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Abstract

Monte Carlo simulations are performed to study the equilibrium structure and nonequilibrium
dynamic relaxation processes of knotted polymers. We �nd that topological complexity a�ects
the static and dynamic behavior of knots in di�erent ways to di�erent extent. For statics, our
results on the radii of gyration of knot polymers suggest that prime and two-factor composite
knots belong to di�erent groups, and we con�rm that for knots in the same group, the average
radius of gyration scales as Rg ∼ N 3=5p−4=15 in good solvents, where N is the number of
monomers and p is the topological invariant representing the length-to-diameter ratio of the
knot at its maximum in
ated state. From the studies of nonequilibrium relaxation dynamics
on prime knots cut at t = 0, we �nd that even prime knots should be classi�ed into di�erent
groups as (31; 51; 71; : : :); (41; 61; 81; : : :); (52; 72; 92; : : :), etc., based on their topological similarity
and their polynomial invariants such as Alexander polynomials. Our results suggest that the
mathematical classi�cation of knots can further be parametrized naturally into groups in a way
that can have direct physical meaning in terms of structures and dynamics of knots. Furthermore,
by scaling calculations, the nonequilibrium relaxation time is found to increase roughly as p12=5.
This prediction is further supported by our data. c© 2000 Elsevier Science B.V. All rights
reserved.
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1. Introduction

The physical properties of many biological molecules such as DNAs, are
strongly a�ected by their topological properties which play crucial roles in many
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molecular-biological phenomena. Certain types of topoisomerase enzymes [1–3] which
act on circular DNAs, produce di�erent types of DNA knots. Proteins, RNAs and
DNAs are all polymers of biological origin. Many molecular biological phenomena are
associated with quite ordinary properties and characteristics of polymers. For example,
substances like cellulose, polysaccharides, etc., are studied both in the conventional
chemistry and in polymer physics together with comparable synthetic substances. Thus,
investigations of knotted polymers can be of great help in understanding the behavior
of the ring DNAs. Furthermore, recent advances in experimental techniques, such as
optical tweezer and 
uorescence microscopy can arti�cially tie up DNA molecules to
form a knot structure [4], thus opening the possibility of studying the physical properties
of knotted molecules experimentally.
Despite the breakthrough in classifying knots and topological invariants [5,6] and

the association of polynomial invariants with many physical spin models [7] and quan-
tum �eld theory [8,9] in the last decades, the studies on the properties of physical
knotted molecules are limited. There have been some studies concentrated on relat-
ing the topological invariants of knots to the static properties of the knotted polymers
such as developing phenomenological models [10] of the e�ects of knot complexity
on the static and dynamic properties in terms of the number of essential crossings
C. However, the ability of the theory to predict the equilibrium relaxation dynamics
seems questionable. Grosberg et al. [11] presented a mean �eld theory of the e�ect of
knots on the equilibrium size of ring polymers. In their theory, a topological invariant
was introduced which is related to the primitive path in the “polymer in the lattice of
obstacles” model. These two works have consistent expression for the e�ects of topo-
logical complexity on the variation of static chain conformations. They are also con-
sistent with the experimental mobility test of DNA knots [12]. It was found that more
complex molecules migrate faster than less complex ones which indicates that more
complex molecules have more compact conformations. On the other hand, topological
interaction manifests itself most prominently in dynamic phenomena in systems of en-
tangled polymer coils or knotted ring polymers. The prohibition against chain crossing
in a system restricts the number of its possible conformations. The only conformations
are those that are topologically equivalent to one another as permitted by Reidemeister
moves [6]. These possible conformations can only appear or disappear via continuous
chain deformations without chain crossing nor breaking of the chain connection. Ring
polymers which possess topological memory will strongly hinder their relaxation mo-
tions. From these aspects, the systems of entangled polymer melts and knotted polymers
are somewhat similar in their relaxation behavior.
In this study, not only the equilibrium structure of various types of polymer knots

are investigated by Monte Carlo simulations, but also the nonequilibrium dynamic
relaxation (untying) process of a knotted polymer cut at one point is studied. Experi-
ments had shown [1,3] that a certain link in a ring DNA breaks up upon the action of
topoisomerase and reconnects again after exchanging interlinked strands resulting in a
knot structure. The relaxation dynamics of the knotted polymer is therefore important
in such process. If the relaxation time is too fast, the knot will untie itself before
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the link reconnects again and no knot structure will result. These results can be used
to formulate theoretical models or to be compared with experiments. Our interest is
focused on the system in which a ring polymer with a certain topological complexity
is initially well equilibrated and then cut at a randomly picked link. The relaxation
processes are monitored and analyzed.

2. Model and simulation details

Bead spring o�-lattice model is employed in the simulation. N beads are connected
by sti� springs with interactions between the nonbonded beads through the square-well
potential

Unb =




∞ (r ¡�) ;

−� (�6r ¡��) ;

0 (��6r) ;

(1)

where � and � are the energy and size parameters, respectively, and � = 1:5. The
monomeric � and � are units used for the reduced quantities for temperature (T ∗ =
kBT=�) and distances. The interactions between bonded beads are represented by a
cut-o� harmonic spring potential as

Ub =
1
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k�2
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�
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and the potential is in�nite elsewhere. The parameters in the model are chosen to forbid
any bond crossing to occur within the knotted chains. k�2=� = 400 and T ∗ = 10 are
chosen so that the system is in the good solvent regime. The system contains a single
polymer chain with chain length N ranging from 42 to 82. We have studied the knotted
polymers up to nine crossings: 31; 41; 51; 52; 61; 62; 63; 71; 72; 81; 91, and some composite
knots. The standard notation [6] for uniquely labeling a knot is CK where C is the
number of essential crossings and K is an index for a particular knot. Fig. 1 displays
some of the knot types studied in this work. The simulations are performed under
the conditions of constant temperature, volume and total number of beads. The initial
con�gurations are generated by growing the chain bead by bead to the desired length
and knot type. The trial moves employed for chains are bead displacement motions
[13] which involve randomly picking a bead and displacing it to a new position in the
vicinity of the old position. The distance away from the original position is chosen
with probability that the condition of equal sampling of all points in the spherical shell
surrounding the initial position must be satis�ed. The new con�gurations resulting from
this move are accepted according to the standard Metropolis acceptance criterion [14].
All runs are equilibrated for several million steps. Measurements for static properties
such as radius of gyration are taken over a period of 1–4 millions MCS=monomer.
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Fig. 1. Schematic knot diagrams. The (31; 51; : : :) group, the (41; 61; : : :) group and the (52; 72; : : :) group.
The Conway notation of each knot is also displayed. The �rst integer in the Conway notation is the number
of crossings in the braid structure while the second integer is the number of crossing in the right part of the
knot diagram.

The mean radius of gyration

〈Rg〉=
〈√√√√ 1

N

N∑
i=1

[(xi − xcm)2 + (yi − ycm)2 + (zi − zcm)2]
〉

(3)

is calculated, where (xi; yi; zi) are the coordinates of the ith monomer in the chain and
(xcm ; ycm ; zcm) are the coordinates of the center of mass and 〈 〉 denotes the ensemble
average. The knotted ring polymer is allowed to equilibrate for a long time before
it is cut randomly at one bond at t = 0. The nonequilibrium relaxation process is
characterized by the time dependence of the radius of gyration Rg(t) as it approaches
its long time limit. Averages over di�erent realizations (typically ∼ 300–500) of the
relaxation processes are performed. Time is measured in units of Monte Carlo steps per
monomer (MCS=monomer), one MCS=monomer means that on average every monomer
has attempted to move once.
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3. Knot complexity and equilibrium knot size

The number of essential crossings (C), i.e., the minimal number of crossings that
the knot possesses no matter how one tries to untie it without cutting the string, is
the simplest measure of the knot complexity. Quake [10] pictured a knot as a set of
interlocked loops with the number of loops determined by the number of essential
crossings, predicted the scaling law for the radius of gyration as Rg ˙ N�C1=3−�. For
good solvents, Flory theory gives � = 3

5 and Rg ˙ N 3=5C−4=15. Quake has performed
Monte Carlo simulations and the result is in agreement with the scaling law. How-
ever, C is a fairly weak topological invariant. As we know there are 7 knots with 7
crossings and 166 knots with 10 crossings. The number of knots increases rapidly with
the number of crossings. Grosberg et al. [11] recently introduced a new topological
invariant p de�ned as the aspect ratio of the length(L) to the diameter(d) of a knotted
polymer at its maximum in
ated state, p = L

d . p has a greater value for more com-
plicated knots. It has been demonstrated [15] that p distinguishes rather well between
di�erent knot types and thus is a better topological invariant than C. For example, the
knot 61 (p = 29:3) is less complex than 63 (p = 30:5) and the knot 81 (p = 37) is
more complex than 819 (p = 31). Flory approach has been applied [11] to estimate
the equilibrium polymer size by balancing the rubber-like elasticity and volume in-
teractions between monomers and they found that there are four di�erent regimes in
which the polymer size has di�erent dependence on p, N and T . The four regimes
are the good solvent regime, the quasi-Gaussian regime, the poor solvent regime and
the maximum tightened knot regime. In the good solvent regime, Rg ∼ N�p−4=15. We
have performed simulations to verify this relation. In Fig. 2a, 〈Rg〉 versus p in a log–
log plot is shown for chains of various values of N . As a reference, 〈Rg〉=N � ' 0:38
for the trivial knot 01. Two groups of knots are observed from our data. One group
contains the prime knots (31; 41; 51; 52; 61; 62; 63; 71; 72; 81; 91) and the other group con-
sists of the composite knots; 31#31 (granny), 31#−31 (square), 31#41, and 31#51. Both
group show rather good linear relations with slopes relatively close to − 4

15 . However,
the values of the radius of gyration for the composite knots are systematically larger
than the prime knots for N =60 and 82. This result indicates that the static properties
are not only determined entirely by the topological invariant p. Also from Fig. 2a and
b, we can see that 〈Rg〉 of 31#31#31(N = 82) deviates quite obviously from the linear
relation of the group (31#31; 31#41; 31#51). This further suggests that di�erent number
of f actors in the composite knots, such as 31#31 and 31#31#31, may result in di�erent
groups of composite knots. Also it has been recently found [16] that there exists exact
additivity of the writhe number but subadditivity of p for the composite knots. They
also showed that composite knots with two, three and four prime knots have di�erent
degrees of de�cits of p. Thus, it is plausible to assume that di�erent groups of knots
exist. In Fig. 2b, when the Rg is rescaled by N�, we can see all the data collapse for
the prime knots as well as for the composite knots with two factors. This indicates
that Rg ∼ N� is a universal relation. However, it is noted that as p increases, devia-
tion from Rg ∼ N�p−4=15 becomes signi�cant. This is because the polymer is crossing
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Fig. 2. (a) Radius of gyration (Rg) versus the aspect ratio (p) for knots at various chain lengths.
Dotted lines denote slope of −4=15. Filled symbols represent the prime knots (31; 41; 51; : : : 91):
(�) N = 42; (N) N = 60; (•) N = 82. Open symbols are composite knots: (4) N = 60 and (©)
N = 82. Increasing values of p: (�) 31; 41; 51; 61; 63. (N) 31; 41; 51; 52; 62; 61; 63; 71; ; 72; 81; 91. (•)
31; 41; 51; 52; 62; 61; 63; 71; 72; 81; 91. (4) 31#−31; 31#31; 31#41; 31#51. (©) 31#−31; 31#31; 31#41; 31#51;
31#31#31. (b) Same data as in (a) but plotted with Rg=N� versus p.

over to the maximal tightened knot regime. In this regime, the polymer coils up so
tightly almost as a compact ball and Rg becomes independent of p and solvent quality;
Rg ∼ N 1=3. The uniqueness of this regime is caused by the strong constraint imposed
on the knotted ring conformation.

4. Nonequilibrium relaxation and classi�cation

Topologically distinct knots, even with the same value of C or complexity, di�er
from one another in the detail way of tying up the knot. Here we are interested in
the question of what physical quantity can best re
ect these di�erences and manifests
in some physically measurable quantities. As we have seen in the previous section
that equilibrium structural quantities such as the size of the knot, could not resolve
very well these di�erences. Given a knot of a given number of essential crossings or
complexity, if one wants to know how it was originally tied up, the simplest way is
to cut the knot at some point and untie it to a linear string. Based on this simple idea,
but on a molecular level, one can imagine untying the cut knot by Brownian motion
and monitor the subsequent nonequilibrium relaxation dynamics. Here we shall focus
only on prime knots. The knotted ring polymer is cut at a randomly picked link at
t = 0 and the chain starts to relax towards the Flory coil conformation. Rg(t) denotes
the average of Rg(t) over many relaxation realizations and its behavior as a function
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Fig. 3. Rg(t) versus t for N = 60 for di�erent knot types. Dotted lines are exponential �ts. t is in units of
106 MC steps. The solid horizontal line is the ensemble average 〈Rg〉 obtained from independent simulations
of a linear chain of a chain of the same length at equilibrium.

of t is monitored. Fig. 3 shows the variation of Rg(t) versus t for N =60 with di�erent
knot type. As we can see, these chains eventually reach their �nal equilibrium state of
the linear unknotted chain. The relaxation process can be well �tted into an exponential
behavior. The nonequilibrium relaxation time � is extracted from the data of Rg(t) by
assuming [Rg(∞)− Rg(t)]=[Rg(∞)− Rg(0)] decays as exp(−t=�). It is worth noting
that this nonequilibrium relaxation di�ers considerably from the equilibrium correlation
time of an uncut knot in which a long time mode exists for the time-autocorrelation
function of nontrivial knots [17]. Our results on nonequilibrium relaxations do not show
an obvious long time mode and no stretched exponential behavior is observed.
Fig. 4a shows the variation of nonequilibrium � versus p for various knots through

dynamical Monte Carlo simulations. � for the trivial knot 01 is also shown for com-
parison. As we can see, � is highly nonmonotonic as p increases. Although the overall
trend show, an increase in � with increasing p; the zig-zag-like local behavior is rather
interesting. We believe that the local topological structure plays an even more important
role in the relaxation dynamics of a cut knotted polymer as the degree of compactness
does. In other words, knots with di�erent detail topological structures relax in di�er-
ent ways. Remarkably, � shows a monotonic increasing behavior with p when these
prime knots are divided into di�erent groups, based on their topological similarity.
These groups are (31; 51; 71; : : :); (41; 61; 81; : : :); (52; 72; 92; : : :), etc. (see also Fig. 1 for
these knot groups). Our data indicate the apparently puzzling fact that 31 has a longer
relaxation time than 41 and 61, despite that it has fewer crossings and much smaller
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Fig. 4. (a) Monte Carlo data for the nonequilibrium relaxation time (in units of MCS=monomer=105) versus
p for N = 60. (b) Same data as in (a) but � is separated into di�erent groups. Solid curves are � ∼ p12=5.

Table 1
The di�erent knot groups with their Alexander polynomials �(s). C is
the number of crossings in the knot. s is just an algebraic variable

Knot group Alexander polynomial �(s)

C1: (31; 51; 71; : : :) (1 + sC)=(1 + s)

C1: (41; 61; 81; : : :) C
2 − 1− (C − 1)s + ( C2 − 1)s2

C2: (52; 72; 92; : : :)
C−1
2 − (C − 2)s + C−1

2 s2

value of p. This can be easily interpreted from our classi�cation since 31 belongs to the
group of longer relaxation. As from Fig. 4b we can see that the group (31; 51; 71; : : :)
has longer relaxation times than other groups for knots with same chain length. This
indicates that the (31; 51; 71; : : :) group has the strongest topological hindrance on the
relaxation moves among the groups studied. If we plot the relaxation time according
to these groups, we �nd smoothly increasing curves with � ∼ p12=5. An important out-
come of these results is that the topological e�ect has a much stronger in
uence on the
nonequilibrium relaxation dynamics than on the equilibrium properties. The radius of
gyration for the prime knots and even the equilibrium correlation time of an uncut knot
[17], show a consistent monotonic behavior as a function of p while the nonequilibrium
relaxation times need to be classi�ed into di�erent groups in order to have a regular
monotonic dependence. Furthermore, by analyzing the Alexander polynomials (�(s)) of
these groups of knots, we �nd that the knots in each group have a similar form for their
Alexander polynomials parametrized by the number of crossing C. These polynomials
are listed in Table 1. One can easily see why the relaxation behavior are divided into
groups, from the form of the polynomial invariants. The (31; 51; 71; : : :) group having
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a long � can also be associated with the observation that the degree of �(s) increases
with C, while for the other two groups their �(s)’s are always of degree 2.
The importance of the topological e�ect can be further veri�ed from the outcome

of a naive attempt to derive for the relation between � and p as follows. If the knot
has a greater value of p (i.e., more compact), then simple calculations show that
it has a higher free energy di�erence from the Flory free coil state, and hence the
relaxation process proceeds at a faster speed. But this result is contrary to what we
have found in simulations. It is because of the existence of the free energy barrier
that arose from the topological e�ect and is not accounted for in the naive free energy
di�erence approach. The system does not simply just relax downhill to the lower free
energy Flory coil state, but has to overcome the barrier due to topological constraint of
entanglement. Thus for the study of dynamical properties of knots, topological e�ect
is a critical factor. When the chain is cut at t=0, the closed ring constraint is relieved
and the chain starts to relax. In good solvent regime, the chain would tend to expand
out of its compact structure. However, the prohibition against chain crossing in a
system hinders the process. Thus, the relaxation process can only proceed through
some kind of reptation-like motion through its contour. However, it should be noted
that the reptation move is somewhat di�erent from the standard reptation theory. In
the reptation theory, cross-linked network or polymer melts are considered and the
monomers move in a “tube” resulted from the obstacles produced by other chains.
The topology of the surrounding did not change signi�cantly in the intermediate time
scales. From our simulation, we �nd that the radius of gyration expands at the same
rate as the end-to-end distance does. In other words, the diameter of the “tube” expands
accordingly.
Employing the idea of a maximally in
ated tube of contour length L and cross-section

diameter d, the average time � taken by the chain to creep out of the initial contour
length L can be evaluated on the basis of the reptation theory as � ∼ L2=D. The dif-
fusion coe�cient D can be calculated according to the Einstein relation: D = kBT=�t
where kB is the Boltzmann constant and �t is the total friction coe�cient. As we
know, the friction coe�cient for reptation along a tube is proportional to the num-
ber N of links in the macromolecule, i.e., N�, where � is the monomer–solvent
friction coe�cient in the Rouse model [18,19]. However, we believe that an inter-
nal friction process is also involved as the chain varies its conformations during the
relaxation process. For a linear polymer chain, the monomers tend to avoid each other
in good solvents and the probability of two monomers in direct contact is small. How-
ever, for knotted polymers, monomers are in close contact because of the existence of
crossings. After cutting the knots, in the process of relaxation, monomers will slide
onto each other, and extra friction will occur. The collision probability is greatly in-
creased as the number of crossings increases. This monomer–monomer friction does
not involve the solvent, but will be somewhat related to the viscosity of a 
uid of
monomers. We use an analog to electric resistance to estimate this internal friction; that
is the monomer-monomer friction coe�cient is assumed to be proportional to the ratio
of length to cross-section area of the maximally in
ated knot. Thus the total friction
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Fig. 5. Nonequilibrium relaxation time � (in units of MCS=monomer) versus N for 41(N) and 51(•). Solid
lines denote slopes of 1 + 2� ' 2:2.

coe�cient can be expressed as �t=N�+L�, where � represents the monomer–monomer
friction coe�cient and � ' �o=d2 for some characteristic monomer–monomer friction
�o. Following the idea on the construction of the maximally in
ated tube, Grosberg et
al. obtained L ∼ Rgp2=3 and d ∼ Rgp−1=3 ∼ N�p−3=5. Then �t = N�+ �oN−�p8=5 and
hence � ∼ L2=D ∼ N 2�p4=5[N� + N−�p8=5�o]. For �xed p and N/1; � ∼ N 1+2�. For
�xed N and p/1; � ∼ p12=5. We have performed simulations and plotted � against N
for 41 and 51 as shown in Fig. 5. We �nd that the relation � ∼ N 1+2� agrees qualita-
tively well with our simulations. Also, the relation (� ∼ p12=5) gives good description
of our simulation data. However, in the long chain limit (N → ∞), one still recovers
� ∼ N 1+2�p4=5. The cross-over occurs at chain length of N ' p(�o=�)5=8. In the present
model in which an attractive square potential exists between monomers, physically we
expect �o.� and the cross-over will occur and chain lengths are much greater than in
our present study.

5. Conclusions and outlook

The equilibrium structure of uncut knots and nonequilibrium relaxation of cut knotted
polymers are studied by Monte Carlo simulations. Our results for the static quantities
explicitly veri�ed the scaling laws proposed by Grosberg et al. In the good solvent
regimes, the averaged radius of gyration for both the prime and composite knots scale
as Rg ∼ N�p−4=15 where p is a topological invariant representing the length-to-diameter
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ratio of a knotted polymer at its maximum in
ated state. Although p is a better topolog-
ical invariant than the crossing number C, our results for the composite knots indicate
that p may not be the determinant invariant in correlating the static properties of all
kinds of knots. Simulation results show that the radii of gyration of composite knots
are always larger than the prime knots with roughly the same value of p. We also
found that the dependence of the radius of gyration on p gradually becomes weaker as
p increases. We believed that the knotted polymer chain is crossing over to the max-
imally tightened regime. In the tight knot regime, the polymer is already in extremely
compact situation so that an increase of p has no e�ect on its conformational change.
For the studies of the nonequilibrium dynamics, we monitored the relaxation process

of a fully equilibrated prime knotted polymer cut at a randomly picked link. When
the constraint of the ring conformation is relieved, the chain starts to relax toward
the Flory coil. Especially in good solvent condition, the driving force for the chain
to expand is fairly strong. Yet, as we know the self-crossing of the macromolecular
sections are forbidden and this e�ect greatly hinders the relaxation process. As a result,
the relaxation proceeds through the reptation-like motions of the chain ends, especially
for relatively compact knots. Perhaps the most important �nding of this work is that
the local topological structure plays a more important role in the relaxation dynamics
of a cut knot than p does. The topological e�ect has much powerful in
uence on
the nonequilibrium relaxation dynamics than on the static or equilibrium properties
of knots. The members of each group have similar patterns topologically as can be
observed directly by careful visual inspection (see Fig. 1) or from their Alexander
polynomials. The members in the (31; 51; 71; : : :) group have great resemblance in their
knot conformations and their Alexander polynomials can be parametrized by a single
formula. Other groups like (41; 61; 81; : : :) and (52; 72; 92; : : :) can also be recognized
quite easily. The feature of long time mode is especially obvious for 31 as compared
to 41; 61; 81. Our results also showed that group (31; 51; 71; : : :) has a much longer
relaxation time than group (41; 61; 81; : : :) does. Somehow, in relaxing its conformation,
the group (31; 51; 71; : : :) has a topological hindrance that is inherently stronger than
other groups. The relaxation time is found to smoothly increase as � ∼ p12=5. Naive
attempt of estimating the relaxation time from the free energy di�erence of initial
knotted state to the �nal linear coil state failed indicating the presence of the free
energy barrier due to topological e�ects. On the other hand, the idea of a maximally
in
ated tube turned out to be useful and analysis based on the reptation theory showed
a promising outcome. The average time for a reptating chain to move along its tube
by a length L is assumed to be � ∼ L2=D. In addition to the monomer–solvent friction
force, the internal friction caused by monomer–monomer drag was also taken into
account. The initial ring conformations and the existence of the essential crossings
impose very strong constraint on the relaxation path of the chain. Therefore, for knotted
chains, monomer–monomer contacts are inevitably frequent. The relaxation time is
found to be proportional to N 1+2� for �xed p and N/1, which agrees well with our
simulation data. For �xed N and p/1; � ∼ p12=5 also gives a good description of the
data.
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In this work, we focused on studying the relaxation behavior of a cut knotted poly-
mer. Our approach can be readily extended to investigate other properties of knotted
chains. For example, Stasiak et al. [12], found that DNA knots can undergo gel elec-
trophoresis and there is a linear relationship between speeds of migration of di�erent
types of DNA knots and the average crossing numbers of their ideal geometrical repre-
sentations. In other words, compact molecules migrate quicker than less compact ones.
Until now, there is no consensus about theoretical models that would allow gel mi-
gration of a given type of DNA knot to be predicted. We plan to use Monte Carlo
methods to study the di�usion rate of knotted polymers in a systematic manner in
the hope to help develop and verify the related theories about the mobility of knots.
Another interesting issue is how the topological constraints due to knotting a chain
molecule would a�ect the force law or elastic response. There were some recent ab
initio calculations [20] on the breaking strength of a polyethlyne chain with a trefoil
in it (not a closed chain), but the general physical behavior is not yet revealed and we
are currently investigating this problem.
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