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中文計畫成果摘要

阻塞性睡眠呼吸中止症候群(OSA) 是一個普遍的疾病，其特徵為在睡眠中上呼吸道重複性的

塌陷，造成間歇性缺氧及交感神經活化，因而引起心血管疾病。OSA 相關的心血管疾病包括動脈

粥狀硬化、高血壓、冠狀動脈疾病、心律不整及心衰竭。在 OSA 患者身上可發現某些發炎媒介的

上升，包括發炎指數(CRP)、粘接因子(adhesion molecule)、血管生長因子(VEGF)，細胞激素(cytokine)
及基質金屬蛋白酵素 (MMP)等，這些物質的生成則為心血管疾病形成的重要機制。在我們前期的

實驗可發現，OSA 患者血中細胞激素 IL-6, TNF及 CRP 的濃度明顯比正常人高，且 IL-6 與 CRP
濃度皆與血中最低含氧量成高度反比。由此證實在 OSA，間歇性缺氧是誘發發炎反應的決定性因

子。 在這些發炎物質中，TNF是與動脈粥狀硬化形成有關，且為冠狀動脈疾病患者預後的預測
因子。

慢性間歇性缺氧已被證實可以引起交感神經的過度活化，臨床上我們可發現 OSA 患者血中

兒茶酚胺濃度明顯比正常人高，且濃度與缺氧時間成正相關。在 OSA 患者血中 TNF表現亦增加，

而且與兒茶酚胺濃度相關。在體外實驗已證實腎上腺素及正腎上腺素分別經由及2 受體，來加強

人類巨噬細胞中脂多糖（LPS）所誘發 TNF表現。然而，兒茶酚胺對缺氧所誘發 TNF表現的影
響仍未被研究過。

本次實驗利用人類單核球細胞株 U937，分別在正常含氧量及缺氧情況下，在不同時間點處理

以 LPS，cobalt chloride 以及不同濃度的兒茶酚胺。結果顯示兒茶酚胺可降低 LPS，cobalt chloride

以及缺氧狀況下引起的 TNF表現，但對於正常氧氣下 TNF表現則無影響。對於缺氧引起的 TNF
表現抑制在腎上腺素可達 60%, 而在正腎上腺素可達 70%。對 TNF表現作用時間則是從兒茶酚
胺處理後一小時開始，可持續十二小時。本實驗此結果對於臨床上處理 OSA 病患合併心臟血管疾

病的藥物選擇上有重要的影響。
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英文計畫成果摘要: (約二百字)

Introduction: Obstructive sleep apnea can result in intermittent hypoxia and sympathetic
hyperactivity. Several cytokines, especially TNF-, were reported to increase in the in OSA
patients. In vivo studies showed catecholamine could attenuate lipopolysaccharide-induced

expression of TNF-. Therefore, the objectives of this study were to prove our hypothesis
that catecholamine could potentiate hypoxia- induced TNF-expression and to explore the
potential therapeutic effects of or agonist/antagonists.

Methods and Materials: We used the human monocyte cell line U937 as target cells. In
hypoxic condition, we used 0.1% O2 and 5% CO2 at a controlled incubator and maintained
PO2 of the medium lower than 40 mmHg the. In nomoxic condition, we used 21% O2 and
5% CO2 and PO2 in the medium was above 150 mmHg. Cell line U937 was treated with
catecholamine (epinephrine, norepinephrine), lipopolysaccharide (LPS) and cobalt chloride
(CoCl2) for 12 hours at both normoxic and hypoxic conditions. The supernatant and cells
were harvested at 0, 0.5, 1, 3, 6 and 12hr after drug treat. The supernatant was harvested for

ELISA and cells were harvested for PCR to assess the TNF-expression. The TNF-
expression in hypoxic condition was compared to normoxic condition.

Results: Both epinephrine and norepinephrine could attenuate the TNFexpressions in LPS,
CoCl2 and hypoxia induced TNF- expression. In normoxia, neither epinephrine nor
norepinephrine had effect on TNFexpressions. In hypoxia, the epinephrine worked best at
concentrations of 10-7 M to attenuate TNF-expression and norepinephrine worked best at
10-5M, which is 100 and 1000 times of plasma level in OSA patients respectively. The
epinephrine could reduce TNFexpression up to 60% and norepinephrine could reduce
TNFexpression up to 70%. The effect of catecholamine on TNFexpression started from
one hour after drug treat and lasted for 12 hours.

Conclusion: Catecholamines could attenuate the LPS, CoCl2 and hypoxia induced TNF-
expression but not at normoxia. The result would help us with treating OSA patients with
cardiovascular disease.
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研究計畫成果報告

簡介（Introduction）

Obstructive sleep apnea syndrome (OSAS) is a major public health problem affecting at least 4% of
middle-aged men and 2% women (50). OSAS is characterized with recurrent collapse of upper airway
during sleep which results in intermittent hypoxia and sleep fragmentation (3, 31, 51) The repeated
episodes of hypoxia and bursts of sympathetic activity provoke surges in blood pressure and heart rate (32,
58, 59) , which results in hypertension, atherosclerosis, coronary artery disease, heart failure and stroke (3,
16, 33, 51-57).

The hypoxia in OSA is characterized as chronic and intermittent. As we know, many transcriptional
factors and critical signaling pathways were involved in hypoxia induced transcription of specific genes,
which included hypoxia inducible factor, P53, NF-B, activator protein-1 and critical signaling pathways
(74-78). Several inflammatory mediators have been reported to increase in patients with OSA, which
include C-reactive protein (CRP), oxidative stress, adhesion molecules, vascular endothelial growth factor,
proinflammatory cytokines, adhesion molecules like intracellular adhesion molecule-1 and vascular cell
adhesion molecule-1. (24, 66, 68-71, 93, 94) Elevations of serum levels of these inflammatory
mediators may lead to endothelial injury and adverse cardiovascular function in patients with OSA. Our
data showed the levels of TNFwere higher in OSA patients than control subjects and the levels were
highly correlated with the lowest pulse oxygen saturation (SpO2) (r=0.38, p<0.01) which could decrease
after one-month CPAP treatment (Fig. 1). Therefore, TNF is a good biomarker for studying OSA
associated cardiovascular complications.

Sympathetic hyperactivity in OSA is resulted from hypoxia and repeated arousal. Both sustained
and Intermittent hypoxia can alter chemoreflex control of sympathetic tone and induce prolonged
sympathetic hyperactivity in human.(95-98) Rats exposed to intermittent hypoxa could have higher
dopamine and norepinephrine content in carotid body than sustained hypoxia.(35) This finding supported
that chronic intermittent hypoxia had stronger influence on sympathetic activity than sustained hypoxia.
The presentations of sympathetic hyperactivity in OSA include hypercatecholaminemia and elevated
sympathetic tone of peripheral nerve. Our study demonstrated plasma levels of norepinephrine highly
correlated with the proportion of time with pulse oxymetry <90% (r=0.36, p=0.01), which would go
down after one-month CPAP treatment (Fig. 2). Hypersympathetic tone is known for attributing to the
developments of cardiovascular diseases. Our data showed OSA patients had a surge of blood pressure in
the early morning, which disappeared after one-month CPAP treatment (Figure 3). Our data also showed
the plasma levels of norepinephrine highly correlated with serum levels of TNF(r=0.63, p<0.01).

Catecholamine was known to be able to modulate the production of pro/ anti-inflammatory
cytokines in the condition of sepsis and autoimmune disease. (93, 99-104) In vivo studies showed
norepinephrine could potentiate LPS-induced expression of TNFthrough 2 adrenergic receptor, which
could be blocked by 2 adrenergic antagonist.(104) Epinephrine and other  adrenergic agonists
(isoproterenol) could reduce TNFexpression when exposing the cell to adrenaline and LPS at the same
time. But incubating cells with isoproterenol for 24 h before LPS stimulation would increase TNF
expression. Both regulations of norepinephrine and epinephrine on LPS induced TNFexpression are
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mediated by changes in intracellular cAMP concentrations, which are exerted at a posttranscriptional
level. (102) However, the effect of catecholamine on TNFexpression in the hypoxic microenvironment
has never been studied.

To test if catecholamine could affect TNFexpression in the hypoxic environment, we chose
monocyte cell line U937 as the study model and treated the U937 with various concentrations of
catecholamine in both normoxic and hypoxic condition. The preliminary results showed epinephrine had
no effect on TNF expression in normoxic condition but could attenuate the TNF expression in hypoxic
condition (Figure 4). Therefore, we hypothesize that catecholamines can modulate intermittent hypoxia
induced TNFand further affect the developments of cardiovascular complications in OSA. In this
project, we’ll use the human peripheral blood monocyte from healthy subjects and OSA patients as the
target cells, which were serially treated with catecholamine and or agonists/antagonists in both
normoxic and hypoxic microenvironment, to achieve the following 3 objectives:
(1). To examine the effect of catecholamines on the modulation of intermittent hypoxia induced TNF-in

human monocytes from both healthy subjects and OSA patients
(2). To map the signaling pathway of catecholamines regulating the intermittent hypoxia induced TNF-

expression.
(3). To explore the potential therapeutic effects of or agonists/antagonists on intermittent hypoxia

induced TNF-expression
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Figure 1. Serum of TNF before and after one-month CPAP treatment

Figure 2. Serum of Epinephrine and Norepinephrine before and after one-month CPAP treatment

Figure 3. Twenty-four hour ambulatory blood pressure of OSA patients before and after one-month CPAP
treatment
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Figure 4. The effects of epinephrine on TNF-expression in U937 in both normoxia and hypoxia
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研究目的 (Specific Aim)

(1). To examine the effect of catecholamines on the modulation of intermittent hypoxia induced TNF-in
human monocytes from both healthy subjects and OSA patients

(2). To map the signaling pathway of catecholamines regulating the intermittent hypoxia induced TNF-
expression.

(3). To explore the potential therapeutic effects of or agonists/antagonists on intermittent hypoxia
induced TNF-expression
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材料及方法 (Subjects and Methods)

Study Design:
We use both human monocyte from healthy subjects and OSA patients as the target cells. Isolated

monocyts were seriously treated with catecholamine and or agonists/antagonists in both normoxic
and hypoxic microenvironment. The effects of catecholamine on TNF-expressions were measured with
TNF-concentration in supernatant and level of mRNA expression. The protocol of the experiment is
shown in Fig 5.
Material and Methods
Cell culture experiments

Human monocyte isolation: Peripheral blood mononuclear cells (PBMCs) from healthy subjects
and OSA patients were isolated with a Ficoll-Hypaque gradient. CD14+ monocytes were isolated by
positive selection with magnetic beads (MACS microBeads, Miltenyi Biotec). To separate T cells, natural
killer cells, B cells, dendritic cells, and basophils from PBMCs, they were indirectly magnetically labeled
with a cocktail of hapten-conjugated CD3, CD7, CD 19, CD 45RA, CD 56, and anti-Ig E antibodies and
MACS MicroBeads coupled to an anti-hapten monoclonal antibody. The magnetically labeled cells were
removed by retaining them on a MACS column in the magnetic field of the VarioMACS (Miltenyi
Biotec). Purity of these preparations of monocytes was determined by FACS-analysis employing CD 14
antibodies. The supernatant and cells were harvested at 0’, 30min, 1hr, 3hr, 6hr, 12hr and 24hr after cell
stimulation with catecholamineor agonists/antagonists.

Cell culture and harvest: Isolated monocytes were resuspended with medium containing
RPMI-1640, 10% FCS (Northumbria Biologicals Ltd., Cramlington Northumberland, UK), penicilline
(100 U/ml), streptomycin (100 g/ml), 1% glucose, 1% HEPES, 1% L-glutamin and 1% sodium pyruvate.
Cells were maintained for 24 hr at 37C in humidified atmosphere of 5% CO2:95% air before experiment.
One- milliliter cell suspension was seeded per well into 24-well plates at a cell density of 3x105 in
24-well plate and treated with catecholamine, or agonists/antagonists for up to 24 hr. Supernatant and
cell were harvest at 0, 30min, 1hr, 3hr, 6hr, 12hr after treat.

Assay for Cell viability and aptosis: Cell viability as determined by trypan blue exclusion
immediately before cell seeding and after respective cell harvest. Cell aptosis were assayed with
annexin-V.(105, 106)
Cell stimulation

Epinephrine (bitartrate salt), norepinephrine (bitartrate salt), propranolol (hydrochloride salt),
phenoxybenzamine (hydrochloride salt), metoprolol, butoxamine, phenoxybenzamine, doxazosine,
yohimbine were all obtained from Sigma Chemical Co. (Poole, Dorset, UK). They were dissolved and
diluted in culture medium. Dilutions were made in phosphate buffer saline. The concentrations of
epinephrine were 10-6, 10-7, 10-8, 10-9, 10-10 and 10-11ųM.The concentrations of norepinephrine were 10-5,
10-6, 10-7, 10-8, 10-9 and 10-10ųM. 

Cytotoxicity Assay: Possible toxic effects of catecholamine, and receptor antagonists used were
excluded by a lactate dehydrogenase (LDH)-based cytotoxivcity assay kit (Sigma) and Trypan blue
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staining.
Normoxia and Hypoxia

The hypoxic condition was achieved with oxygen concentration of 0.1%, which was maintained
using a controlled incubator with CO2/O2 monitoring and CO2/N2 sources (Edwards Instrument Co.,
Wilmington, MA). The normoxic condition was achieved with oxygen concentration of 21%. CO2 was
maintained at 5% in both hypoxic and normoxic conditions. The culture medium was preequlibrated for
24 hr before cell exposure and maintained at a PH of 7.3. The PO2 of the medium was measured with
arterial blood gas machine just before seeding cell, which was kept about 40 mmHg in hypoxic condition
and about 150 mmHg in normoxic condition.
Measurement of TNF-expression

Expression of TNF-was assessed with measuring level of TNF-in supernatant and level of
mRNA expression. The TNF- in supernatant was assayed with high-sensitivity ELISA kit (R&D,
Minneapolis, USA) and mRNA expression was assessed with real-time PCR.

RNA preparation: Total RNA was isolated using Trizol reagent as recommended by the
manufacturer’s instructions from peripheral blood monocytes isolated. The quality of the RNA samples 
was determined by electrophoresis through agarose gels and staining with ethidium bromide and the 18S
and 28S RNA bands were visualized under U.V. light.

cDNA probe preparation: The reverse transcriptase reaction mixture was made up to 100l with
1xTaq polymerase buffer containing 0.5g of 5’primer and 2U of Taq polymerase and subjected to 30 
cycles amplification at 94C for 1min, 60C for 2min, and 72C for 3 min.

Real-time PCR: The real-time quantitative PCR of TNF-mRNA was performed using TaqMan dye
(Applied Biosystems, Foster City, CA, U.S.A.) with standard protocol. The primer and probe of TNF-
and TBP for real-time PCR was selected with TaqMan Gene Expression Assays (Applied Biosystems,
Foster City, CA, U.S.A). The standard curve samples used for real-time quantitative PCR were prepared
by serial dilution of a specific RNA sample to cover the range of 62.5 ng, 125 ng, 250 ng and 500 ng. The
serially diluted samples were aliquotted and stored at -80 C until use. Each assay included a standard
curve, a no-template control, and duplicate total RNA samples. The fluorescence emitted by the reporter
dye was detected on-line in real-time using the ABI prism 7500 sequence detection system (PE Applied
Biosystem, Foster City, California).
Mediation of catecholamine-modulated TNF-gene expression

cAMP analysis: After drug stimulation, the culture medium was aspirated after the indicated time and
the cells were treated as reported in the literature. Briefly, 0.8 cc 75%ethanol with 1mM EDTA was added
to each well, and after 10 min, cell was harvested by scraping. Ethanol was removed by SpeedVac
centrifugation and pellets were suspended in 0.5ml of 4xTE buffer and sonicated 5sec. After
centrifugation, a 25ų supernatant aliquot from each sample was used for determination of cAMP levels 
with the cyclic AMP assay system (Amersham Pharmacia Biotec) according to manufacturer’s 
instructions.
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Figure 5. Flow chart of study design
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結果 (Results)

Summary of experimental algorithm

2. Experimental condition:

LPS (100g/ml) CoCl2(M) Normoxia Hypoxia

E NE E NE E NE E NE

Cell number 3x105 4x105 3x105 3x105 3x105 3x105 2.6x105 3.58x105

Concentration of
catecholamine

Max -11 -10 -11 -10 -11 -10 -11 -10
Mini -6 -5 -6 -5 -6 -5 -6 -5

Survival at 12th

hr (%)
- - 92 92 100 100 99.7 96.2

Medium gas
PH - - - - 7.45 7.45 6.79 6.88

PCO2 - - - - 25.6 25.6 165.65 166.2
PO2 - - - - 204.7 204.7 35.65 44.7

E: epinephrine, NE: norepinephrine

HFDBCatecholamine

GECAControl

LPS**NormoxiaHypoxiaCoCl2*

HFDBCatecholamine

GECAControl

LPS**NormoxiaHypoxiaCoCl2*

*CoCl2 treat 24 hr in normoxia before catecholamine treat
** LPS concomitant with catecholamine
• Prove A>C>E=F; (A-B)>(C-D)>(E-F)
• Statistics: compare TNFexpression between control and catecholamine group

by GEE repeated measurement

Treat

Drug TNF
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3. Gene expression of TNF:
A. LPS:

Both epinephrine and norepinephrine could attenuate the LPS induced TNFexpression

Epinephrine could suppress LPS induced TNFexpression most at concentration of 10-6M

B. CoCl2:

Both epinephrine and norepinephrine attenuate the LPS induced TNFexpression

Epinephrine could suppress CoCl2 induced TNFexpression most at concentration of 10-6M

Norepinephrine could suppress CoCl2 induced TNFexpression most at concentration of 10-5M
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C. Catecholamine:
a. Normoxia

 There’s no difference of TNFexpression between control and catecholamine treated

b. Hypoxia

 Both epinephrine and norepinephrine could attenuate the TNF expression in hypoxia
induced TNF-expression.

 In hypoxia, the effective concentrations of catecholamine were 10-7 for epinephrine and 10-5

for norepinephrine, which is 100 and 1000 times of plasma level in OSA patients.

 The epinephrine could reduce TNFexpression up to 60 % and norepinephrine could reduce
TNFexpression up to 70%.

 The effect of catecholamine on TNFexpression started from one hour after drug treat and
lasted for 12 hours
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Hypoxia and Epinephrine 10 -6 M
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討論 (Discussion)

1. Limitation of the study
The limitations of our study included the followings

 No continuous infusion of catecholamine: the level of catecholamine in culture medium: The
catecholamine is likely to degrade during 12-hour incubation, which would reduce the
concentration catecholamine in culture medium

 The effective concentration of catecholamine is 100 and 1000 times of plasma level in OSA
patients, which limited the clinical application. Further work on medications with high-affinity
to , receptors would lower drug dose needed to suppress TNFexpression.

2. Future work:
 Test the effects of , agonists/antagonists on TNFwith the specific concentration of

catecholamine. The specific concentrations for epinephrine are 10-6 and 10-7M. The optimal
concentrations for norepinephrine are 10-5M.

 Measure the concentration of catecholamine in the culture medium of different time series

結論 (Conclusion)
Catecholamines could attenuate the LPS, CoCl2 and hypoxia induced TNF-expression but not

at normoxia. The result would help us with treating OSA patients with cardiovascular disease
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