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Abstract

The 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase inhibitors, statins, are potent 

inhibitors of cholesterol synthesis and have wide therapeutic use in cardiovascular 

diseases. Recent evidence, however, suggests that the beneficial effects of statins may 

extend beyond their action on serum cholesterol levels. In this study, we investigated 

the effects of lovastatin, pravastatin, atorvastatin, and fluvastatin on macrophage 

formation of nitric oxide (NO) in murine RAW 264.7 cells. Stimulation of 

macrophages with lipopolysaccharide (LPS) and interferon-ã (IFN-ã) resulted in 

inducible NO synthase (iNOS) expression, which was accompanied by a large amount 

of NO formation. Within 0.1-30 ìM, statins can inhibit stimuli-induced NO formation 

and iNOS induction to different extents. This inhibition occurs at the transcriptional 

level, and displays potency in the order of lovastatin > atorvastatin > fluvastatin >> 

pravastatin. We found that LPS-induced IKK and NF-êB activation, and 

IFN-ã-induced STAT1 phosphorylation were reduced by lovastatin. Moreover, 

lovastatin inhibition of NO production and êB activation were reversed by 

mevalonate, geranylgeranyl-PP and farnesyl-PP. All these results suggest that 

inhibition of iNOS gene expression by statins is attributed to interference with protein 

isoprenylation, which mediates both NF-êB and STAT1 activation in the upstream 

signaling pathways for iNOS gene transcription.



Introduction

Clinical benefits of cholesterol reduction have been established in large-scale 

primary and secondary intervention trials with statins. Statins including lovastatin, 

pravastatin, atorvastatin, fluvastatin, simvastatin, and cerivastatin are widely used 

agents for lowering cholesterol and reducing heart attacks. Treatment with statins 

results in decreased morbidity and mortality related to hyperlipidemia and 

arteriosclerosis [29, 67]. These orally prescribed statin drugs, some prescribed for 

over 10 years for lowering cholesterol, appear to have relatively good safety profiles. 

In large trials involving patients with hypercholesterolemia, the in vivo efficacy of the 

ability of these statins to reduce total cholesterol, LDL-cholesterol, apolipoprotein B, 

and triglyceride levels was in the order of cerivastatin > atorvastatin > simvastatin > 

lovastatin, pravastatin, and fluvastatin [42].

Statins are competitive inhibitors of 3-hydroxy-3-methylglutaryl (HMG)-CoA 

reductase, the rate-limiting step in cholesterol synthesis [1, 45]. HMG-CoA is not 

only involved in cholesterol biosynthesis, but also controls the cellular level of its 

direct product mevalonate, which is a precursor to a number of non-sterol compounds 

vital to a variety of cellular functions. Reports have evidenced that mevalonate itself 

and mevalonate-derived isoprenoids (farnesyl pyrophosphate (FPP) and 

geranylgeranyl pyrophosphate (GGPP)) are involved in posttranslational modification, 



i.e., isoprenylation, of several proteins in the signal transduction pathway, such as Rho, 

Rac, Cdc42, Ras, Rap, and Rab [21-23, 46, 55]. Some of the clinical benefits 

attributed to HMG-CoA reductase inhibitors result from their ability to interrupt the 

isoprenylation of small G proteins by decreasing FPP and GGPP levels, leading to 

accumulation of inactive small G proteins in the cytoplasm [27, 41].

Nitric oxide (NO), regardless of whether it serves as a key messenger for cell 

function or as a cytotoxic agent in disease progression, is synthesized from L-arginine 

by the enzyme nitric oxide synthase (NOS) [49, 54]. Three isoforms of NOS have 

been identified: neuronal (nNOS), endothelial (eNOS), and inducible (iNOS) isoforms. 

Upregulation of eNOS expression from vascular endothelial cells [3, 15, 40],

prevention of oxidized LDL [30] and tumor necrosis factor-á-induced eNOS 

downregulation [24] all contribute to the benefits of statins. Until now, although more 

attention has been focused on eNOS, the effect of statins on iNOS expression and the 

underlying mechanisms of action still remain controversial and seem to be dependent 

on cell types. In astrocytes, microglia, and macrophages, lovastatin was shown to 

block iNOS induction by lipopolysaccharide (LPS) through an inhibitory step at 

farnesylation [56]. In contrast, consequent studies demonstrated that statins could 

upregulate cytokine-induced iNOS expression through inhibition of small G proteins 

of the Rho family in vascular smooth muscle cells [12, 51], airway epithelial cells [27, 



36], fibroblasts [27], and cardiac myocytes [32]. In alveolar epithelial cells, the 

potentiation of the iNOS response by statin might be due to enhancement of iNOS 

promoter activity by removing isoprenoid precursors, which would regulate iNOS 

promoter activity by geranylgeranylation events [36]. Rho signaling mediated through 

ROCK suppresses iNOS production downstream of the promoter function at the 

mRNA and protein levels [36]. Moreover, in native endothelial cells, atorvastatin, 

cerivastatin, and pravastatin decreased tumor necrosis factor-á plus interferon-ã

(IFN-ã)-stimulated iNOS expression via a mechanism irrespective of HMG-CoA 

reductase inhibition [69]. Based on these inconsistent findings with statins on iNOS 

induction, and knowing that the high amount of NO production from macrophages is 

a key mediator in the inflammatory stage of many diseases, it is crucial to understand 

the effect of several statins on iNOS induction from macrophages. In the present study, 

we investigate the possibility in cellular regulation that atorvastatin, fluvastatin, 

lovastatin, and pravastatin affect the induction of iNOS by LPS and IFN-ã in murine 

RAW 264.7 cells.

Mater ials and Methods



Materials

Dulbecco’s modified Eagle’s medium (DMEM), fetal bovine serum, penicillin, 

and streptomycin were obtained from Gibco BRL (Grand Island, NY). Rabbit 

polyclonal Abs against active (Y701 phosphorylated) signal transducer and activator 

of transcription 1 (STAT1) were purchased from New England Biolabs (Beverly, MA). 

Horseradish peroxidase-coupled anti-mouse and anti-rabbit Abs, and the ECL 

detection agent were purchased from Amersham Biosciences (Piscataway, NJ). Rabbit 

polyclonal antibodies specific for iNOS, IêB kinase á (IKKá), IKKâ, and p65 were 

purchased from Santa Cruz Biotechnology (Santa Cruz, CA). Murine IFN-ã was 

purchased from R&D (Minneapolis, MN). The oligonucleotide sequence specific for 

nuclear factor-êB (NF-êB) binding was used as previously reported [26]. [á-32P]dATP 

(3000 Ci/mmol) and [ã-32P]ATP (5000 Ci/mmol) were obtained from NEN (Boston, 

MA). The plasmid of pGEX-IêBá (amino acids 5-55) was provided by Dr. Frank S. 

Lee (Pennsylvania Medical Center, philadelphia, PA). Lovastatin, phenol-extracted 

LPS (L8274) from E. coli, mevalonate, FPP, GGPP, and other chemicals were 

purchased from Sigma Aldrich (St. Louis, MO). Atorvastatin, fluvastatin, and 

pravastatin were respectively provided by Pflizer (New York, NY), Novartis (Basel, 

Switzerland), and Sankyo (Tokyo, Japan). All materials for SDS-PAGE were obtained 

from Bio-Rad Laboratories (Hercules, CA). Lovastatin acid was prepared as 



previously described [53] by hydrolyzing lovastatin in a 0.05 N NaOH solution with 

stirring at 20 oC for 30 min. The hydrolyzed solutions were adjusted to pH 7.4 with 

0.2 N HCl and then stored at 4 oC until use.

Cell Culture

Murine RAW 264.7 macrophages obtained from American Type Culture 

Collection (Manassas, VA) were grown at 37 oC in 5% CO2 using DMEM containing 

10% FBS, 100 U/ml penicillin, and 100 µg/ml streptomycin.

Nitrite Measurement

Nitrite production was measured in RAW 264.7 macrophage supernatants. 

Briefly, cells were cultured in 24-well plates in 500 ìl of culture medium until 

confluence. Cells were treated with LPS or IFN-ã for the time indicated, then the 

culture media were collected. Nitrite was measured by adding 100 ìl of Griess 

reagent (1% sulfanilamide and 0.1% naphthylethylenediamide in 5% phosphoric acid) 

to 100-ìl samples of culture medium. The optical density at 550 nm (OD550) was 

measured using a microplate reader, and the nitrite concentration was calculated by 

comparison with the OD550 produced using standard solutions of sodium nitrite in the 

culture medium.



Immunoblotting Analysis

After stimulation, cells were rinsed twice with ice-cold PBS, and 100 ìl of cell 

lysis buffer (20 mM Tris-HCl, pH 7.5, 125 mM NaCl, 1% Triton X-100, 1 mM MgCl2, 

25 mM β-glycerophosphate, 50 mM NaF, 100 µM Na3VO4, 1 mM PMSF, 10 µg/ml 

leupeptin, and 10 µg/ml aprotinin) was then added to each plate. Protein was 

denatured in SDS, electrophoresed on a 10% SDS/polyacrylamide gel, and transferred 

to a nitrocellulose membrane. Nonspecific binding was blocked with TBST (50 mM

Tris-HCl, pH 7.5, 150 mM NaCl, 0.1% Tween 20) containing 5% non-fat milk for 1 h 

at room temperature. After incubation with the appropriate first antibodies, 

membranes were washed 3 times with TBST. The secondary antibody was incubated 

for 1 h. Following 3 washes with TBST, the protein bands were detected with the 

ECL reagent.

Reverse-transcription Polymerase Chain Reaction (RT-PCR)

To amplify iNOS mRNA, the specific primers for RT-PCR analysis were 

synthesized. Macrophages treated with indicated agents were homogenized in 1 ml of 

RNAzol B reagent (Gibco), and total RNA was extracted by an acid guanidinium 

thiocyanate-phenol-chloroform extraction. RT was performed using a StrataScript 



RT-PCR kit, and 10 µg of total RNA was reverse transcribed to cDNA following the 

manufacturer’s recommended procedures. RT-generated cDNA encoding iNOS and 

β-actin genes were amplified using PCR. The oligonucleotide primers used 

corresponded to mouse macrophage iNOS (5’-CCC TTC CGA AGT TTC TGG CAG 

CAG C-3’ and 5’-GGC TGT CAG AGC CTC GTG GCT TTG G-3’) and mouse 

β-actin (5’-GAC TAC CTC ATG AAG ATC CT-3’ and 5’-CCA CAT CTG CTG 

GAA GGT GG-3’). PCR was performed in a final volume of 50 µl containing Taq 

DNA polymerase buffer, all 4 dNTPs, oligonucleotide primers, Taq DNA polymerase, 

and RT products. After initial denaturing for 2 min at 94 oC, 35 cycles of 

amplification (94 oC for 45 s, 65 oC for 45 s, and 72 oC for 2 min) were performed 

followed by a 10-min extension at 72 oC. PCR products were analyzed on 2% agarose 

gels. The mRNA of β-actin served as an internal control for sample loading and 

mRNA integrity.

Transfection and Reporter Gene Assay

Using electroporation (280 V, 1070 ìF, 0.4-ms time constant), RAW 264.7 cells 

(2 x 107 cells/cuvette) were cotransfected with 1 ìg pGL2-ELAM-Luc (êB-Luc) and 

1 ìg â-galactosidase expression vector (pCR3lacZ; Pharmacia, Sweden). The êB-Luc 

plasmid was constructed under the control of 3 NF-êB binding sites. After 



electroporation, cells were cultured in 24-well plates at 2 x 106 cells/well. After a 24-h 

incubation, cells were incubated with the indicated concentrations of agents. After 

another 24-h incubation, the media were removed, and cells were washed once with 

cold PBS. To prepare lysates, 100 µl of reporter lysis buffer (Promega) was added to 

each well, and cells were scraped from dishes. The supernatant was collected after 

centrifugation at 13,000 rpm for 30 s. Aliquots of cell lysates (5 µl) containing equal

amounts of protein (10-20 µg) were placed into the wells of an opaque, black 96-well 

microplate. An equal volume of luciferase substrate (Promega) was added to all 

samples, and the luminescence was measured in a microplate luminometer (Packard, 

Meriden, CT). Luciferase activity values were normalized to transfection efficiency 

monitored by â-galactosidase expression, and was presented as the percentage of 

luciferase activity measured with LPS stimulation alone and in the absence of statins.

Preparation of Nuclear Extracts and Electrophoretic Mobility Shift Assays 

(EMSAs)

Nuclear extracts from stimulated or non-stimulated macrophages were prepared 

by cell lysis followed by nuclear lysis; cells were suspended in 30 µl of buffer 

containing 10 mM HEPES (pH 7.9), 1.5 mM MgCl2, 10 mM KCl, 0.5 mM

dithiothreitol, and 0.2 mM phenylmethylsulfonyl fluoride; vigorously vortexed for 15 



s; allowed to stand at 4 °C for 10 min; and centrifuged at 2000 rpm for 2 min. The 

pelleted nuclei were resuspended in buffer containing 20 mM HEPES (pH 7.9), 25% 

glycerol, 420 mM NaCl, 1.5 mM MgCl2, 0.2 mM EDTA, 0.5 mM dithiothreitol, and 

0.2 mM phenylmethylsulfonyl fluoride for 20 min on ice, and then the lysates were 

centrifuged at 15,000 rpm for 2 min. The supernatants containing the solubilized 

nuclear proteins were stored at -70 °C until used for EMSAs. The binding reaction 

mixture (15 µl) contained 0.25 µg of poly(dI-dC) (Amersham Biosciences) and 

20,000 dpm of a 32P-labeled DNA probe in binding buffer consisting of 10 mM

Tris-HCl (pH 7.5), 1 mM EDTA, 4% Ficoll, 1 mM dithiothreitol, and 75 mM KCl; the 

binding reaction was initiated by the addition of cell extracts and continued for 1 h. 

Samples were analyzed on native 5% polyacrylamide gels. For supershift experiments, 

5 µg of the p65 antibody was mixed with nuclear extract proteins.

Immunoprecipitation and IKK Assay

To determine the effects on IKK, anti-IKKá, IKKâ (each at 1 ìg), and protein 

A/G-agarose beads were added to the prepared cell extracts as mentioned above. 

Immunoprecipitation proceeded at 4 °C overnight. The precipitated beads were 

washed 3 times with 1 ml of ice-cold cell lysis buffer and twice with kinase buffer (25 

mM HEPES, pH 7.4, 20 mM MgCl2, 0.1 mM Na3VO4, 2 mM dithiothreitol). The 



immune-complex kinase assay of one-half of the immunoprecipitates was performed 

at 30 °C for 30 min in 20 ìl of kinase reaction buffer containing 1 ìg GST-IκBα, 25 

µM ATP, and 3 µCi [γ-32P] ATP. The reaction was terminated with 5X Laemmli 

sample buffer, and the products were resolved by 12% SDS-PAGE gel electrophoresis. 

The phosphorylated IκBα was visualized by autoradiography. The other half of the 

immunoprecipitates was subjected to SDS-PAGE and immunoblotting to verify that 

an equal amount of kinase was undergoing the kinase reaction.

Statistical Evaluation

Values were expressed as the mean ± S.E.M. of at least 3 experiments, which 

were performed in duplicate. Analysis of variance (ANOVA) was used to assess the 

statistical significance of the differences, and a p value of less than 0.05 was 

considered statistically significant.

Results

Statins Inhibit iNOS/NO Induction by LPS and IFN-ã

When cells were stimulated with LPS (1 ìg/ml) for 24 h, the nitrite level 

increased from the basal value of 5 ± 1 ìM to 42 ± 5 ìM (n = 12). Simultaneous 

addition of various statins at a concentration ranging from 0.1 to 30 ìM together with 



LPS led to reduced NO production. Examining the inhibitory efficacies achieved at 30 

ìM (shown in parentheses), the potency among the 4 statins was in the order of 

lovastatin (57% ± 5%) > atorvastatin (38% ± 7%) > fluvastatin (24% ± 3%) >> 

pravastatin (9% ± 3%) (Fig. 1A). In agreement with the extents for NO reduction, 

iNOS protein induced by LPS was accordingly affected by these statins (Fig. 1B).

The lipophilicity of statins can determine their transport characteristics and 

functions in a variety of cells. Accumulating evidence has shown that hydrophilic 

pravastatin is the weakest statin which permeates into nonhepatic cells and regulates

cell responses compared to other lipophilic statins [32-34, 39, 62, 63, 66, 72]. In 

contrast, the lacton form of lipholic statins is necessary for cell function [66, 74]. To 

assess this point, we tested the effects of lovastatin acid and higher concentrations of 

pravastatin. As shown in Fig. 1A, lovastatin acid and pravastatin did not inhibit NO 

production at concentrations of up to 300 ìM. Since statins have been reported to 

cause cell toxicity at higher concentrations [38, 52, 70], we were concerned whether 

their inhibitory effect on NO generation is associated with this action. Using the 

3-(4,5-dimethylthiazol-2-yl)2,5-diphenyltetrazolium bromide (MTT) assay as an 

index for mitochondria function, we found that incubation with these statins at 30 ìM

for 40 h induced no significant cell toxicity. Increasing the concentration to 100 ìM

and the incubation time to 24 h, a slight reduction in MTT activity by lovastatin (18% 



± 4%, n = 4), but not fluvastatin or atorvastatin, was observed. Pravastatin and

lovastatin acid had no toxicity at 300 ìM (data not shown). When cells were analyzed 

by flow cytometry with propidium iodide staining, none of the statins at 30 ìM

affected the cycle progress (data not shown).

Following our findings showing that statins can inhibit iNOS induction by 

LPS, it was interesting to further understand their effect on IFN-ã-induced iNOS 

expression. Upon 3 ng/ml IFN-ã stimulation for 24 h, RAW 264.7 macrophages 

increased NO release to 28 ± 5 ìM (n = 10). In the presence of lovastatin, the NO 

increase caused by IFN-ã was diminished in a concentration-dependent manner within 

0.1-30 ìM (Fig. 2A). Compared to the more obvious inhibition reaching 80% by 

lovastatin, atorvastatin and fluvastatin at 30 ìM induced only weak inhibition by 30% 

and 20%, respectively. In contrast, pravastatin did not affect the IFN-ã response. The 

NO effect of these statins was accompanied by changes in iNOS protein expression 

(Fig. 2B). In order to assess the mechanism attributed to iNOS inhibition, lovastatin 

was chosen in the following experiments, and its action in some cases was compared.

Transcriptional Inhibition of iNOS Gene Expression by Statins

Since iNOS is an inducible gene product, we determined whether the effect of 

lovastatin results from decreased gene transcription. Using RT-PCR analysis, we 



found that, as shown in Fig. 3A and C, LPS- and IFN-ã-induced upregulation of iNOS 

mRNA was time- and concentration-dependently inhibited by lovastatin (at 10 and 30 

ìM). In contrast, no inhibition was seen with 30 ìM pravastatin.

In another experiment to confirm the iNOS reduction resulting from 

transcriptional inhibition, we treated cells with lovastatin (10 or 30 ìM) at different 

time intervals after LPS stimulation. Results indicated that the inhibitory effect on 

iNOS/NO production by lovastatin displayed a time-dependency. A gradually

diminished inhibition was detected, as lovastatin treatment was delayed by up to 12 h 

after LPS stimulation (Fig. 3B). This result further suggests that the inhibitory action 

of lovastatin occurs at the gene transcription level.

NO Inhibition by Lovastatin is Dependent on Protein Isoprenylation

To explore whether cholesterol deficiency resulting from HMG-CoA reductase 

inhibition might contribute to NO reduction, we supplied cells with the cholesterol 

precursor substrates, mevalonate, FPP, and GGPP. Results indicated that in the 

presence of each substrate, lovastatin-induced NO inhibition was significantly 

restored (Fig. 4). This suggests that an isoprenylated protein mediates LPS induction 

of iNOS gene expression, and that this action is suppressed by statins.



Lovastatin Inhibits Signal Pathways Required for iNOS Induction

It has been demonstrated that the DNA binding activity of NF-êB transcription 

factor is a prerequisite for the activation of iNOS gene expression [9, 73]. To 

understand the effect of statins on NF-êB activation, analysis of the nuclear extract 

was carried out by EMSA. Figure 5A, as reflected from the specific binding by the 

shift assay with p65 NF-êB antibody, indicates that after LPS treatment for 1 h, the 

nuclear translocation and DNA binding activity of NF-êB in RAW 264.7 cells was 

inhibited by the presence of lovastatin (10 and 30 ìM), but was unaltered by 

pravastatin (30 ìM). To support the inhibitory action on NF-êB, the upstream 

signaling effector IKK was investigated. Figure 5B shows that the activity of IKK, 

which is a convergent element for NF-êB activation in response to many stimuli, 

including LPS [10, 14], was inhibited by lovastatin. In contrast, pravastatin had no 

such effect. To confirm this finding, NF-êB activity as assessed by a êB luciferase 

assay was suppressed by lovastatin, and this inhibition was again reversed by the 

presence of mevalonate, FPP, and GGPP (Fig. 5C).

Since Tyr 701 phosphorylation of STAT1 following IFN-γ stimulation is 

associated with the stimulating effect on iNOS expression [43, 28], we examined the 

effects on STAT1 phosphorylation. As shown in Fig. 5D, upon treatment of RAW 

264.7 macrophages with IFN-ã, a dramatic STAT1 phosphorylation at Tyr 701 was 



observed, and this action was attenuated by lovastatin, but not by pravastatin.

Discussion

Statins through HMG-CoA reductase inhibition are potent inhibitors of 

cholesterol synthesis and have wide therapeutic use in cardiovascular diseases. Effects 

other than cholesterol reduction have been proposed and might contribute to the 

numerous pleiotropic effects related to statin uses [35]. These effects of statins include 

decreasing smooth muscle cell migration and proliferation [6], inhibition of tumor 

growth and metastasis [47], increase in BMP-2 gene expression and bone formation

[50], reduction of extracellular matrix expression [61], reduction of LDL oxidation 

via antioxidative activity [4, 30], upregulation of eNOS, and prevention of tumor 

necrosis factor-á-induced eNOS downregulation, which contributes to the beneficial 

effects on endothelial dysfunction associated with cardiovascular diseases [3, 15, 24].

In this study, we confirm the inhibitory ability of statins on LPS-induced iNOS 

expression in macrophages as previously observed [56], and demonstrate a similar 

inhibitory effect upon iNOS induction by IFN-ã. Evidence further suggests that the 

NO inhibitory action on LPS and IFN-ã involves inhibition of upstream signaling by 

IKK/NF-êB and STAT1, which respectively mediate LPS- [9] and IFN-ã- [28] 

induced iNOS gene expression. Furthermore, in LPS-mediated NF-ãB signaling, we 



found that mevalonate, FPP, and GGPP all have the ability to restore lovastatin 

inhibition. This effect is like previous studies of statins in regulating various functions, 

including antiproliferation and anti-migration of smooth muscle cells [60], increased 

eNOS expression [15], inhibition of osteoclast formation [17], and reduced LDL 

oxidation [20]. This finding suggests that isoprenylation is a necessary step in LPS-

and IFN-ã-mediated IKK and STAT1 activation, and in turn induces the

proinflammatory process.

Several lines of evidence have indicated the activation or inhibition of small G 

proteins by LPS controls its inflammatory responses. Ras activation in smooth muscle 

cells [44], astrocytes [57], monocytes [25], Rap and Rac activation in macrophages [7, 

64, 65], and Rem inhibition [16] have all been reported by LPS stimulation. In this 

context, Ras has been shown to mediate NF-êB activation [8, 48, 57] and iNOS 

induction [57], possibly through PKC and ERK intermediate signaling events [10, 13, 

68]. In addition, Rac activation in macrophages by LPS [64] can lead to IKK 

activation. Except for Ras and Rac in LPS signaling, the contribution of other Rho 

family members, cdc42 and Rho, which can also transmit interleukin-1 and tumor 

necrosis factor-á signals to activate NF-êB by the IKK-dependent pathway [18, 59], 

needs further investigation. In this respect, although Rho-associated kinase (ROCK) is 

involved in regulation of iNOS expression in airway epithelial cells [36], our 



preliminary data exclude this possibility, as the ROCK inhibitor (Y27632) did not 

alter NO production induced by LPS (data not shown). Until now, information with 

respect to the GTP binding protein in IFN-ã signaling has been quite limited. 

Although recent studies showed that INF-á can induce an isoprenoid-modified GTP 

binding protein, GBP1, in murine macrophages [26], its role in iNOS induction 

remains undefined. In addition, we rule out ERK and PKC activity in the signaling 

cascades leading to iNOS expression by IFN-ã [11].

Despite lovastatin having been reported to induce apoptosis in some cell types 

[58, 70], this action related to iNOS inhibition can be ruled out in our study. We 

detected no cell arrest, apoptosis (from cell cycle measurement), or functional loss of 

mitochondria activity (from the MTT assay) following incubation of cells with 30 ìM

lovastatin for 48 h. In addition, L-arginine (10 mM) supplementation in culture 

medium did not restore NO reduction caused by lovastatin, indicating that a possible 

substrate deficiency in NO synthesis does not seem to exist. Moreover, in NO 

inhibition, our data again suggest that it is the higher lipophilicity of lovastatin which

explains its high efficacy, as the hydrophilic metabolite lovastatin acid can induce no

inhibitory effect.

Previous studies have shown that statins can suppress many aspects of

macrophage functions related to the development of atherosclerosis. These include 



inhibition of cell adhesion to endothelium [71], cell growth induced by oxidized LDL

[63], cell expression of matrix metalloproteinase [19] and scavenger receptors [31], 

and LDL oxidation and uptake [5]. All these cellular events may slow down 

cholesterol accumulation in macrophages, and reduce plaque stability and 

atherosclerotic development. Besides these events, since it is known that a 

macrophage-derived high amount of NO production is a key mediator for the 

atherosclerosis process [2, 37], the inhibitory effect on iNOS induction by lovastatin 

observed in this study strengthens the pleiotropic mechanism of statins in 

anti-atherosclerosis.
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Legends

Fig. 1. Concentration-dependent inhibition of LPS-induced NO release and iNOS 

expression by statins. RAW264.7 macrophages were treated with LPS (1 ìg/ml), 

statins, and/or lovastatin acid at the concentrations indicated for 24 h. After incubation, 

the culture medium was collected for NO assay (A), and cell lysates were subjected to 

SDS-PAGE for iNOS measurement (B). The data in (A) represent the mean ± S.E.M. 

from at least 3 independent experiments. The results shown in (B) are representative 

of 3 separate experiments. The data in parentheses indicate the percentages of iNOS 

protein induction as compared to the control responses without statin treatment.

Fig. 2. Concentration-dependent inhibition of IFN-ã-induced NO release and iNOS 

gene expression by statins. RAW264.7 macrophages were treated with IFN-γ (3 ng/ml) 

and/or statins at the concentrations indicated for 24 h. After incubation, the culture 

medium was collected for NO assay (A), and cell lysates were subjected to 

SDS-PAGE for iNOS measurement (B). The data in (A) represent the mean ± S.E.M. 

from at least 3 independent experiments. The data in parentheses indicate the 

percentages of iNOS protein induction as compared to the control responses without 

statin treatment.



Fig. 3. Transcriptional inhibition of LPS-induced iNOS gene expression by lovastatin.

Cells were treated with LPS (1 ìg/ml) (A) or IFN-γ (3 ng/ml) (C), either in the 

presence or absence of lovastatin or pravastatin at the concentrations indicated for 

different periods (8 or 12 h). Total RNA was prepared and subjected to RT-PCR 

analysis for the iNOS mRNA level. The â-actin mRNA level was considered an

internal control. Data on iNOS mRNA levels, which were measured by densitometry 

and calculated as percentages of the control response without statin treatment, and 

then normalized to the level of â-actin mRNA, are expressed as the mean ± S.E.M. 

from 3-5 independent experiments. *p < 0.05 as compared with the control LPS 

response. In (B), lovastatin was added to the cell cultures at the same time as, or 

different periods after, LPS (1 ìg/ml) treatment. Twenty-four hours after LPS addition, 

nitrite production in the medium and the iNOS immunoreactivity were determined. 

The NO production data are presented as the mean ± S.E.M. from 3 independent 

experiments.

Fig. 4. NO inhibition by lovastatin was dependent on protein isoprenylation.

Mevalonate (200 ìM), FPP (50 ìM), or GGPP (50 ìM) was treated together with LPS 

(1 ìg/ml), either in the absence or presence of lovastatin (30 ìM), for 24 h. Then the 

culture media were collected for NO assay. The data represent the mean ± S.E.M. 



from at least 3 independent experiments. *p < 0.05, indicating the abilities of 

mevalonate, FPP, and GGPP to reverse the reduction in lovastatin inhibition of 

LPS-induced NO production.

Fig. 5. Lovastatin inhibition of NF-κB activation, IKK kinase activity, and STAT1 

phosphorylation. In (A), cells were treated with 1 ìg/ml LPS and/or statins at the 

concentrations indicated for 1 h. Nuclear extracts from cell lysates were extracted and 

assayed for binding activity with specific oligonucleotides containing respective 

binding sequences for NF-êB. In some experiments, a specific antibody for the p65 

subunit of NF-êB was included in the binding mixture to analyze the binding 

specificity. In (B), cells were treated with 1 ìg/ml LPS and/or statins at the 

concentrations indicated for 30 min. Total cell lysates were immunoprecipitated 

overnight with IKKá and IKKâ antibodies together with protein A/G-agarose beads. 

The immunoprecipitates were then equally divided into 2 parts; one was used for the 

kinase assay (upper panel), with GST-IêBá as a substrate, and the other was subjected 

to SDS-PAGE for immunoblotting of IKKá (lower panel). In (C), cells transfected 

with the êB reporter gene and â-gal-lacZ plasmid were treated with LPS (1 ìg/ml) 

and/or lovastatin (30 ìM), either in the absence or presence of mevalonate (200 ìM), 

FPP (50 ìM), and GGPP (50 ìM). In each experiment, the luciferase activity derived 



from êB activation was normalized to the transfection efficiency with â-gal-lacZ. The 

data represent the mean ± S.E.M. from at least 3 independent experiments. *p < 0.05, 

indicating the abilities of mevalonate, FPP, and GGPP to reverse the reduction in

lovasltatin inhibition of LPS-induced êB activation. In (D), cells were treated with 

IFN-ã (3 ng/ml) and/or statins at the concentrations indicated for 30 min. After 

incubation, STAT1 tyrosine phosphorylation was measured by a specific antibody. 

Results are representative of 3 different experiments.
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