Inorganica Chimica Acta

Oxidations of N, N^{\prime}-Disubstituted o-Phenylenediamine in the Presence of Metal Ions and the Crystal Structure of N, N^{\prime}-Dimethylbenzimidazolium Perchlorate, Pyridine-bis(o-benzosemiquinonediimine)cobalt(III) Chloride and Bis(pyridine) $\left(N, N^{\prime}\right.$ -bistoluene-p-sulfonyl-o-phenylenediiminato)copper(II)

PAI-HSIU CHENG, HEI-YING CHENG, CHENG-CHEN LIN and SHIE-MING PENG*

Department of Chemistry, National Taiwan University, Taipei 10764 (Taiwan)
(Received December 6, 1989)

In continuing research on the metal complexes of o-benzoquinodiimine [1-4], we report the reactions of $\mathrm{N}, \mathrm{N}^{\prime}$-disubstituted - -phenylenediamine with metal ions under basic conditions, and the crystal structure of their products: N, N^{\prime}-dimethylbenzimidazolium perchlorate, pyridine-bis(o-benzosemiquinonediimine)cobalt(III) chloride, and bis(pyridine) (N, N^{\prime} -bistoluene- p-sulfonyl-o-phenylenediiminato) copper-
(II). The diamine molecules (1) can serve as bidentate or monodentate ligands [5]. They can be deproto-
*Author to whom correspondence should be addressed.
nated to form dianions (2) and may be further oxidized to form anionic radicals (3) and neutral diimine molecules (4). Compound 3 a forms diamagnetic square-planar complexes with d^{8} metal ions and $4 a$ forms tris- α-diimine complexes with d^{6} metal ions.

The reactions of $\mathrm{ib} N, N^{\prime}$-dimethyl-o-phenylenediamine with $\mathrm{M}\left(\mathrm{ClO}_{4}\right)_{2}$ ($\mathrm{M}=\mathrm{Fe}(\mathrm{II}), \mathrm{Co}(\mathrm{II}), \mathrm{Ni}(\mathrm{II})$, $\mathrm{Cu}(\mathrm{II})$) in ethanol result in precipitates of various colours. Purification of these solids led to red crystals of N, N^{\prime}-dimethylbenzimidazolium perchlorate. The benzimidazole is believed to form by the ring closure of N, N^{\prime}-dimethyl-o-phenylenediamine with formaldehyde, which comes from the oxidative cleavage of the N-methyl group.

1b
The red crystals consist of N, N^{\prime}-dimethylbenzimidazolium cations and perchlorate anions. The structure of the cation is shown in Fig. 1. The N1-C1 and $\mathrm{N} 2-\mathrm{C} 2$ bonds are short ($1.31 \AA$) and exhibit partial double-bond character. The bond pattern is consistent with the proposed structure.

1c

N, N^{\prime}-disubstituted o-benzosemiquinonediimine (s-bqdi)

3
3a, $\mathrm{R}=\mathrm{H}$
$\mathbf{3 b}, \mathrm{R}=\mathrm{ClH}_{3}$

Fig. 1. ORTEP drawing of the N, N^{\prime} dimethylbenzimidazolium cation with 30% probability. Space group, C2/c; formula, $\left(\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{~N}_{2}\right)^{+} \mathrm{ClO}_{4}^{-}: \quad a=10.491(6), \quad b=16.201(3)$, $c=13.625(26) \lambda ; \beta=106.2(1)^{\circ}, Z=8$. A total of 1218 reflections were observed with $I>2 \sigma(I), 145$ parameters, to give $R=5.6, R_{\mathrm{w}}=6.5 \%$.

Fig. 2. ORTEP drawing of the cation $\left[\mathrm{Co}^{\mathrm{III}}(\mathrm{s}-\mathrm{bqdi})_{2} \mathrm{py}\right]^{+}$ with 50% probability. Space group, $C 2 / c$; formula, [Co$\left.\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)\right]^{+} \mathrm{Cl}^{-}: a=14.501(3), b=12.774(4), c=$ $18.875(5) \AA ; \beta=93.98(2)^{\circ}, Z=8$. A total of 1024 reflections were observed with $I>2 \sigma(I), 370$ parameters, to give $R=$ $3.4, R_{\mathrm{w}}=2.8 \%$. Other pertinent bond parameters: $\mathrm{Co}-\mathrm{N} 5$, $1.982(7) \mathrm{A} ; \mathrm{N} 1-\mathrm{Co}-\mathrm{C} 5,98.7(3)$; $\mathrm{N} 2-\mathrm{Co}-\mathrm{N} 5,101.2(3)$; $\mathrm{N} 3-\mathrm{Co}-\mathrm{N} 5,101.4(3) ; \mathrm{N} 4-\mathrm{Co}-\mathrm{N} 5,97.3(3)$; $\mathrm{N} 1-\mathrm{Co}-\mathrm{N} 2$, 82.0(3); N1-Co-N3, 159.8(3); N1-Co-N4, 95.4(3); N2-$\mathrm{Co}-\mathrm{N} 3, \quad 94.1(3)$; $\mathrm{N} 2-\mathrm{Co}-\mathrm{N} 4, \quad 161.5(3)$; $\mathrm{N} 3-\mathrm{Co}-\mathrm{N} 4$, $82.0(3)^{\circ}$.

The reactions of 1c (N, N^{\prime}-dibenzyl-o-phenylenediamine) with metal ions in pyridine resulted in hydrolysis of the amides and led to the isolation of the o-benzosemiquinonediimine metal complexes 3 a , e.g. $\left[\mathrm{Ni}^{(\mathrm{II})}(\mathrm{s} \text {-bqdi })_{2}\right]$ and $\left.\left[\mathrm{Co}^{(\mathrm{III})}(\mathrm{s}-\mathrm{bqdi})_{2} \mathrm{py}\right)\right]^{+}$.

For the crystal structure analysis of $\left[\mathrm{Co}{ }^{(\mathrm{III})}(\mathrm{py})\right.$ -(s-bqdi) $\left.{ }_{2}\right]^{+} \mathrm{Cl}^{-}$, suitable single crystals were obtained by direct cooling of the reaction mixture of the hydrochloride salt of $\mathbf{1 c}$ in hot pyridine with $\mathrm{Co}(\mathrm{OAc})_{2}$. The result is shown in Fig. 2. The deep red-purple crystals consist of well-separated pyridine-bis(o-benzosemiquinonediimine)cobalt(III) cations and chloride anions. The cobalt atom is penta-coordinated in a square-pyramidal geometry with the nitrogen atom of pyridine in the axial site and four nitrogen atoms of the two o-benzosemiquinonediimine ligands in the equatorial plane, and

Fig. 3. ORTEP drawing of the molecule bis(pyridine) $\left(N, N^{\prime}\right.$ -bistoluene- p-sulfonyl- σ-phenylenediiminatocopper(II),
$\left[\mathrm{Cu}(\mathrm{py})_{2}(p\right.$-toslopdi)], with 50% probability. Space group, $C 2 / c: a=16.894(2), b-11.662(2), c=14.753(4) \mathrm{A} ; ~ \beta=$ $100.62(2)^{\circ}, Z=4$. A total of 1599 reflections were observed with $I>2 \sigma(I), 242$ parameters, to give $R=3.5, R_{\mathrm{w}}=2.5 \%$. Pertinent bond parameters: $\mathrm{Cu}-\mathrm{N} 1,1.942(3)$; $\mathrm{Cu}-\mathrm{N} 2$, 1.998(3); N1-S, 1.602(3); N1-C7, 1.399(5); S-O1, 1.442(3); S-O2, $1.439(3) ; \mathrm{S}-\mathrm{Cl}, \quad 1.765(4) ; \mathrm{C} 7-\mathrm{C}^{\prime}$, 1.403(7); C7-C8, 1.380(6); C8-C9, 1.372(7); C9-C9', $1.367(10) \mathrm{A} ; \mathrm{N} 1-\mathrm{Cu}-\mathrm{N} 1^{\prime}, 81.0(1) ; \mathrm{N} 1-\mathrm{Cu}-\mathrm{N} 2,128.8(1)$; $\mathrm{N} 1-\mathrm{Cu}-\mathrm{N}^{\prime}, 111.3(1)$; $\mathrm{N} 2-\mathrm{Cu}-\mathrm{N} 2^{\prime}$, $98.7(1)$; $\mathrm{Cu}-\mathrm{N} 1-\mathrm{S}$, $117.5(2) ; \mathrm{Cu}-\mathrm{N} 1-\mathrm{C} 7, \quad 115.9(2) ; \mathrm{S}-\mathrm{N} 1-\mathrm{C} 7, \quad 124.9(3)^{\circ}$. $\left[\mathrm{M}(\mathrm{py})_{2}(p\right.$-toslopdi)] complexes with $\mathrm{M}=\mathrm{Co}(\mathrm{II}), \mathrm{Ni}(\mathrm{II})$ or $\mathrm{Cu}(\mathrm{II})$ arc all isomorphous.
is displaced by $0.314(4) \AA$ from the least-squares plane of the four basal nitrogen atoms. The average $\mathrm{Co}-\mathrm{N}$ distance and bond pattern of the o-benzosemiquinonediimine ligand in this complex are comparable to those in similar complexes, e.g. [$\mathrm{M}^{\mathrm{II}}(\mathrm{s}-$ bqdi) $)_{2}$, $\left(\mathrm{M}=\mathrm{Ni}[6], \mathrm{Pd}^{*}, \mathrm{Pt}^{*}, \mathrm{Co}[1]\right)$ and $\left[\mathrm{Co}^{\mathrm{II}} \mathrm{X}\right.$ $\left.(\mathrm{s} \text {-bqdi })_{2}\right]^{+} \mathrm{Y}^{-}(\mathrm{X}=\mathrm{Cl}, \mathrm{Y}=$ none $[1] ; \mathrm{X}=$ opda, $\mathrm{Y}=$ $\mathrm{B} \phi_{4}{ }^{-}$[7]).

The reaction of $\mathbf{1 d}$ (N, N^{\prime}-bistoluene-p-sulfonyl-o-phenylenediaminc) with metal ions ($\mathrm{M}=\mathrm{Co}$ (II), $\mathrm{Ni}(\mathrm{II}), \mathrm{Cu}(\mathrm{II})$) in pyridine led to the isolation of the o-phenylenediiminate metal complexes 2d $\left[\mathrm{M}\left(\mathrm{R}_{2}\right.\right.$ opdi) $\left.(\mathrm{py})_{2}\right] \quad(\mathrm{M}=\mathrm{Co}(\mathrm{II}), \mathrm{Ni}(\mathrm{II}), \mathrm{Cu}(\mathrm{II}) ; \mathrm{R}=$ $\mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}$). UV-Vis spectroscopic data are: for Co(II), $588 \mathrm{~nm}\left(\epsilon=6.30 \times 10^{2} \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right), 576$ $\left(6.34 \times 10^{2}\right), \quad 520\left(5.19 \times 10^{2}\right), 386\left(1.68 \times 10^{3}\right)$, $306\left(5.76 \times 10^{3}\right)$; for $\mathrm{Ni}(\mathrm{II}), 506\left(1.23 \times 10^{2}\right), 418$ $\left(2.22 \times 10^{2}\right), 308\left(4.79 \times 10^{3}\right)$; for $\mathrm{Cu}(\mathrm{II}), 820$ (broad, $\left.1.51 \times 10^{3}\right), 526\left(4.42 \times 10^{2}\right), 312(3.98 \times$ 10^{3}).

The result of the X-ray structural analysis of $\left[\mathrm{Cu}\left(\mathrm{R}_{2}\right.\right.$ opdi $\left.)(\mathrm{py})_{2}\right]$, shown in Fig. 3, indicates that the central copper ion has a distorted tetrahedral coordination. The dihedral angle between the N1-$\mathrm{Cu}-\mathrm{N} 1^{\prime}$ and $\mathrm{N} 2-\mathrm{Cu}-\mathrm{N} 2^{\prime}$ planes is $74.46(14)^{\circ}$. The small $\mathrm{Cu}-\mathrm{N} 1$ distance (1.942(3) \AA) is attributed to

[^0]the negative charge of the nitrogen atom. The large $\mathrm{C} 7-\mathrm{N} 1$ distance (1.399(5) \AA) and aromatic bond lengths in the $\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 9^{\prime}-\mathrm{C} 8^{\prime}-\mathrm{C} 7^{\prime}$ ring are consistent with the phenylenediiminate structure. This is the first report of the structure of a dianionic form of this series.

Acknowledgement

This work was supported by the National Science Council, Taiwan.

References

1 S. Peng, C. Chen, D. Liaw, C. Chen and Y. Wang, Inorg. Chim. Acta, 101 (1985) L31.
2 S. Peng, K. Peters and A. Simon, Inorg. Chim. Acta, 101 (1985) L35.

3 D. Liaw and S. Peng, Inorg. Chim. Acta, 113 (1986) L11.
4 M. Hsieh, M. Cheng and S. Peng, Inorg. Chim. Acta, 145 (1988) 1.

5 R. C. Elder, D. Koran and H. B. Mark, Jr., Inorg. Chem., 13 (1974) 1644.
6 G. S. Hall and R. H. Soderberg, Inorg. Chem., 7 (1968) 2300.

7 M. Zehnder and H. Löllige, Helv. Chim. Acta, 63 (1980) 754.

[^0]: *For $\left[\mathrm{M}^{\mathrm{II}}(\mathrm{s}-\mathrm{bqdi})_{2}\right]$ with $\mathrm{M}=\mathrm{Pd}$, Pt. They are isomorphous with the Ni analogue (ref. 6) (unpublished result).

