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Carbohydrate metabolism in rice during callus induction and
shoot regeneration induced by osmotic stress
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Abstract. We are interested in the cellular physiological events taking place during shoot regeneration in rice (Oryza
sativa L. cv. Tainan 5) callus induced by osmotic stress. At first, the sucrose and starch metabolisms in rice callus
were studied because carbohydrates are the main energy source in plant tissue culture. The results showed that fresh
weight, water content, cellular water, and osmotic potentials all decreased significantly in highly regenerable callus
which was induced on MS basal medium supplemented with 10 uM 2,4-D and 0.6 M mannitol (TN5-M,). Besides,
the starch and soluble sugar contents in TN5-M; callus were higher than in un-regenerable callus, induced on the
same medium without mannitol. Then, a sudden increase of glucose content was found in TN5-M, the first day
after the callus was transferred to regeneration medium. Simultaneously, the activities of sucrolytic enzymes, su-
crose synthase, and acid invertase were higher, and they may have responded to the increase of glucose content. It
is suggested that the sudden increase of glucose content may play an important role in shoot regeneration.

Keywords: Carbohydrate metabolism; Oryza sativa; Osmotic stress; Regeneration related factors; Shoot regeneration.
Abbreviations: 2,4-D, 2,4-dichlorophenoxyacetic acid; o-Amy, a-amylase; AGPase, ADP-glucose

pyrophosphorylase; Bound-IT, cell wall-bound form invertase; HEPES, N-[2-hydroxyethyl]-piperazine-N’-[2-
ethanesulfonic acid]; MS, Murashige and Skoog; RSus, rice sucrose synthase; Sol-IT, soluble form invertase; SPase,

starch phosphorylase.

Introduction

Plant cells possess totipotency, i.e., whole plants can
be regenerated from single cells by modulating culture
conditions (Reinert, 1959). The mechanisms of
totipotency, however, are little understood so far, and are
mainly discussed in relation to the concentration and ra-

- tio of phytohormones (Toonen and De Vries, 1996). It has
been reported that osmotic stress affects callus growth,
colony formation, shoot regeneration, somatic
embryogenesis, and the metabolism of specific com-
pounds (Maretzki et al., 1972; Klenovska, 1973). In previ-
ous studies, we discovered that shoot regeneration
frequency was dramatically different among rice callus in-
duced from different varieties (Lai and Liu, 1982).
Additionally, the shoot regeneration ability of un-regen-
erable callus could be promoted by osmotic stress treat-
ment (Lai and Liu, 1986; 1988; Liu and Lai, 1991). This
provides an alternative concept that the growth and dif-
ferentiation of cells could be modulated by the cellular
physiological water status. We are thus interested in what
cellular physiological events occurred during this process.
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Carbohydrate supplied to a medium not only acts as a
source of carbon and energy, but also as an osmotic agent
during organogenesis (Thorpe and Murashige, 1970;
Verma and Dougall, 1977). However, very little is known
about carbohydrate metabolism in cultured cells. Our pre-
liminary histological study showed that starch granules
increased in highly regenerable rice callus. After being
transferred to regeneration medium, the callus was able to
regenerate shoots in several days, and those starch gran-
ules disappeared (Liu and Lee, 1996). The correlation be-
tween starch metabolism and shoot formation was
reported in tobacco (Thorpe and Murashige, 1968; Thorpe
and Meier, 1974; Thorpe et al., 1986), sugarcane (Ho and
Vasil, 1983), and Begonia (Mangat et al., 1990). However,
there is no further information about carbohydrate metabo-
lism in rice callus. Moreover, no link between osmotic
stress, carbohydrate metabolism, and shoot regeneration
has been explored.

In this study, callus growth and cellular water status
under osmotic stress were measured. Then, the contents
of carbohydrates and the activities of enzymes related to
sucrose and starch metabolism during callus induction
and shoot regeneration were further examined, to clarify
the relationship between osmotic stress, carbohydrate
metabolism, and shoot regeneration in rice callus.
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Materials and Methods

Callus Induction and Shoot Regeneration

Rice (Oryza sativa L. cv. Tainan 5) was used in this
experiment. Primary callus was induced on 10 to 12-day-
old immature embryos on MSD  (TN5-M, MS basal me-
dium plus 10 pM 2,4-D) or MSD, M medium (TN5-M, MS
basal medium plus 10 uM 2,4-D and 0.6 M mannitol)
(Murashige and Skoog, 1962), according to our earlier ex-
periments (Lai and Liu, 1982; 1986; 1988). Mannitol was
used as the osmotic agent. After two weeks, callus was
transferred to MSK, N ' regeneration medium (MS basal
medium plus 20 uM kinetin and 10 pM NAA) for shoot
regeneration. All cultures were incubated at 25°C and kept
under continuous fluorescent light with an intensity of
approximately 70 pmol/m%/s. The results in this study were
obtained from three independent experiments. Shoot re-
generation was recorded after being transferred to regen-
eration medium for four weeks. The shoot regeneration
frequency was calculated as (callus number with shoot /
total callus number) x 100%.

Measurements of Callus Growth and Water Con-
tent

Callus induced on MSD; and MSD, M, medium was

collected each week for four weeks, except that the first
week was replaced by the 10-day-old callus. After being
transferred to regeneration medium, calluses were collected
each day or every two days for 13 days. These collected
calluses were fixed and stored in a -70°C freezer until analy-
sis or were weighed directly for their fresh weight. The
fresh weights were averaged from 10 calluses per
experiment. Dry weights were obtained from these
weighed calluses that were dried in a ventilating oven at
80°C for 24 h. Water content was determined from (Fresh
weight—Dry weight / Fresh weight) x 100% (Lai and Liu,
1988).

Water Status Measurements with a Psychrometer

Water potential (y,) and osmotic potential (y,) were
measured using a Wescor Dew Point Microvoltmeter HR-
33T and a Wescor thermocouple hygometer sample cham-
ber C-52. Our preliminary experiments showed that leaving
samples in the sealed chamber for 30 min equilibration be-
fore measurement was sufficient with rice callus. The
method used to measure y, and v, in callus was as de-
scribed earlier (Brown and Thorpe, 1980). The pressure
potential () was calculated from y/, and subtracting .

Measurement of Carbohydrate Contents

Starch and the content of soluble sugars, sucrose and
glucose, were measured in this study. The collected
calluses, dried by lyophilization, were homogenized and
extracted twice with 80% (v/v) hot ethanol. The superna-
tant and the pellet were used for soluble sugar and starch
measurement, respectively, following the partially modified
methods of Ou-Lee and Setter (1985).

Botanical Bulletin of Academia Sinica, Vol. 43, 2002

The glucose oxidase-peroxidase coupled reaction
method was used. For glucose content, PGO reagent (50
mM HEPES, 3 mg/ml p-hydroxybenzoic acid, 0.1 mg/ml 4-
aminoantipyrrine, 0.5 units peroxidase, and 1.5 units glu-
cose oxidase, pH 7.0) was added to the ethanol-extracted
supernatant and kept at room temperature for 15 min. The
absorption value of 490 nm was obtained by Microplate
autoreader (EL311, Bio-TEK). Glucose was used as the
standard. For sucrose content, ethanol-extracted sample
was hydrolyzed by invertase (14504, Sigma) before PGO
reagent was added. These procedures are credible
enough for analysis (Ou-Lee and Setter, 1985; Cheng,
1994). The absorption value included both sucrose and
glucose, so the glucose content should be subtracted first
from this determination to obtain sucrose content. For
starch content, the pellet was re-suspended with H,O and
boiled for 20 min. The amyloglucosidase buffer (90 mM
sodium acetate, 0.1% NaN,, and 25 units
amyloglucosidase, pH 4.6) was added and incubated at
37°C for 40 h. The supernatant was collected after cen-
trifugation and quantified as mentioned above for glucose
content measurement.

Extraction and Assays of Carbohydrate Metabo-
lism Related Enzymes '

The collected callus was homogenized and extracted
with 10 mM Tris-HCI buffer (pH 7.0) containing 5 mM B-
mercaptoethanol, 0.1 mM EDTA, and 1% polyvinyl
polypyrrolidone. After centrifugation, the supernatant
was dialyzed with Tris-HCI buffer by a microdialysis sys-
tem (1200MD, BRL) at 4°C overnight, and used for all re-
lated enzymes assays except Bound-IT. In the present
study, both Sol-IT and RSus activities were assayed by
the Somogyi-Nelson method, described by Liou (1990).
Besides this, three starch metabolism-related enzymes,

Fresh weight, mg/ callus

Days in callus induction medium

Figure 1. Changes of fresh weight in rice callus induced from
MSD,, medium without (TN5-M,) or with 0.6 M mannitol
(TN5-M,) treatment. Vertical bars represent standard errors (n
= 3). Only those standard bars larger than the symbol are
shown.
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Figure 2. Shoot regeneration of TN5 rice callus induced from
MSD,, medium without (a) or with 0.6M mannitol (b)
treatment. The fourteenth-day callus was transferred to

MSK, N, regeneration medium for 28 days.

AGPase, SPase, and o-Amy, were determined by the meth-
ods of Chang (1995). The pellet was washed and its cell
wall bound proteins eluted with 10 mM Tris-HCl buffer con-
taining 1 M NaCl. The supernatant was collected after
centrifugation and used to determine Bound-IT activity by
the Somogyi-Nelson method (Liou, 1990). The protein con-
tent was determined by the Coomassie blue dye-binding
method described by Bradford (1976) using bovine serum
albumin as the standard.

Results

Callus Growth and Shoot Regeneration

The fresh weight of the callus induced from MSD,  me-
dium increased greatly following culture inoculation;
however, it increased less when the callus was induced
from MSD, M, medium (Figure 1). After being transferred
to regeneration medium, no shoots were regenerated in
TN5-M,, but the regeneration frequency increased to ap-
proximately 75% in TN5-M,. In general, green spots
emerged between the third and sixth day, and shoots could
be seen between the tenth and thirteenth day (Figure 2).

Shoot Regeneration and Water Relations

To clarify the correlation between callus growth, shoot
regeneration, and cellular water status, the cellular water
content values V¥ , and W were measured. First, the 8 of
MSD10 medium was about -0.6 MPa. However, it decreased
to approximately -2.5 MPa of MSD, M medium. The cal-
lus induced from MSD, M, medium possessed lower wa-

ter content (Figure 3a) and greater (more negative) ¥/, and
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. (Figure 4a-b) than that from MSD,, medium during cal-
lus induction. These results suggested that callus growth
was inhibited by high osmotic stress. On the other hand,
water content increased; y,, and y, of TN5-M, callus
quickly became less negative after being transferred to re-
generation medium; and there was no significant differ-
ence with TN5-M, from the seventh to the ninth day on
regeneration medium (Figure 3b; Figure 4d-e). The v,
values, however, were higher, both during callus induc-
tion and shoot regeneration, in TN5-M; than in TN5-M,
callus (Figure 4c, f).

Carbohydrate Contents during Callus Induction
and Shoot Regeneration

Changes of sucrose, glucose, and starch contents dur-
ing callus induction and shoot regeneration were
determined. The results showed that sucrose, glucose,
and starch contents were all higher at the initial stage of
culture and maintained higher contents longer in TN5-M
than in TN5-M, callus (Figure 5a-c). After being trans-
ferred to regeneration medium, glucose content increased
prominently during the first day in TN5-M; callus. Al-
though glucose levels decreased quickly after three days,
higher levels were maintained in TN5-M, than in TN5-M,
callus on regeneration medium (Figure 5e). The phenom-
enon of higher glucose content in TN5-M, callus was very
consistent in several repeat experiments. On the other
hand, both sucrose and starch contents were not signifi-
cantly different between TN5-M, and TN5-M, callus dur-
ing shoot regeneration (Figure 5d, f).

Activities of Enzymes for Sucrose and Starch
Metabolism

In this experiment, three sucrolytic enzymes—RSus,
Sol-IT, and Bound-IT—as well as three starch metabolism-
related enzymes—AGPase, SPase, and o-Amy—were
analyzed. We could hardly detect the soluble form of al-
kaline invertase in our whole study (data not shown).
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Figure 3. Changes of water content in rice callus at callus in-
duction (a) and shoot regeneration stages (b). The arrow indi-
cates the timing of callus transferred to MSK, N, regeneration
medium. The symbols in this figure are the same as those in

Figure 1. Vertical bars represent standard errors (n = 3).
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Figure 4. Changes of cellular water, osmotic, and pressure po-
tentials in rice callus at callus induction (a, b, ¢) and shoot re-
generation stages (d, e, f). The arrows in figure a, b, ¢, indicate
the timing of callus transferred to MSK, N regeneration
medium. The symbols in this figure are the same as those in
Figure 1. Vertical bars represent standard errors (n = 3). Only
those standard bars larger than the symbol are shown.
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Figure 5. Changes of sucrose, glucose, and starch contents in
rice callus at callus induction (a, b, ¢) and shoot regeneration
stages (d, e, f). The arrows in figure a, b, ¢, indicate the timing
of callus transferred to MSK, )N regeneration medium. The
symbols'in this figure are the same as those in Figure 1. Verti-
cal bars represent standard errors (n = 3). Only those standard
bars larger than the symbol are shown.
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During callus induction, higher Bound-IT and lower o--Amy
activities in TN5-M were observed than in TN5-M, cal-
lus (Figure 6b; Figure 7c). However, the Sol-IT, RSus,
AGPase, and SPase activities in TN5-M, callus were all
similar to those activities in TNS-M0 callus (Figure 6; Fig-
ure 7). On the other hand, higher activities of sucrolytic
or starch metabolism-related enzymes, except for oi-Amy
in TN5-M, callus, were observed after transfer to regen-
eration medium (Figure 6; Figure 7). The o-Amy activity
of TN5-M, didn’t show higher activity until the seventh
day in the medium (Figure 7f). These results suggest that
highly regenerable rice callus possesses a more efficient
carbohydrate metabolism. Whether this has any meaning
for callus growth and shoot regeneration needs further
study.

Discussion

The shoot regeneration frequency of rice callus could
be promoted significantly by highly osmotic stress treat-
ment (Figure 2; Jain et al., 1996; Lai and Liu, 1986; 1988)
as has been reported for other species (Binzel et al., 1996;
Brown et al., 1989; Etienne et al., 1993; Lou and Kako, 1994;
Roberts, 1991). Besides, we found that theosmgciuc siress-
induced callus TN5-M, always maintained a lower water
content , and . (Figure 3; Figure 4). We found that
Ai-Nan-Tsao 39, a highly regenerable variety without os-
motic stress, also had a lower water content ¥, and ¥,
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Figure 6. Changes of specific activity of sucrolytic enzymes
in rice callus at callus induction (a, b, ¢) and shoot regeneration
stages (d, e, f). One unit of activity represents 1 ug reducing
sugars produced per mg protein, per min. The arrows in figure
a, b, ¢, indicate the timing of callus transferred to MSK, N
regeneration medium. The symbols in this figure are the same
as those in Figure 1. Vertical bars represent standard errors (n=3).
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Figure 7. Changes of specific activity of starch metabolism-
related enzymes in rice callus at callus induction (a, b, ¢) and
shoot regeneration stages (d, e, f). One unit of AGPase and
SPase activity represents 1 pM Pi produced per mg protein,
per min. One unit of a-Amy activity represents 1 OD pro-
duced per mg protein, per min. The arrows in figure a, b, c,
indicate the timing of callus transferred to MSK, N,  regenera-
tion medium. The symbols in this figure are the same as those
in Figure 1. Vertical bars represent standard errors (n = 3). Only
those standard bars larger than the symbol are shown.

than the non-regenerable callus TN5-M, (Huang and Liu,
unpublished data), thus suggesting that shoot regenera-
tion is closely related to cellular water status. This os-
motic requirement for embryogenesis or organogenesis has
also been found in carrot (Wetherell, 1984) and tobacco
(Brown et al., 1979; Brown and Thorpe, 1980). Furthermore,
the timing of the osmotic requirement in highly regener-
able callus precedes the changes of several physiological
reactions and callus morphology. It is speculated that os-
motic effect might be correlated to physiological change
and shoot regeneration. Brown and Thorpe (1980) have
postulated that osmotic adjustment is probably involved
in the initiation of organogenesis in tobacco callus.
However, the mechanisms of shoot regeneration induced
by osmotic stress are still little understood although the
increased efficiency of isolated mitochondria for energy
production has been observed (Brown and Thorpe, 1982).

Higher soluble sugar and starch contents were accu-
mulated in TN5-M, during callus induction. They de-
creased at the early regeneration stage, and a sudden
increase in glucose content was found at the same time
(Figure 5). The phenomenon of starch accumulation and
disappearance were also observed in tobacco (Thorpe and
Murashige, 1968), sugarcane (Ho and Vasil, 1983), carrot
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(Wurtele et al., 1988), and Begonia (Mangat et al., 1990).
The accumulated starch is probably an energy reserve for
the high energy process of organogenesis and provides
for osmotic agents in the form of free soluble sugars
(Thorpe et al., 1986). In our experiments, we found a higher
correlation between regeneration ability and glucose con-
tent at the initiation stage of shoot regeneration in rice
callus (Figure 5e). In our other rice regeneration system,
induced by a high concentration of sucrose, we found a
similar tendency (Huang and Liu, unpublished data). We,
therefore, postulate that the glucose content at the early
regeneration stage may be an indicator for shoot regen-
eration in rice callus. To our knowledge, ours is the first
study to mention this relationship. We also conclude here
that the starch content at the callus induction stage and
the glucose content at the initial stage of shoot regenera-
tion were both important “regeneration-related factors” in
rice callus (Huang and Liu, 1998).

During callus induction in TN5-M,, thehigher soluble
sugar content might be due to the increase of sucrose up-
take from the medium resulting from Bound-IT activity
(Figure 6b). However, the higher starch content was
mainly caused by lower degradation through o-Amy
(Figure 7c). Increased IT activity promoted by osmotic or
water stress has been reported in pea (Castrillo, 1992),
sweet potato (Wang et al., 1999), and Craterostigma
plantagineum (Schwall et al., 1995). In addition, higher
soluble sugars probably inhibit o.-Amy expression and
cause starch accumulation. It has been demonstrated that
the expression of o-Amy is enhanced by sugar deficit and
reduced by sugar supply in rice suspension cells (Yu et
al., 1991; 1992). Moreover, the mechanism of starch accu-
mulation in rice callus is different than in tobacco and car-
rot systems. The accumulated starch in these two culture
systems is caused by increasing biosynthesis (Thorpe and
Meier, 1974; Wurtele et al., 1988).

According to the enzyme analysis, it is suggested that
the higher glucose content during the first day on regen-
eration medium in TN5-M; callus results from reserved su-
crose and starch degradation and uptake from culture
medium. Bound-IT is responsible for sucrose uptake from
the medium either at the callus induction or shoot regen-
eration stages. It is closely related to cellular carbohy-
drate content and the subsequent shoot regeneration.
Further research is necessary to clarify the roles of Bound-
IT and the following metabolism of glucose in rice during
callus induction and shoot regeneration.
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