs; Pure error;
Lack-of-fit test.

1 Introduction

During the initial stages of experimentation, the unreplicated two-level fractional
factorial designs are widely used to estimate a specified set of factorial effects. The
effects of interest are often specified according to the knowledge of the investigator
and some practical principles of experimentation. See Wu and Hamada (2000). Since
each treatment combination is run once in this kind of experiments, it is customary
to obtain an experimental error estimate from the remaining degrees of freedom after
fitting the specified effects; or the small effects identified by the normal plotting. In
many situations, the investigator may not be sure whether this biased error estimate
is reliable used to test the lack-of-fit of the model. Therefore, it would be desirable
to construct an economical two-level factorial design with some duplicated treatment
combinations to meet the requirement that the pure error is estimable, and without
scarifying much the efficiency of the specified effects.



There were some two-level factorial designs with partial duplication presented in
Dykstra (1959). These designs were constructed from combining a full factorial or a
fraction of high resolution, at least resolution V, and a fraction of resolution III. Most
of these designs are not practical due to their large run size. An example was given in
Pigeon and McAllistar (1989) to show that it is sometimes possible to include partial
replication of the design, allowing for an estimate of pure error, without scarifying the
orthogonality of the main effects. This special design is actually a design combined
from three fractions belonging to a family of regular fractional factorial design with
the same defining relations, and one duplicate of the three fractions, i.e. the design
is just a particular case of the class of four parallel-flats designs (4-PFDs). This
motivates us to develop a systematic approach to construction the designs including
partial duplication, for estimating any specified set of effects from the 4-PFDs.

The construction of orthogonal designs for any arbitrary set of effects based on the
class of parallel-flats designs can be seen in Srivastava and Li (1966); and Liao, Iver
and Vecchica (1996). However, Chai and Liao (2001) investigate the construction of
nonorthogonal designs of user-specified resolution for the class of three parallel-flats
designs (3-PFDs). In this study, we modify the results of the paper to tackle our
problem of interest. In the next section, we introduce the notation used in the article
and review the definition of PFDs. Section 3 discusses the properties of 4-PFDs with
two identical parallel flats; and presents an algorithm based on the theorem given.
Finally, we generate a series of practical designs with V = 16 and compare their
efficiency with the computer-aided designs according to the DETMAX algorithm of
Mitchell (1974) in section 4.

2 Preliminaries

Let F. Fy. . ... I, denote the n two-level factors. Asis common practice, Fy, Fy..... F,
will also represent the main effects. The expression Fy'F3*... F¢ will represent a
general factorial effect with ¢; being 0 or 1. If ¢; is 1, then F; appears in the factorial
effect, otherwise it does not. The vector e = [ey, ..., €,] is called the defining vector
for the general factorial effect FY'Fy? ... F¢". The defining vector e = [0,0,---,0] is
for the grand mean pu. We will sometimes use the defining vectors to represent the
factorial effects for convenience. A treatment combination or run will be represented
by an n-tuple whose entries are 0 or 1 depending on whether the corresponding factor

occurs at the low level or at the high level, respectively.



2.1 PFDs

Single flat two-level designs are traditional 2"* fractional factorial designs defined
by appropriately chosen aliasing relations. These aliasing relations can be expressed
as linear equations over Galois Field of order 2, GF[2]. A single flat 2"~* fractional
factorial design D, defined by the alias matriz A and the coset representative vector
c; consists of all treatment combinations t = (¢;,%s,- - -, t,) which satisfy the equation

At:Cl‘

over GF[2], where A is a k X n matrix of rank k and ¢; is any k x 1 vector over GF|2].

A PFD is obtained by taking several, sayf, single flat designs D;,Ds,..., Dy to-
gether, where D; is determined by the alias matrix A and the coset representative
vector ¢;. Such a design consists of f x 277* treatment combinations. Let C be
the k x f coset indicator matriz whose columns are ¢;,¢y,...,¢s. Thus a PFD is
determined by the pair (A.C'). Note that ¢;.¢s. . ... cy are not necessarily distinct.

Suppose B is any n x (n — k) matrix of rank (n —k) over GF[2] such that AB = 0.
where 0 is a matrix with all elements equal to 0 over GF[2]. Also let z; = (21, zin)
be a particular solution of At = ¢;. Then D; consists of all ¢ satisfying

t=2z2,+ Bv

where v ranges over all possible vectors of length (n — k) over GF[2] (there are 2"*
such vectors). Hence a PFD can also be determined by the pair (B, Z), where Z is
the n x f matrix whose columns are z;, 29, --, z5. Certainly, 21,29, -+, 2y are not
necessarily distinct. In this study, we only focus on the case that f = 4 and two of
the four z;s are identical.

2.2 Linear model and nonsingular design

Let 3 denote the vector of factorial effects that are not assumed to be zero. The
corresponding linear model for the observations from an experiment using a design
D may be written in the form

y=XpB+e (2.1)
where the matrix X depends on the design D and is often called the design matriz.
The vector € consists of noise random variables which are assumed to have zero means
and are pairwise uncorrelated with a common variance ¢2. The design D is said to
be nonsingular for B if the information matriz X'X is a nonsingular matrix. The
Best Linear Unbiased Estimates (BLUEs) of all factorial effects of 3 are available
when the design D used is nonsingular. Particularly, the design is orthogonal for 3
if X’'X is a diagonal matrix. It is well known that orthogonal designs are optimal
(A-optimal, D-optimal and E-optimal) for estimating 3, but orthogonal designs may
not exist for every value of N.



3 Partially replicated 4-PFDs

The following proposition gives an expression for the general element of the informa-
tion matrix X'X of an arbitrary PFD.

Proposition 3.1. Let D be the PFD determined by the pair (B, Z), where B is a
n x (n — k) matrix of rank (n — k) and Z is a n x f matrix over GF[2]. Suppose the
linear model in (2.1) holds.

The element of the information matrix M = X’'X corresponding to the row
indexed by the factorial effect whose defining vector is e; = [e11,...,€1,] and the
column indexed by the factorial effect whose defining vector is ez = [ea1, ..., €a,] is
m(e1, ez) given by

d B
mer. e2) = (Y (~1)€renzy [y (—1)erren By (31)

=1 v

where v ranges over all 2"~* binary vectors of length (n — k). The exponents of (-1)
in both factors of (3.1) are computing using arithmetic modulo 2, but the sums of
the powers of (-1) are not performed modulo 2.

Let e = e; + ey, where e; and ey are the two defining vectors corresponding to
two different elements of 3. If e B = 0, then e; and e, are said to be in the same alias
set. Hence for the given B of rank (n — k), 2"~* distinct alias sets can be defined. If

eB # 0. the term Z(—l)(e”e?)Bv is precisely 0 so that m(e;, e;) = 0. This implies
v

that the information matrix can always be expressed as a block diagonal matrix given
by
M,
M,

M,

where each submatrix M corresponds to an alias set, j = 1.2--+,¢, and g = 2"
the number of distinct alias sets. Notice that a necessary condition ensures that a
PFD is nonsingular for 3 is that the maximum dimension of M is the number of
distinct parallel flats for all j. See Srivastava et al. (1984).

In this paper, we only consider the class of 4-PFDs with two identical paralle] flats.
We will call this class of 4-PFDs as 4-PFDRs hereinafter. The following theorem
illustrates the structure of information matrix for this particular class of designs.

Theorem 3.1. Let the 4-PFDR D be determined by the pair (B, Z), where Z =
(21, 22, 23, 24]. WLOG, also let z3 = z4. Then D is nonsingular for 8 if and only



if each block matrix M, of the information matrix must have one of the following
forms.

(i)
(i)

(iii)

M ; is a scalar. Then M, = N =4 x 2"7*,
M is a 2 x 2 matrix. Then m(e;,e;) =0, N/2 or —N/2 if e; # e,, otherwise
itis NV.

M ; is a 3 x 3 matrix. Then the elements of m(e;, e;) have exactly one 0 and
two (N/2)s: exactly one 0, one N/2 and one —N/2; or exactly one 0 and two
(=N/2)s, for e; # e3. The elements of m(e;, e3) = N, for e; = es.

Proof. There are exactly 3 distinct parallel flats included in a 4-PFDR. Hence, to
ensure a 4-PFDR to be nonsingular, the dimension for each M ; must be less than
or equal to 3. The results follow directly by proving the M s in (i), (ii) and (iii) are
nonsingular.

(i)
(i)

(iii)

Trivial.

Suppose e; and e; are the two distinct factorial effects in the alias set corre-
sponding to M ;. If the z; chosen such that ez; = (e; + e3)z; = 0, for all <.
then m(e;,ep) = N. If ez; = 1, for all 4, then m(e;, e;) = —N. For these two
cases, M ; is singular. For the remaining cases, M ; is nonsingular, i.e. the set
{ez),ez,, ez3, ez3} has exactly two Os and two 1s which makes m(e;, e;) = 0;
exactly one 1 and three Os which makes m(e;, es) = N/2; or one 0 and three 1s
which makes m(ej, e;) = —N/2.

Suppose e;, e; and es are the three distinct factorial effects in the alias set
corresponding to M ;. Let e] = e + e;, €5 = e; + e3 and e5 = ey + e3. Also
let the vectors w; = (efz1,e]22,€23,€2z3), for | = 1,2,3. M is singular,
if and only if m(e;.ey) = N or —N for some [ # !". So none of w; can be
(0,0,0,0) or (1.1,1.1). Note that e;5 + e;3 + e23 = 0. So the set {w;, w,, w3}
must be {(1,0.0,0),(0.1,0.0),(1.1,0,0)}; {(1,0,0,0),(1,0,1,1),(0,0,1,1)}; or
{(1.0,1,1),(0,1,1.1).(1.1.0,0)}. This completes the proof.

Theorem 3.1. leads to the following results.

(1)

From (ii), there are three choices of the nonsingular M ;s. It is easy to see that
the cases m(e;,e;) = £N/2 for e; # e, have “equivalent” information since
their eigenvalues are identical and each eigenvalue also has the same multiplicity.
The remaining case that m(e;,e;) = 0 for e; # e; is always desired to make
e; and e orthogonal. Similarly, the three choices of the nonsingular M ;s
described in (iii) have equivalent information. Every M ; has the same three
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eigenvalues NV, (1 — v/2/2)N and (1 + v/2/2)N. Therefore, there are at most
two nonisomorphic nonsingular 4-PFDRs when each alias set consists of 2 or 3
effects.

(2) If a 4-PFDR is orthogonal for 3. then the maximum number of elements in-
cluded in the B is N/2. i.e. none of its alias sets consists of three elements.
Also note that if a 4-PFDR is nonsingular for 3. then the maximum number of
elements included in the 3 is 3N/4.

We now revisit the example given in Pigeon and McAllister (1989). They listed
the following 16-run design: and claimed that the design is an orthogonal main-effect
plan, with two duplicates of 4 treatment combinations, for the case that the number
of factors n = 7.

Factors
Run F1 F2 F3 F4 F5 Fe F7
1 0 0 0 0 0 1 1
2 6 1 1 0 1 1 O
3 O 0 o 1 1 0 O
4 0 1 1 1 0 0 1
5) 1 0 1 0 0 0 O
6 1 1 0 0 1 0 1
7 1 0 1 1 1 1 1
8 1 1. 0 1 0 1 O
9 0 0 0O 0O 0 1 1
m o0 1 1 0 1 1 0
1 0 0 0 1 1 0 O
12 0 1 1 1 0 0 1
B3 1 1 0 1 1 1 1
4 1 0 1 1 0 1 O
15 1.1 0 0 0 0 O
%66 1 0 1 0 1 0 1

It can be verified that the above design is a 4-PFDR determined by the following
pair (A,C).

10000O00O0 0101
01000171 0 001
A=|0010011|,C=]0100
0001010 1010
0 0001QO0T1 1010



This 4-PFDR can also be determined by the following pair (B, Z).

00 [0 1 0 1
0 1 0001
0 1 0100
B=|11 Z=]1010
10 1010
11 0000
10 | 000 O]

It can be easily checked. using Theorem 3.1. that the design is orthogonal for 3 given

by

ﬁ:{/J';F17F27F37F45F57F6vF7}-

There are four alias sets given by G; = {u, F1}, Gy = {F2, F3}, G3 = {Fy, Fs} and
G4 = {F5, F7}. None of them consists of three nonzero effects. In particular, we can
obtain another 4-PFDR, determined by the same matrix B but a different matrix Z
given by

.-

Z =|z1,2,.0,0] =

OO == O
O O o O e
S OO OO OO
[evi¥ ev B s B an B e I oo B an}

)

which is also orthogonal for this 3.

According to Theorem 3.1, WLOG, we can simply consider the 4-PFDR with
Z = [z,22,0,0]. The following procedure shows us how to choose the appropriate
B, z; and 2, to obtain the highest efficiency 4-PFDRs for any given 3.

Step (1):

Step (2):

Let m; be the number of effects of alias set G;, i = 1,2,---,2"%. Choose the
matrix B such that all m; are less than or equal to 3 and as equal as possible. i.e.
m; < 3foralli:and 0 < [m;—m;| < 1fori # j. A complete search algorithm for
the eligible B can be obtained from directly modifying the algorithm presented
in Franklin and Bailey (1977). The Franklin-Bailey algorithm is to search for
all possible alias matrices A (equivalent to B), such that the maximum number
of m; is equal to 1.

Define a set of vectors R as
R = {e; + e | €1, ey are in an alias set consisting of exactly two effects.}.

Choose z; and 2 such that if e}, e, e} € R and e} + e} +- e = 0, then the set
{eiz1, el 25} has exactly two 1s; and the set {€}2;, €3z} has exactly one 1 and
one 0. For the remaining elements, say e*, the set {e*21, e*25} has exactly two
Is.



Step (3): For each alias set consisting of exactly 3 effects, say e, eq, e3, let €7 = e; +
ey, e; = e; + e3, e} = ey + e3; and the vectors w; = (€2, €/2;3), for | =
1.2.3. Reset z;. z, or both if necessary. such that the set {w;, ws. w3} is

{(1.1). (0. 1).(1.0)}.

The following example is given to illustrate the algorithm.

Example 3.1. For a 2! experiment, suppose 3 consists of the following factorial

effects:
pi by, Fo, Fs, By By Fy, F1Fs FYEy, By Fs, Fo Fy, FaFy.

In this case, there are 11 effects to be estimated. Any factorial effect that is not in
the span of the above effects is assumed to be zero. Note that the factorial effect
Fy has (1,0,0,0) as its defining vector, F} F3 has the vector (1,1,0,0) as its defining
vector, etc. We consider a 4-PFDR with NV = 16 for estimating the effects. Following
the algorithm, we have

Step (1): Choose matrix B given by

B(4x2)=

— O = O
_— O O

There are four alias sets Gy = {u, [y}, Gy = {F3, F1Fy, F3Fy}, G3 = {F3, F1F3, Fo Fy ).
and Gy = {Fy, F1 Fy, FyF3} determined by this B.

Step (2): From the alias set Gy,

Then, first choose z; = (1,1,1,0) and 2z, = (1,0,0,0).

Step (3): For the remaining three alias sets (G5, G5 and Gy, every alias set has the same
vectors set {e.e}. e5} which is {F\, FhF3Fy, F1F3F3F}. Thus, it is needed to
reset z; to be (1.1.1.1).

Consequently, the 4-PFDR determined by the matrix B of Step (1) and

ZAx4) =]z 2 0 0]=

— e ke
OO O
OO OO
O O OO

is a 16-run nonsingular design for the 3. It is interesting to point out that this 4-PFDR
is also orthogonal for the 3 only consisting of effects u, F1, Iy, F3, Fy, F1 Fy, F1F3, F1 Fy.
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4 Designs of user-specified resolution with N = 16

In this section, we report a series of 4-PFDRs with NV = 16 for the two-level factorial
experiments. Suppose that n factors are divided into p subgroups. where the it
subgroup has n, factors in it. Let p’ be the number of the subgroups of interest.
where p/ = porp’ = p—1. If p = p — 1. the factors in the p** subgroup are not
involved in the interactions.

We consider the following two classes of designs:

(I) interactions within the subgroups of interest.
(II) interactions which involve factors from different subgroups.

For convenience, the parameters and symbols are listed below.

n =number of the factors under consideration,

p =number of subgroups,

9’ = number of subgroups actually involved in the two-factor interactions,
n; =number of factors in the /** (i = 1,2.---.p) subgroup.

v =number of the nonzero effects to be estimated.

Let B = {i)l, Bg}, where l;i denotes the position number of nonzero entries of the
it column of B. Similarly, let 2, and %, denote the position number of nonzero
entries of the z; and z,, respectively. Recall that we set 23 = 24, = 0. For simplicity,
we also write B = {; Fy,-- -, Fos F1Fy, - FiF} as B = {0;1,--- ,m;1-2,--- ¢ j}.
For example, 8 = {u; Fy, Fy, F5; Fi Fo, F1F3} = {0:1,2,3;1-2,1- 3}.

For any given 3. there is no systematic construction method available in the liter-
ature for optimal partially replicated designs. However, a very natural method is to
augment a nonsingular design for the 3 with some duplicates of its fraction. Therefore,
to confirm how good the designs obtained from the class of 4-PFDRs are in estimating
the user-specified effects, we compare D-efficiency of our designs with those generated
by the following approach. For the given 3, we first generate a D-optimal design
by the OPTEX procedure (GENERATE CRITERION=D METHOD=DETMAX
ITER=100 N=12) of SAS/QC software. (SAS Institute, 2002). Here we choose
the DETMAX algorithm of Mitchell (1974) for searching the D-optimal designs with
N =12 runs using 100 iterations. Then we augment those 12 runs generated with 4
of them. The final design we choose is the one having the highest D-efficiency among
the (}2) = 495 competing choices. D-efficiency, D, for each design is defined by

XX

D.
N

Now we report the designs obtained and their D-efficiency for estimating 3, and

9



ponding Mitchell designs.

the D-efficiency of the corres

The factorial effects for the interactions
The 4-PFDRs obtained and their D, are

Class I: Interactions within subgroups.
within subgroups are listed in Table 1.

given in Table 2.

Table 1. Factorial effects for the interactions within subgroups.
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Table 2. D.(4-PFDR) and D.(MD).

Case B {Z1, 22} D.(4-PFDR) D.(MD)

1 {24.34) {1234, 14} 1.000 1.000

{24.34) {123.14} 0.828 0.823
3 {125.345) {135. 24} 0.871 0.890
4 {124.345) {134, 25} 0.794 0.809
5 {126.3456) {135,246} 1.000 0.958
6  {126.3456}  {135.246) 0.926 0.914
T {126,3456}  {135.246) 0.871 0.907
8  {246.356) {12413} 0.871 0.871
9 {256,3456} {135,246} 0.828 0.837
10 {1346,2356}  {1237,4567} 1.000 0.968
11 {1346,2356}  {1237,4567} 0.926 0.957
12 {1346,2356}  {1237,4567} 0.871 0.901
13 {1346.2356}  {1237,4567} 0.828 0.862
14 {1346.2356}  {1237,4567} 0.828 0.882
15 {13468.2356} {12378,45678} 0.871 0.928
16 {13468.2356} {12378.45678} 0.828 0.882
17 {13468,2356}  {12378,45678} 0.794 0.827
18 {1346.2356}  {145678.17} 0.794 0.849
19 {13468,23569} {123789,456789} 0.828 0.907
20 {35789.25680} {145679,1478} 0.794 0.855

For Case 1, we are interested in estimating the general mean y, all main effects
and all two-factor interactions within the subgroup {Fi. Fy, F3} for a 2% factorial
experimental design. Thus we haven =4, v=8,p=2,9' =1, (n1,n2) = (3,1). The
vector of the nonnegligible factorial effects 3 can be expressed as

B=1{0,1,2,3.4,1-2,1-3,2-3}.

One possible 4-PFDR for this 3 is the set of treatment combinations t satisfying
t =2z,+ Bwv. fori=1,2,3,4. where

B=|b b=

0 0
(1)(]? ,Z:[Zl Z9 Z3 24}:
11

—
—_— 0O O
OO OO
o O OO

and v ranges over all possible vectors of length 2 over GF[2]. This 4-PFDR is a 16-run
design and can be briefly described by B = {24, 34} and {2}, 25} = {1234, 14} since
z3 = z4 = 0. The rest of cases are similar to this case. The following is the class of
designs for the cases of interactions between subgroups.

11



Table 3. Factorial effects for the interactions between subgroups.

between subgroup are given in Table 3. The 4-PFDRs obtained and their D-efficiency

Class II: Interactions between subgroups. The factorial effects for the interactions
are given in Table 4.
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Table 4. D.(4-PFDR) and D.(MD).

Case B {Z1, 22) D.(4-PFDR) D.(MD)
1 {24.34} {1234.123} 1.000 1.000
2 {123,24} {23.3} 0.869 0.871
3 {12.13) {14.145} 1.000 0.965
1 {12.13) {14.145) 0.926 0.938
5 {12.13) {14,145} 0.871 0.917
6  {235.245} {123.12} 0.871 0.874
7 {235.245) {12.1} 0.794 0.794
8  {1235.345) {1346, 23} 0.926 0.949
9 {1235.345) {1346.235) 0.871 0.917
10 {1235.345) {1346.235} 0.828 0.876
11 {1235.345} {1346.235} 0.794 0.855
12 {235.245} {123.126} 0.828 0.857
13 {12357.345) {1346. 23} 0.871 0.916
14 {12357, 345} {1346, 235) 0.828 0.879
15 {12357,345} {1346, 235} 0.794 0.855
16 {2357.2457) {1237.126} 0.794 0.831
17 {12357.3458) {1346.23} 0.828 0.883
18 {12357.3458) {1346.23) 0.794 0.855
19 {123579.31580}  {1316.239} 0.794 0.861
20 {123579,345897°} {13461.239T} 0.794 0.891

tT denotes 10 .

Comments: (i) The 4-PFDRs obtained have high D-efficiency and their covariance
structure is known and very simple. This appealing property ensures an easier sta-
tistical inference and interpretation. Note that the covariance structure of Mitchell’s
designs cannot be characterized. (ii) Mitchell's DETMAX algorithm is a powerful
heuristic and very successful in finding D-optimal designs (see, Galil and Kiefer (1980)
and Welch (1984)). It is shown that D-efficiency of the most 4-PFDRs obtained is
close to that of the corresponding Mitchell’s designs. It is interesting to notice that
the 4-PFDRs obtained can be even better for some cases. This implies that the 4-
PFRDs obtained are close to the best possible. In particular, the class of 4-PFDRs
obviously is a good candidate for constructing partiallv replicated orthogonal designs
of user-specified resolution. In practice. the desired 4-PFDRs can be easily obtained
from the proposed algorithm in section 3.
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5 Concluding remarks

There are several publications on identifying the location effects and dispersion ef-
fects by using the unreplicated two-level factorial designs. See Box and Meyer (1986),
Bergman and Hynen (1997). Pan (1999). Liao and Iyer (2000) and McGrath and
Lin (2001). As discussed in Pan (1999). the nature of the unreplicated designs in-
evitably leads to the problem that the dispersion effects are confounded with the
location effects. Therefore. the dispersion effects cannot be identified efficiently. Pan
(1999) strongly suggested that the dispersion effects should be estimated from the
pure replicates; and illustrated that the dispersion effects can be identified using an
economical twice-replicated factional experiment. So it is believed that the 4-PFDRs
are practical and good choices for studying the location effects and the dispersion
effects simultaneously. This will be our further study in the future.
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