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Abstract

In this article, we present a test for dispersion e�ects from the unreplicated 2n−k regular fractional fac-
torial designs. The proposed procedure for the identi�cation of dispersion e�ects uses the log-likelihood
ratio based on normal errors. Some practical examples are given to illustrate the applicability of the
test. It is shown that the proposed method is a useful and economical means for the identi�cation of
dispersion e�ects at the screening stage of experiments. Comparing the power of our method with the
two methods published in the literature, we suggest that our test might be more sensitive for identifying
the dispersion e�ects. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Traditionally, factorial screening experiments have been used in product design,
process design and other industrial applications for the estimation of location e�ects.
One of the important contributions of Taguchi was to point out that product quality
is highly related to the variability of the quality characteristics. What is required of
a process is to produce products whose quality characteristics are tightly distributed
around a speci�ed target value. Therefore, Taguchi applied experimental designs to
study dispersion e�ects in addition to the location e�ects. A useful discussion of
Taguchi’s method can be seen in the review edited by Nair (1992).
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Methods for identifying dispersion e�ects usually involve replicated factorial ex-
periments. See Taguchi (1987), Nair and Pregibon (1988), and Ghosh and Lagergren
(1990). Although such designs have proved to be e�ective in practice, they can lead
to very costly experiments in certain situations as the required number of runs can
be large. Therefore, the study of the identi�cation of dispersion e�ects from the un-
replicated factorial designs has been drawing more attention due to its economical
cost of experimentation.
Most approaches for the identi�cation of dispersion e�ects from the unreplicated

factorial designs involve two separate steps. The �rst step is to apply the normal
probability plot or the half-normal probability plot to identify unusually large location
e�ects. The second step is to compute a statistic that is relevant to the dispersion
e�ect, mostly based on the residuals of the linear model �tting those identi�ed for
larger location e�ects. Then one popular method is to apply the normal plot again
on the computed statistic to identify unusually large dispersion e�ects. See Glejser
(1969), Daniel (1976), Hoaglin et al. (1983), Box and Meyer (1986), and Davidian
and Carroll (1987). However, as this is a subjective model-discrimination method,
one would have to trust “eye-balling”. Another method is to develop a signi�cance
test. Wang (1989) and Bergman and Hynen (1997) provided two di�erent tests based
on the �2 and F distributions, respectively. Bergman and Hynen (1997) also gave a
good review of these methods.
In the next section, we review the methods of Wang (1989) and Bergman and

Hynen (1997), and present our method. In Section 3, we illustrate these three methods
by some real data sets. In Section 4, we report a comparison of the power among
the methods.

2. Dispersion e�ects

Let y be the N×1 response vector of a regular N=2n−k fractional factorial design
with an N × N orthogonal design matrix X of −1s and +1s in column vectors
x0; x1; x2; : : : ; xN . Column x0 corresponds to the grand mean with all elements equal
to +1; the remaining columns correspond to the all possibly estimated main e�ects
and interactions from this design. The observations y1; y2; : : : ; yN are assumed to be
realizations of uncorrelated normally distributed random variables.
The sparsity principle frequently used in practice suggests that in most cases only

a few factorial e�ects are non-negligible. Therefore, one can use the normal plotting
techniques provided by Daniel (1959, 1976) to identify these unusually large location
e�ects. As pointed out by Bergman and Hynen (1997), the use of the normal plot
for the identi�cation of location e�ects is still legitimate even though the dispersion
of the response may vary with the levels of some factors in the experiment.
We will use the term “active” location e�ects to denote these unusually large

location e�ects identi�ed by the normal plot. Bergman and Hynen (1997) �tted
separate regression models to two sets of data associated with the high and low levels
of column i in the X matrix, respectively. Let ei+ and ei− denote the corresponding
residuals vectors. They suggested the following statistic for the dispersion e�ect of
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column i in the X matrix.

DBHi =
N=2∑
u=1

e2ui+

/ N=2∑
u=1

e2ui−: (1)

Bergman and Hynen (1977) claimed that DBHi has an F(m;m) distribution assuming
that the active location e�ects are responsible for all of the true location e�ects. The
degree of freedom m is equal to N=2− q− 1 if column i is not associated with the
active location e�ects; otherwise it is N=2− q, where q is the number of the active
location e�ects.
Most methods for the identi�cation of dispersion e�ects from unreplicated designs

are not based on the residuals of eui, but on the residuals, say ru, u=1; 2; : : : ; N , which
are computed from the model �tting the active location e�ects for all observations.
Wang (1989) presented the following statistics representing the dispersion e�ect of
column i in the X matrix:

DWi =
1
2N

(
Si+ − Si−
Si+ + Si−

)2
; (2)

where Si+ =
∑

u : xui=+1 r
2
u and Si− =

∑
u : xui=−1 r

2
u . Wang (1989) claimed that D

W
i is

approximately �2(1) for a large sample size N .
It is assumed that ru are normal errors with expectation E(ru)=0. Then we consider

the null hypothesis as

H0: Var(ru) = �2

and alternative hypothesis as

H1: Var(ru) =
{
�2i+ ifxui =+1;
�2i− ifxui =−1

for u=1; 2; : : : ; N . Let L̂0 and L̂1 denote the likelihood evaluated at MLE of H0 and
H1, respectively. It is well known that −2 log(L̂0=L̂1) approximates to �2(1) for large
N . This approximation is often quite accurate for small values of N (see, McCullagh
and Nelder, 1989). We thus use this statistics to represent the dispersion e�ect of
column i. Let the notation DLi denote this −2 log(L̂0=L̂1); then it is easy to verify that

DLi =
N
2
log
(
1
4Si+

+
1
4Si−

)
: (3)

3. Examples

Some practical examples will be given to illustrate the three tests described in the
previous section. For each example, the p-value will be calculated for the dispersion
e�ect of each column i in the X matrix.

Example 1. Montgomery (1997 p. 391) gave an example to illustrate the method
of Box and Meyer (1986) for identifying dispersion e�ects. A quality-improvement
team used a 26−2 fractional factorial design to study the injection molding process
so that the excessive shrinkage can be reduced. There are six factors, A–F , involved
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Table 1
Design matrix, response, and confounding structure up to two-factor interactions for the injection
molding experiment.

AB AC AE AD BD BF AF
u A B CE C BE BC E D EF CE ABD CD ACD F DE yu

1 − − + − + + − − + + − + − − + 6
2 + − − − − + + − − + + + + − − 10
3 − + − − + − + − + − + + − + − 32
4 + + + − − − − − − − − + + + + 60
5 − − + + − − + − + + − − + + − 4
6 + − − + + − − − − + + − − + + 15
7 − + − + − + − − + − + − + − + 26
8 + + + + + + + − − − − − − − − 60
9 − − + − + + − + − − + − + + − 8
10 + − − − − + + + + − − − − + + 12
11 − + − − + − + + − + − − + − + 34
12 + + + − − − − + + + + − − − − 60
13 − − + + − − + + − − + + − − + 16
14 + − − + + − − + + − − + + − − 5
15 − + − + − + − + − + − + − + − 37
16 + + + + + + + + + + + + + + + 52

Table 2
Statistics for identifying dispersion e�ects from the injection molding experiment.

i DBHi df p-value (DBHi ) DWi p-value (DWi ) DLi p-value (DLi )

1 0.68 (5,5) 0.69 0.29 0.60 0.28 0.59
2 0.83 (5,5) 0.84 0.07 0.79 0.07 0.79
3 1.11 (5,5) 0.91 0.02 0.88 0.02 0.88
4 35.75 (4,4) 0.004 5.62 0.02 9.70 0.002
5 0.64 (4,4) 0.68 0.30 0.58 0.31 0.57
6 0.78 (4,4) 0.81 0.10 0.75 0.10 0.75
7 0.96 (4,4) 0.97 0.002 0.96 0.002 0.96
8 2.86 (4,4) 0.33 0.47 0.49 0.48 0.48
9 1.56 (4,4) 0.68 0.98 0.75 0.98 0.75
10 0.68 (4,4) 0.72 0.07 0.79 0.07 0.79
11 3.05 (4,4) 0.31 0.52 0.47 0.54 0.46
12 2.40 (4,4) 0.41 0.51 0.48 0.52 0.47
13 1.26 (4,4) 0.83 0.04 0.84 0.04 0.84
14 0.60 (4,4) 0.64 0.18 0.67 0.18 0.67
15 3.59 (4,4) 0.24 0.94 0.33 1.01 0.31

in this experiment. Table 1 shows the design matrix, the confounding structure and
in the last column, the data.

It can be shown, by normal plot (see Montgomery, 1997, p. 393), that factorial
e�ects associated with A, B and AB are considered as active location e�ects. The com-
puted DBHi , D

W
i and D

L
i values and the respective p-values are displayed in Table 2.
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Table 3
Design matrix, response, and confounding structure up to two-factor interactions for the welding strength experiment.

−BC EF −AF
−FG −EI −FI AI GI CE CF DI −BE −BF −EG HI
−AE −CI −DF −DE BI DG AD AB BG BH −FH −EH −CH −CD BD

u −D H G A DH −F −E GH AH AG −AC −CG I B −C yu

1 − − − − + + + + + + − − − − + 43.7
2 + − − − − − − + + + + + + − − 40.2
3 − + − − − + + − − + + + − + − 42.4
4 + + − − + − − − − + − − + + + 44.7
5 − − + − + − + − + − + − + + − 42.4
6 + − + − − + − − + − − + − + + 45.9
7 − + + − − − + + − − − + + − + 42.2
8 + + + − + + − + − − + − − − − 40.6
9 − − − + + + − + − − − + + + − 42.4
10 + − − + − − + + − − + − − + + 45.5
11 − + − + − + − − + − + − + − + 43.6
12 + + − + + − + − + − − + − − − 40.6
13 − − + + + − − − − + + + − − + 44.0
14 + − + + − + + − − + − − + − − 40.2
15 − + + + − − − + + + − − − + − 42.5
16 + + + + + + + + + + + + + + + 46.5



296 C.T. Liao / Computational Statistics & Data Analysis 33 (2000) 291–298

Table 4
Statistics for identifying the dispersion e�ects from the welding strength experiment

i DBHi df p-value (DBHi ) DWi p-value (DWi ) DLi p-value (DLi )

1 0.97 (6,6) 0.97 0.002 0.96 0.002 0.96
2 15.93 (5,5) 0.009 4.13 0.04 5.82 0.01
3 4.38 (5,5) 0.13 1.89 0.17 2.16 0.14
4 0.34 (5,5) 0.26 0.92 0.34 0.97 0.32
5 1.37 (5,5) 0.74 0.11 0.74 0.11 0.74
6 0.21 (5,5) 0.11 1.39 0.24 1.52 0.22
7 2.18 (5,5) 0.41 0.80 0.37 0.84 0.36
8 2.20 (5,5) 0.41 0.78 0.38 0.82 0.37
9 0.20 (5,5) 0.10 1.41 0.23 1.55 0.21
10 1.15 (5,5) 0.88 0.03 0.86 0.03 0.86
11 0.34 (5,5) 0.27 0.90 0.34 0.95 0.33
12 4.21 (5,5) 0.14 1.92 0.17 2.20 0.14
13 20.96 (5,5) 0.005 3.60 0.06 4.79 0.03
14 0.82 (6,6) 0.82 0.07 0.79 0.07 0.79
15 21.72 (6,6) 0.002 6.44 0.01 13.07 0.0003

Even though it shows that DBHi and DLi are more distinct, these three tests give
fairly similar results that point out C as the potential dispersion e�ect.

Example 2. A welding strength experiment was carried out by the National Railway
Corporation in Japan (see Taguchi and Wu, 1980). There are nine factors, A–I ,
considered in a 29−5 fractional factorial experiment. Table 3 shows the design matrix,
the confounding structure and in the last column, the data.

It can be shown, by normal plotting technique (see Box and Meyer, 1986), that
the location factorial e�ects associated with B and C are the active location e�ects.
The computed DBHi , D

W
i and D

L
i values and the respective p-values are given below

(Table 4).
These three tests give fairly similar results that point out C, H , and I as the likely

dispersion e�ects. It can be seen that DLi and D
BH
i might be more sensitive.

4. Comparison of power

The examples discussed in the previous section show that the three methods have
a similar performance. It is of interest to compare the power of the tests. Under the
assumption that the active locations are responsible for all of the true location e�ects,
these three statistics are all functions of an F-random variable. Let � = (�2i+=�

2
i−).

Then it is easy to verify the following:

PowerBH(�) = Pr(DBHi ≥ F�=2;m;m) + Pr(DBHi ≤ F1−�=2;m;m)
= Pr(z ≥ F�=2;m;m) + Pr(z ≤ F1−�=2;m;m): (4)
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Fig. 1. The power of the tests for the case where N = 16, m= 6, � = 0:05.

PowerW(�) = Pr(DWi ≥ �2�;1)

= Pr

(
N
2

(
z − 1
z + 1

)2
≥ �2�;1

)
(5)

and

PowerL(�) = Pr(DLi ≥ �2�;1)

= Pr
(
N
2
log

[
1
4

(
z +

1
z

)]
≥ �2�;1

)
; (6)

where the random variable z is a scaled F distribution, i.e., z multiplied by the
constant � is F(m;m). The degrees of freedom m must be adjusted to the number
of active location e�ects. For detailed discussions on parameter m one can refer to
Bergman and Hynen (1997). For the case where N = 16, m = 6, � ranges from 1
to 30 in step of 1, and the signi�cance level � = 0:05; the power for these tests is
graphed in Fig 1.
It is shown that DLi is more liberal and is capable of being more sensitive for

identifying the possibly non-negligible dispersion e�ects at the screening stage of
experimentation.
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5. Concluding remarks

At the initial stage of the experimentation, the investigators addressed the issue
that all possibly non-negligible location e�ects and dispersion e�ects can be identi�ed
within the �xed budget. We are convinced that the proposed method is a good alter-
native for identifying the dispersion e�ects, and this method might be more sensitive
for the screening experiment. Once the inuential factors for the location and dis-
persion of the response have been identi�ed, one can plan more elaborate follow-up
experiments to characterize the relationship between the responsible variable and ex-
perimental factors by means of suitable mathematical functions. The mixed linear
model discussed by Wol�nger and Tobias (1998) can be a good choice.
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