
General ized terminal
connectivity problem for
multilayer layout scheme
Chia-Chun Tsai*, Sao-Jie Chen and Wu-Shiung Feng

Given a set of n horizontal (or vertical) wire segments
run on different layers with variable widths (or heights),
and a set of m terminals placed on different layers and
with arbitrary rectangular shapes, a generalization of the
terminal connectivity problem (TCP) is considered. This
TCP can be applied to facilitate the VLSI or PCB multi-layer
layout. First, it is proved that this TCP is NP-hard by
showing that it is equivalent to a minimal steiner tree
problem, which has been proved NP-complete. Then
an efficient algorithm for the TCP is presented which
runs in O(m + (7 + c)n) time (with some preprocessing
work). Experimental results are given to verify the
effectiveness of the algorithm.

electronic design automation, terminal connectivity, shortest con-
nectivity path, hyper-complete graph, minimal steiner tree

In this paper, a new problem concerning terminal
connectivity is proposed as follows. Let there be a set
of n horizontal (or vertical) wire segments orthogonally
run on different layers with variable widths (or heights),
and a set of m terminals placed on different layers and
with arbitrary rectangular shapes. Assume that two
wire segments on adjacent layers can be connected
by a special wire segment (called a via) and that two
or more horizontal (or vertical) wire segments on the
same layer cannot overlap each other. First, it is
necessary to check whether the given m separate
terminals are interconnected by these segments or not.
Then, if they are connected, the shortest connectivity
path must be found by eliminating any redundant
segments (loops, pendant or isolated segments); if they
are not connected, the disconnected occurrences must
be reported or highlighted. This problem is a generalization
of the terminal connectivity problem (TCP) 1 and it
corresponds to a net connectivity problem (NCP). Both
TCP and NCP problems deal with two or more terminals
and with wires connecting terminals in a VLSI or PCB
multilayer layout scheme 2-4.

Institute of Electrical Engineering National Taiwan University, Taipei,
Taiwan 10764.
* Also with the department of electronic engineering, National Taipei
Institute of Technology Taipei, Taiwan.
Paper received: 12 July 1989. Revised: 21 November 1989

In practice, tens of thousands of routing segments
are required to form an extremely complex mesh in a
VLSI chip or a PCB multi-layer layout. Since a routing
segment can be placed horizontally or vertically on
different layers, after some basic operations (such as
moving, pushing, plowing s, compaction 6, via mini-
mization 7, and so on) are applied, the correctness of
the net connectivity will be affected without any
checking being performed. These kinds of design errors,
which may occur in the VLSI or PCB layout design, can
be classified into the following categories: geometrical
design rule error, topological or logical error, and
electrical performance error. In this paper, topological
error (especially circuit connectivity) is the main concern.
Most connectivity errors found in manual design
examples are trivial errors 8'9, such as unreasonably
connected nets (short circuits between subcircuits)
or isolated nets (open circuits between subcircuits).
However, manual checking or verification of the extracted
(hierarchical) circuit connectivity is tedious, time-
consuming and error-prone. Therefore, the TCP will
certainly play an important role in this issue; moreover,
we can achieve part of the electrical or design-rule
checking when performing TCP operations for distinct
nets.

An analogous problem of finding a Manhattan path
was presented in Lipski 1°'~1 and Asano 12 as follows: given
a set of horizontal and vertical line segments, and
specifying two line segments, s and t, find a path
between s and t. Both Lipski and Asano presented an
efficient algorithm which runs in O(nlogn) time and
takes O(nlogn) space using a segment tree structure,
where n is the number of horizontal and vertical
segments. But this problem was limited to only two
terminals (or two segments, s and t) and to no more
than two layers. However, the TCP algorithm can find
the shortest connectivity path through m (m>~2)
terminals and on k (k/> 1) different layers, and it runs
in linear time.

A given terminal connectivity problem can be treated
on a graph, G, composed of vertices (terminals or
intersections) and edges (wire segments). Since finding
the shortest connectivity path in the graph G is
equivalent to finding a minimal steiner tree, which has
been proved NP-complete 13, it will be shown that the
TCP is NP-hard and needs to be solved by using heuristic
techniques. To attack this generalized TCP, the problem

volume 22 number 7 september 1990 0010-4485/90/070423-11 © 1990 Butterworth-Heinemann Ltd 423

will be mapped onto a special data structure-~ multi-
layer corner-stitching TM - and present an efficient
algorithm which runs in O(m + (I + c)n) time, where
m and n are the numbers of terminals and wire
segments, respectively, and c is a small positive constant
which depends on the intersections between the wire
segments.

Figure I shows an example of the TCP, consisting of
seven separate terminals and 18 wire segments with
two layers. Clearly, the seven separate terminals are
not connected together because the terminal t7 is
isolated from the wire segment vs. In another example
of the TCP shown in Figure 2(a), the six separate
terminals are connected together through the 16 wire
segments and at least one connected path exists
through these six separate terminals. But note that at
least three loops in Figure 2(a) are formed and some
of the segments are redundant for the finding of the
shortest connectivity path. Hence, it is possible to find
the shortest connectivity path through the six separate
terminals by eliminating those redundant segments, as
shown in Figure 2(b).

h4 s 6 ~ v5

s 2 ~ I I

h 3 s 3 h 6 h 5

Figure 1. Example ot a TCP with seven terminals and 18
wire segments, which is disconnected because of isolated
terminal t7

Vl ~ t4

 -ll P []

I I hi ss'

a

~ . , : : : : ~ t4

t 1

[5 I D t5
~ Dummy vertex

t 2
L t 3 ~ ~ , Virtual vertex

t6 . . I ~ Terminal vertex

b
Figure 2. (a) Example of TCP with six teminals and 16
wire segments; (b) shortest connectivity path

In what follows, the TCP treated on a hyper-complete
graph is proved NP-hard, and a heursitic technique is
proposed for solving the TCP efficiently by mapping it
into a multilayer corner-stitching data structure in
which running time is linear. Some examples are
presented to verify the effectiveness of the heuristic
algorithm.

PROBLEM FORMULATION

Definition of terms

A given TCP consists of m terminals and n orthogonal
(horizontal or vertical) segments on different layers.
Intersections between the wire segments are called
dummy terminals; these consist of bends in the same
layer and vias between segments that occupy any two
adjacent layers. In Figure 1, there are seven terminals
and eight dummy terminals. A terminal or dummy
terminal is also called a vertex or dummy vertex.

When a vertex is contacted by a segment, then the
vertex and the segment are said to be incident
(branching or outgoing) with each other. A terminal
(or bend) has at most four incident segments while a
via has at most eight incident segments in the TCP. In
Figure 1, for example, segments h 2, v 2 and h 4 are incident
with terminal t 2. Two vertices are said to be adjacent
if they share an incident segment. In Figure 1, s4 and
s6 are adjacent, but s4 and s7 are not. A terminal without
an incident segment is called an isolated terminal. For
example, terminal t7 in Figure 1 is an isolated terminal.
Similarly, a segment that is isolated from the connected
path is called an isolated segment, such as h 6 in Figure 1.
A segment in contact with a vertex at a unique point
is called a pendant segment, such as v2 and v~ in Figure.
A segment that has a part of itself as a pendant segment
is called a pendant segment, such as v 2 and v~ in Figure 1.
segment is called a loop segment if it belongs to one
of the segments which form a loop. In a Manhattan
routing, at least four segments are needed to form a
loop. For example, in Figure 1, segments v~, h4, v4, and
h 5 are loop segments. A path containing some of the
n segments and connecting between every pair of m
terminals without a loop is called a connected path. A
connected path with minimal (distance) cost is called
a shortest connectivity path. The vertices and segments
in the shortest connectivity path are called pathing
vertices and pathing segments, respectively, as shown
in Figure 2(b).

General graphs
A TCP can be treated on a graph G = (V, E), which
consists of a set of vertices (m terminals and r dummy
terminals) V = Iv1, v2 %, vm+ ~ Vm+rl, and a
set of n edges (horizontal and vertical wire segments)
E----lel, e2, . . . , en}. An edge e k is identified with an
unordered pair (% v i) of vertices. The vertices % vj
associated with edge ek are called end vertices of ek.
An edge having the same vertex as both its end vertices
is called a self-loop edge. Also note that the definition
allows more than one edge to be associated with any
given pair of vertices; such edges are referred to as
parallel edges. In this paper, it is assumed that a graph,

424 computer-aided design

G, having self-loops and/or parallel edges is called a
general graph. (In some graph-theory literature ~s, a
graph is defined to be only a simple graph that has
neither selfqoops nor parallel edges.)

The number of edges incident on a vertex (or
dummy vertex) v;, with self-loops counted twice, is
called the degree of the vertex (or dummy vertex)
and is denoted deg(v;). For the TCP, the degree of the
terminal vertex is at most 4 and the degree of the
dummy vertex is no less than 3 and at most 8. For example,
in Figure 2(a), there are six terminal vertices and ten
dummy vertices, and the degrees of vertices are:
deg(t6) --- 2, deg(s 3) = 4, and so on. If the degree of a
dummy vertex is reduced to 2, then the dummy vertex
is called a virtual vertex. A hyperedge consists of an
alternating sequence of virtual vertices and edges which
are connected in series. Naturally, a hyperedge has at
least one edge. For example, in Figure 2(b), there are
three dummy vertices, three virtual vertices, and eight
hyperedges.

The TCP can be conceptualized as a problem of
finding the shortest connectivity path that connects
the m terminal vertices in a graph G without causing
any loops. First, it must be ascertained that the graph
G is a connected graph before the shortest connectivity
path can be found. The graph G is considered a
disconnected graph if one of following conditions holds:

• G is a null graph with no edges and with m isolated
terminal vertices

• G has at least one isolated terminal vertex
• G consists of two or more components each of

which is a subgraph of G and has at least one terminal
vertex.

Otherwise, the graph G is a connected graph. To
determine whether a graph G is connected or not,
it should traverse the entire graph beginning from any
terminal vertex. Sometimes this can be easily done
without passing through all the vertices and the edges
in the graph. For example, if after passing through some
of the edges and vertices in the graph G, a connected
subgraph consisting of all terminal vertices is readily
obtained, then the graph G can be immediately
determined to be a connected graph. Similarly, if after
passing through some vertices and edges in the graph
G, an isolated vertex is detected, the graph G is said
to be a disconnected graph.

Hyper-complete graphs
It was shown above that to solve the TCP on a
connected graph G with m terminal vertices, the
shortest connectivity path has to be found from all the
connected paths (or steiner trees)in the graph, allowing
self-loops, parallel edges, dummy vertices, terminal
vertices, and edges on different layers. A graph in which
there exists an edge between each corresponding (out
going) branch in every pair of terminal vertices is called
a hyper-complete graph. Figure 3 shows three different
hyper-complete graphs. Clearly, the hyper-complete
graph is also a connected graph. That is, if the graph

Macro-dummy vertex
Dummy vertex --___.. ~ \ ~

erminal

a b c

Figure 3. Three different hyper-complete graphs: (a) G2
with d7 = 4 a n d d2 = O; (b) G 3 with dl = _3 a n d d2 = 3;
(C) G 4 with d~ = 2 a n d d2 = 3

G is a hyper-complete graph, it will inherently contain
many connected paths.

Without loss of generality, the TCP can be examined
on a hyper-complete graph Gm= (V, E), which consists
of a set of m vertices and r dummy vertices,
V(Grn) = (V l , V2 , Vm}k-){Vm+l, Vm+2, . . . , Vrn+r ~,
and a set of n hyperedges, E(G~) = {e~, e2, ... ,en}. Let
the degree of a terminal vertex, deg(vt), be d~ and the
degree of a dummy vertex deg(v d) be d2, so that d2 is
at least 3 and no more than m. In the VLSI design, dl
and d2 are at most 4 and 8, respectively, where two
adjacent layers are connected vertically by a via. Each
of the dl branches in the m terminal vertices forms a
hyper-connection. The hyper-complete graph G~ in
turn has a set of d~ hyper-connections. If a hyper-
connection has more than one dummy vertex, it forms
a macro-dummy vertex from these dummy vertices.
Figure 3 shows three different hyper-complete graphs
G2, G3 and G4. For instance, G2 has four hyper-
connections and four hyperedges, G3 has three hyper-
connections, nine hyperedges and three dummy vertices,
and G4 has two hyper-connections, ten hyperedges and
four dummy vertices (or two macro-dummy vertices).

Properties
After defining a hyper-complete graph G~, some of its
properties are introduced in the following lemmas.

Lemma 7
Given a hyper-complete graph G~=(V, E) with
m(m >/2) terminal vertices, let the degree of a terminal
vertex deg(vt) be d~(d~ t> 1) and the degree of a dummy
vertex deg(v d) be d2(d 2 >1 3). Then, the total number of
hyperedges E(Gm), dummy vertices D(Gm) , and vertices
V (G m) is

IE (Gm) I = d~ Ld2 - ifm~>3

(0 (m - - 3) i f m = 2
ID(G~) I= d~ 3 + i d 2 _ 2 1 ifm~>3

IV(Gm) l -- m + I D(G~) I

(3)

(2)

(3)

Proot
By the definition of a hyper-complete graph Gm with
m (m/> 2) terminal vertices, G2 consists of dl hyper-
connections with no dummy vertex, i.e. these dl
hyperedges directly connect one terminal vertex to
another terminal vertex.

For m >t 3, Gm also has a set of dl hyper-connections,
and at least one dummy vertex exists in each hyper-

volume 22 number 7 september 1990 425

connection because the degree, d 2, of a dummy
vertex is at least 3 but no more than m. First, assume
that the number of terminal vertices, m, is equal to or
larger than 3 but no more than d2. Clearly, each
hyper-connection in G~ has only one dummy vertex
(the degree of which is just equal to m) and m
hyperedges. In total, this C~ has d~ dummy vertices
and md~ hyperedges, and the total number of vertices
is (m + dl).

Second, consider that the number of terminal vertices
m is larger than d2. It is easy to see that each
hyper-connection in this G~ must have at least one
dummy vertex to form a macro-dummy vertex. However,
it is important to count how many dummy vertices are
added in a hyper-connection as the number of terminal
vertices, m, increases. It will be seen that a hyper-
connection in this G~ has an extra dummy vertex (and
hyperedge) as long as the number of terminal vertices,
m, is increased by a number ranging from 1 to disp
(disp = d 2 - 2). Obviously, the total number of dummy
vertices and hyperedges in Gm will be increased by a
multiple of d~ dummy vertices and hyperedges,
respectively• Hence, we have the following inductive
formulation.

if such a macro-dummy vertex, u i, exists (otherwise, x, is
0).

Proof
As shown in Lemma 1, a hyper-complete graph C;,,
with m (m/>2) terminal vertices has at least one
connected path through these vertices, and at least
one dummy vertex exists if the number of terminal
vertices, m, is larger than 2.

If no dummy vertex is included in a connected path,
i.e. r -- 0, the number of edges in a connected path is
exactly m - 1 hyperedges. (For example, G2 has one
hyperedge directly connecting the two terminal vertices
without any dummy vertex.) Otherwise, a connected
path in Gm (m/> 3) has at least one dummy vertex,
r~> 1. In other words, a connected path is then
equivalent to a steiner tree; the number of required
extra r dummy vertices in the C~ is analogous to the
number of required r steiner points in the steiner tree•
Therefore, the total number of hyperedges in a connected
path is the sum of m - 1 and r hyperedges.

The degree of any one of the r vertices is at least 2
if a dummy vertex is degraded to a virtual vertex. With
the r dummy vertices, at most r - 1 terminal vertices

m = 2
3~<m~<d2

d2 + 1 ~ m <~ d2 + 1 (disp)
d2 + 1 (disp) + 1 <~ m <~ d2 + 2(disp)

d2 + (2 - 1) (disp) + 1 <~ m <~ d2 + 2 (disp)

E(Cm)
E(C~)
E(G~)
E(C~)

E(Cm)

= dl I D(Gm)l = 0
= d lm I D(C~)I = d~
= d ~ (m + l)]D(G~)I =2d~
=d~(m+2) ID(Gm)I =3d~

= d l (m + 2)]D(Gm)I = d 1 (1 + 2)

where 2 is L(m - 3)/(disp) _J. The total number of vertices
V(Gm) is the sum of the terminals and the dummy
vertices, i.e. [m + d~(1 + 2)]. []

Figure 3(c) shows an example of a hyper-complete
graph, G4, with m = 4, d~ = 2, and d2 = 3. The number
of hyperedges, dummy vertices and vertices can be
calculated as follows. Since d i s p = d 2 - 2 = 1 and
2 = L(m - 3)/(disp)_J = 1, then

I E(C4) I - - d~(m + 2) = 10

{ D(C4)I =d1(1 + 2) = 4

I V(G4)[= m +] D(G4)I = 8

Lemma 2
Given a hyper-complete graph Gm = (V, E) with m
(m/> 2) terminal vertices, the number of hyperedges,
C(Gm), in a connected path is:

__r
I C (G m) l = (m - - 1) + ~ xi

i=1

0 ~< r ~< min(m -- 1, d~) (4)

where r is the number of required macro-dummy
vertices; dl is the degree of a terminal vertex; and x,
is a positive integer, /~, which represents the number
of dummy vertices that form a macro-dummy vertex,

and at least 2 (r - 1) hyperedges can be connected to
these dummy vertices without causing a loop. But these
r dummy (virtual) vertices have at least 2r branches.
By the definition of a connected path, no loop is
included among the m terminal vertices. Figure 4 shows
an aspect of the representation of a connected path.
Hence, an inequality is obtained as follows.

2r - - 2 (r - -1) <~ m - - (r - - 1)

2 ~ < m - - r + l

r < ~ m - - 1

A hyper-connection in a Gm must have at least one
dummy vertex which forms a macro-dummy vertex,
i.e. /~ >/1. If ig is just 1, the macro-dummy vertex is
equivalent to a dummy vertex and the degree d 2 of
the dummy vertex is equal to the number of terminal
vertices m, as discussed in Lemma 1. From Lemma 1,
if d2 (d2 >~ 3) is smaller than the number of terminal

: . i " i i i " r dummy ver t ices

• " " • [r - I) terminal ver t ices

Figure 4. Appearance of representation of connected
path

426 computer-aided design

vertices m, the macro-dummy vertex in Gm has at least
two dummy vertices. In other words, a hyper-connection
in Gm has just one macro-dummy vertex connecting
these dummy vertices. And the total number of
hyperedges E(Gm) will be increased by one while an
extra dummy vertex is added to the hyper-connection.
Hence, r is equal to the number of the macro-dummy
vertex; xi is /~ if the macro-dummy vertex u i exists,
other it is 0.

However, considering a G~ with degree d~ less than
m, the number of terminal vertices, this time the Gm
has at most d I (not m - - l) macro-dummy vertices.
Therefore, the maximum value of number r is equal to
the min (m - 1, dl). []

By way of illustration, Figure 5(a) shows an example of
the hyper-complete graph G3, with m = 3, d2 = 3, and
x~ = ~ = 1, and Figure 5(b) shows all possible distinct
connected paths among the three terminal vertices.
These 21 connected paths are divided into two kinds
of connected paths. One connected path contains only
one dummy vertex (r = 1) in addition to the m terminal
vertices, and the total number of hyperedges is C(G3) =
(m -- 1) + :t~ = (3 - 1) + 1 = 3. The other connected
path contains two virtual vertices (r = 2) and four
hyperedges: C (G 3) = (m - 1) + x 1 + ~ 2 = (3 - 1) + 1 +
1 = 4 .

As shown in Figure 3(c), a hyper-connection in the
G4 (m = 4, d l = 2, d2 = 3) has two dummy vertices, i.e.
x i - - ~ = 2 and 1 ~< r ~< min(m - 1, d 1) = 2. This G 4 has
two types of connected paths, r = 1 or r = 2. One of
the connected paths contains a macro-dummy vertex,
the total number of hyperedges is C(G4) = (m -- 1) +
Xl = (4 -- 1) + 2 = 5. The other connected path contains
two macro-dummy vertices and seven hyperedges:
C(G4)= (m - 1)+ ~1 + x2 = (4 - 1)+ 2 + 2 = 7.

To develop the next lemma, let the number of
r-permutations from n objects, denoted P(n, r), be
defined as:

P(n, r), n (n - - 1) (n - - 2) ... (n - - r + l) (5)

if r = n = P (n , r) = n!, if r > n , P(n, r) =0 , and if r = 0 ,
P(n, r) = 1. This definition can be applied to any natural

a

O

o

b
Figure 5. (a) Hyper-complete graph G3
terminal vertices, d 7 = 3 and d 2 = 3; (b)
connected paths of G3

with three
all distinct

numbers n and r. For example, P(2, 0) = 1 and P(2,
3)=O.

Now let the number of r-combinations from n objects,
denoted C(n, r), be defined as:

P(n, r) n (n - - 1) (n - - 2) . . . (n - - r + l)
C(n, r) = =

r! r!

(6)

If r = n , C(n, r) = l , if r > n , C(n, r) - 0 , and if r = 0 ,
C(n, r) = 1. This definition is true for any natural
numbers n and r. For example, C(2, 0) = 1 and C(2,
3)=O.

Lemma 3
Given a connected path with r macro-dummy vertices
(r/> 0) in a hyper-complete graph G~ = (V, E) with m
terminal vertices, if 0 ~< r ~< 1, the number of connected
paths is:

CP r = P(dl, 1) (7)

where dl is the degree of the terminal vertex. Otherwise,
if r >/2, there are r - - 1 types of connected paths and
the total number of connected paths to each type is

r--1

CP~ = ~, P(m, j)rl(m, r, i)P(dl, r)
j = l

where r/(m, r, j) is a type function.

(8)

Proof
In a hyper-complete graph Gin, with m terminal vertices
and dl macro-dummy vertices, its connected path
contains r macro-dummy vertices, 0 ~< r ~< min(m - 1,
d~), as discussed in Lemma 2.

If r = 0 , the connected path does not have a
macro-dummy vertex, i.e. the path connects directly
to its two terminal vertices; this is the case for G2.
Hence, the total number of connected paths in G2
depends on the degree dl of the terminal vertex, i.e.
CP0 = P(dl, 1).

If r = 1, the connected path has only one macro-
dummy vertex. However, a macro-dummy vertex
connects just m terminal vertices. Hence, the total
number of connected paths depends on the degree, dl,
of the terminal vertex, i.e. CP1 = P(dl, 1).

Next, consider a connected path with r macro-
dummy vertices in Gin, r >t 2. No more than r terminal
vertices can form a path connecting these macro-
dummy vertices, otherwise it would generate one or
more loops; thus, a connected path has 1, 2 j, . . . ,
or r - 1 terminal vertices to connect the r macro-
dummy vertices, i.e. there are r -- 1 types of connected
paths. Each type has j-combinations from m terminal
vertices multiplied by j [, that is, C(m, j) j [= P(m, j). And
the remaining terminal vertices, m --j, are distributed
into r macro-dummy vertices but the degree of each
macro-dummy vertex is at least 2. The distribution is
not uniform to each type. There are a number of
different combinations which vary within each type;
therefore, a type function r/(m, r, j) needs to be

volume 22 number 7 september 1990 427

introduced. In addition, the r macro-dummy vertices
have also r-permutations from the degree, d,, of a
terminal vertex, i.e. P(d~, r). Therefore, we have r - 1
types of connected paths, and each type has P(m, j)
~l(m, r, j)P(dl, r) connected paths. []

The type function ~/(m, r, j), just introduced, varies with
the type of each connected path in Gin. Given a
connected path with r macro-dummy vertices, r ~> 2,
and j terminal vertices, 1 ~<j~< r - - 1, which are
predetermined (see Figure 4), there exist at most
y ~ (y ~ = r + j - 1) hyperedges causing no loop and Y2
(Y2 = 2 r - y~ = r - j + 1) hyperedges, making the degree
of each macro-dummy vertex equal to 2. Since some of
the (m - j) terminal vertices are matched with these
Y2 hyperedges, and letting the rest of terminal vertices
be z in number, we then obtain z = (m - j) - y 2 =
m - r - 1 I> 0. The type function r/(m, r, j) depends
heavily on the value z.

If z = 0, a connected path contains just m - 1 (since
z = m - r - 1 = 0, r = m - 1) macro-dummy vertices.
In other words, the m (i.e. m - z = m - 0 = m) terminal
vertices are distributed into r macro-dummy vertices
and the degree of each macro-dummy vertex is just 2.
This is a unique match and the type function r/(m, r,
j) is always equal to 1. For example, Figure 6 shows all
types of connected paths with five macro-dummy
vertices in C6, each with type function 1. And in Figure
6(c),given m = 6, r = 5, andj = 3, then y~ = r + j - - 1 =
5 + 3 - - 1 --7, y 2 = r - j + l = 5 - 3 + 1 = 3 , and m -
j = 6 - 3 = y 2 o r z = m - r - l = 6 - 5 - 1 = O .

If z > O, a connected path contains less than m - 1
(since z = m - - r - l > O , r < m - 1) macro-dummy
vertices. In other words, the (m - z) terminal vertices
are connected by r macro-dummy vertices such that
the degree of each macro-dummy vertex is just 2, and
the rest of z terminal vertices can be freely distributed
into those r macro-dummy vertices. Experimentally, the
distribution is not exactly uniform to each type and
the type function tl(m, r, j) depends on different type
combinations, but a general form is given as follows.

L(m j),'2 j (m- - j) ! (9)

r/(m, r, j) = ~ i[il!i2[in 1 [
i = z + 1 , i=1 1

where i, i~, i2, . . . , i~_1 must satisfy the following
condition: i + il + i2 + . . . + i~_1 = m - j .

For example, Figure 7 shows two types of connected
paths with two macro-dummy vertices in Gs, m = 5,

a 1 = I b i = 2 C i = 3 d i : 4

Figure 6. All types of connected paths with five macro-
dummy vertices in G6. Their type function is always 1

a b

Figure 7. Two types of connected paths with two
macro-dummy vertices in G5

r = 2 , and j = l . Then z = m - - r - - l = ! : , - - 2 - - 1=2 ,
and the type function is equal to the sum of 4! /3[1!
and 4!/2!2!.

Figure 8 shows all types of connected paths with
three macro-dummy vertices in Cs, with m = 5, r = 3,
and1 <~j<~2.1fj=l, t h e n z = m - r - 1 = 5 - 3 - 1 = 1,
the type function rl(m, r, j) = r/(5, 3, 1) = 4!/2!1 ! 1 !,
and the number of connected paths is CP, = P(5, 1)
r/(5,3, 1)P (4 ,3)=1440 .1 f /=2 , t h e n z = m - r - 1 =
5 - 3 - 1 = 1, type function r/(m, r, /) = v/(5, 3, 2)=
(3 !/2!1 !) + (3 !/2!1!) (note, this is not a general form)
and the number of connected paths is CP2 = P(5, 2)
r/(5, 3, 2) P(4, 3)= 2880. Hence, the total number of
connected paths is CP1 + CP ~ = 4320.

A problem meanwhile arises. How many connected
paths are present in a hyper-complete graph Cm with
m terminal vertices? By Lemma 2, a connected path
consists of m - 1 hyperedges while a Cm has no
macro-dummy (or dummy) vertex, like G2. The number
of connected paths CP(G2) in the G2 is equal to the
number of 1-permutations from the degree of a terminal
vertex, dl. Hence, CP(G2) = CP0 = P(d~, 1) =dl, as per
Lemma 3. For example, in Figure 3(a), CP(G2)=
P(4, 1)=4 .

For the Cm with m ~> 3, by Lemma 3, we have r - - 1
types of connected paths and each type has a lot of
different connected paths, where 1 ~< r ~< min(m - 1,
d~), as discussed in Lemma 1. For example, in Figure
3(b), C3 has two types of connected paths, containing
one or two dummy vertices. Figure 9 shows the different
representations of the two types of connected paths.
For the first type of connected path, r = 1, the number
of distinct connected paths is CPT=P(d~, r)=
P(3, 1)= 3. For the second type of connected path,
r = 2 , since z = m - r - l = 0 , the type function is
equal to 1 and the number of distinct connected paths
is CP2 = P(m, 1) P(d~, r) = P(3, 1) P(3, 2) = 18. Therefore,
C~ has 21 different connected paths, as shown in Figure
5(b).

Theorem 7
The total number of connected paths in a hyper-
complete graph, Gm= (V, E), with m terminal vertices, is

min(rn -- 1, d 1 }

CP(Gm)=P(dl, 1)1~=0,~ +
r = 2

r£1P(m, j) l l (m,r , j)P(dl , r) }
j = l

where d~, r and t/(m, r, j) are previously defined.

(10)

a j-~ b J-~

Figure 8. All types of connected paths with three
macro-dummy vertices in G5

a b

figure 9. Two dff[erent connected paths of figure 3(b)

428 computer-aided design

Proof
From Lemma 2, a connected path has at most
m i n (m - 1 , d~) macro-dummy vertices in a hyper-
complete graph Gm with m terminal vertices with
degree d~.

By the definition of a hyper-complete graph G~, the
number of terminal vertices must be at least 2, m/> 2.
Also, by Lemma 3, if a G~ has just two terminal vertices,
m = 2, then its connected path will contain no macro-
dummy vertex, r = 0, and the total number of connected
paths will be CP(G2)= CP0 = P(d~, 1). If a Gm has at
least three terminal vertices, m >t 3, its connected path
will contain a different number of r macro-dummy
vertices, 1 ~< r ~< min(m - 1, dl), and the total number
of connected paths will be CP(G~) = CP~ + CP2 + . . . +
CPrnin(m - 1, dl)'

NP-hardneu of TCP
Next, we want to find the shortest connectivity path
in the hyper-complete graph G~. This path must
contain each terminal vertex exactly once and its length
(or distance cost) will be less than other connected
paths if they exist. Theoretically, the problem of finding
the shortest connectivity path can always be solved
by enumerating all the connected paths CP(G~) (see
Theorem 1), by calculating the distance cost of each
path traversal, and then by picking the shortest one.
However, for a large value of m and d~, the work
involved is too great even for a digital computer. The
problem is to prescribe a manageable algorithm for
finding the shortest route. No efficient algorithm for
problems of arbitrary size has yet been found, although
many attempts have been made. Hence, a heuristic
method must be applied to solve it, which gives a route
very close to the shortest one, but does not guarantee
the route to be the shortest.

The problem of finding the shortest connectivity path
in the hyper-complete graph G~ is analogous to the
finding of a minimal steiner tree, which has been proved
NP-complete 13.

Theorem 2
The problem of finding the shortest connectivity path
in a hyper-complete graph Gm with m terminal vertices
is NP-hard. Therefore, the TCP is also NP-hard. (The
proof of this theorem is given in Appendix)

In the next section, we propose a heuristic algorithm
to solve the TCP to find the shortest connectivity path
in linear time with some proprocessing work.

TERMINAL CONNECTIVITY PROBLEM
ALGORITHM

TCP algorithm overview

in order to solve the TCP it is necessary to begin by
determining the connectivity of the terminals and then
to find the shortest connectivity path if the TCP is
proved to be connected. In order to achieve this and
to implement the algorithm efficiently, a powerful
structure - corner-stitching - is applied, for which a lot
of efficient supporting algorithms have been proposed TM.

First, it is necessary to map the m terminals and n wire
segments into the multi-layer (corner-stitching) planes
according to the given layer information. Then, a
breadth-first expansion is begun from one of the
terminals in the multi-layer planes. If any one of the m
terminals remains unvisited, there is no connected path
through the m terminals in the TCP. Otherwise, the
TCP has one or more connected paths through the m
terminals, one of which is the shortest path. To simplify
the process of finding the shortest connectivity path,
a maximal loop is obtained by eliminating some
redundant segments and by skipping some unique
segments if they exist before the shortest connectivity
path is found. Therefore, a part of the shortest
connectivity path can be obtained from the maximal
loop. By combining this part of the shortest connectivity
path and those just skipped and unique segments, the
whole shortest path connecting the m terminals is
finally generated.

Figure 10 presents an overview of the TCP. First, given
m terminals and n wire segments with their layering
information, construct the layout in a multi-layer plane
model. Then, traverse the terminals and wire segments
in the multi-layer planes and determine whether or not
the m separate terminals are connected to each other
by those wire segments. If so, first remove those
redundant wire segments (such as isolated and pendant
segments) to find the maximal loop, if any; then obtain
the shortest connectivity path of the TCP from the
maximal loop. Otherwise, highlight the disconnected
occurrences or try to repair them by adding or
stretching a segment without violating electrical or

I 1 N°

input m terminals
and n wire segments

1
Construct ion of

mul t i - layer
co rner -s t i t ch ing

Are terminals
connected by

these segments ?

I Yes

Remove the
redundant segments

1
Find the

maximal loop

1
Find the shortest
connect iv i ty path

Report results

,j

High l igh t the
disconnected
occurrences

Yes

Figure 10. Overview of terminal connectivity problem
algorithm

volume 22 number 7 september 1990 429

design rules. For example, in Figure 1, the vertical wire
segment v 5 can be stretched up to reach the isolated
terminal t7 such that this TCP become connected. If
the disconnected occurrence(s) can be repaired, then
the connectivity checking is continued. Otherwise, all
of the disconnected information must be reported.

TCP heuristic algorithm

The heuristic algorithm of the TCP is divided into six
steps. Each step is discussed in detail, with the help of
an example, shown in Figure 11, and its time complexity
is also calculated.

Since the solution of the TCP is based on the
construction of multi-layer planes, this step is said to
be a preprocess of the TCP. By using a corner-stitching
data structure, all preprocessing operations are almost
localized and with linear run time. In particular, the
expected time of a corner-stitching tile insertion or
deletion is constant. The same configuration requires
a memory space about three times as great as the
degree of time complexity. In total this construction
takes O(m + (1 +c)n) time complexity and requires
three times as much memory space, where c is a
positive constant that depends on the intersections
between n wire segments.

Step O: Constructing multi-layer planes
The construction of the multi-layer planes is just a
mapping of the m terminals and n wire segments on
the original flat layout on to different planes. Overlapping
tiles are not allowed in the same plane. A segment
should be split if it is intersected by other segments.
To construct the multi-layer planes efficiently, first map
the m terminals and horizontal segments on to the
multi-layer planes without considering overlapping,
then map the remaining segments (vertical segments).
If the vertical segments intersect the horizontal segments
in the same layer plane, splitting operations will be
required. Thus, the multi-layer planes of m terminals
and n wire segments can be constructed. Figure 11(a)
depicts the construction of a two-layer corner-stitching
for the inputs of six terminals and 16 wire segments.

tl ~ ~t~ t5

t 2 ,

t 3 :! ~

a

q

t~

c

q t~ t~

b d

. . . . ~ t4 t 1

t2

e
Figure 77. TCP process with six terminals and 16 wire
segments: (a) construction of mufti-layer corner-stitching;
(b) after removal of all pendant segments; (c) maximal
loop consisting of six dummy terminals; (d) shortest path
obtaining from the maximal loop; (e) results of the
shortest connectivity path

Step 1: Determining terminal connectivity
After the construction of the multi-layer planes, the
next step is to recognize whether or not at least one
connected path between m separate terminals exists
in the multi-layer planes. For this purpose, a breadth-
first searching method is applied by starting from any
terminal and passing the incident segments to reach
its adjacent vertices. This process is continued until all
the m terminals are visited. If an isolated terminal, a
pendant vertex or segment, is found, the occurrence
(which is disconnected from the connected paths)
should, if possible, be repaired by adding or stretching
a segment without violating any design rule, if no
connected path is found, report or highlight the
corresponding disconnected occurrences should be
reported or highlighted and the TCP stopped. Otherwise,
there exists at least one path connecting the m
terminals. For example, the path shown in Figure 11 (a)
is connected. To simplify the process of finding the
shortest connected path, it is necessary to remove any
redundant segments, such as isolated or pendant
segments. A pendant_list is used to record these
redundant segments during the expansion.

Note that in the above method, all vertices and
segments are marked exactly once, except for those
isolated segments which are irrelevant to the
determination of terminal connectivity. Therefore, the
algorithm has O(m + (1 + c)n) time complexity.

Step 2: Eliminating redundant segments
Having established that the m separate terminals are
connected together through some segments, this implies
that at least one shortest connectivity path exists
through the m terminals and that some segments are
possibly redundant. Isolated, pendant, and loop segments
are examples of redundant segments which are useless
for connecting the m terminals and need to be
removed. To illustrate, Figure 11(b) shows the
appearance after the removal of all the pendant wire
segments from Figure 11(a).

Since all the pendant segments have been recorded
in the pendant_list in Step 1, one can easily eliminate
every alternating sequence of vertices and segments,
whose starting segment is in the pendant_list. Further,
the isolated segments will vanish naturally when the
multi-layer planes are converted back to the original
layout with m terminals and n' segments (n ~<n).
Which loop segments need to be removed in finding

430 computer-aided design

the shortest connectivity path will be discussed in
Step 4.

From the above discussion, some alternating sequences
of vertices (vias or bends) and segments are eliminated
in the multi-layer planes. Let np denote the number of
these vertices and segments. Hence, the algorithm will
take 0(%) time. In general, np is smaller than n, the
total number of segments.

Step 3: Searching for maximal loop
After the elimination of the pendant segments, it is
time to find the shortest connectivity path among the
m terminals. Sometimes there are many unique paths
or multiple loops between every pair of terminals in
the multi-layer planes. But it must be established
whether any loop exists in the multi-layer planes before
the shortest connectivity path through the m terminals
can immediately be obtained from the multi-layer
planes. Otherwise, there exist some loop segments
among the m terminals. Accordingly, first it is necessary
to pick out the m dummy vertices forming the maximal
loop, and then to find the shortest connectivity path
within the maximal loop. A dummy terminal can be
detected by searching from each terminal to a vertex
which has more than one incident segment, excluding
the segment that is just going in. At the same time, a
distance cost from every terminal to its corresponding
dummy terminal is to be recorded in this dummy
terminal. These dummy terminals and their cost, which
are used to find the shortest connectivity path in the
maximal loop, will be discussed in next step. Figure
11 (c) shows the maximal loop composed of six dummy
terminals of Figure 11(b).

In this step, there are some alternating sequences of
vertices and segments from every terminal to the
corresponding dummy terminals. These sequences are
unique and from part of the shortest connectivity path
among the m terminals. Let n m be the number of these
pathing vertices and segments. Thus, the algorithm
takes O(n m) time. In general, nm is smaller than the total
segments n.

Step 4: Finding shortest connectivity paths
Step 3 generates part of the shortest connectivity path
through the m terminals (named path_l) and a set of
m dummy terminals (recorded in the vertex_list) which
form the maximal loop. If the vertex_list is empty, the
path_l found in Step 3 is just the shortest connectivity
path that connects the m separate terminals. Otherwise,
it is necessary to find the shortest connectivity path
(named path_2) within the maximal loop formed by
the m dummy terminals by eliminating some loop
segments. In this case, the two parts of the shortest
connectivity paths (i.e. path_l and path_2) must be
combined to obtain the whole shortest connectivity
path through the m terminals. Figure 11 (d) shows the
shortest path obtained from the maximal loop in Figure
11(c).

In this step, each vertex and segment in the maximal
loop is visited at the stages of expanding and backtracking.
Let nw be the total number of vertices and segments
within the maximal loop and x a positive constant that

is the number of times a vertex or segment is visited.
Therefore, the algorithm has O(xn w) time complexity.

Step 5: Reporting the TCP results
Finally, what remain in the multi-layer planes are the
shortest connectivity path with its connecting m
terminals and the other negligible isolated segments.
First, to refine the shortest connectivity path in the
multi-layer planes, it is necessary to eliminate any
redundant bends or vias (constructed in Step 0) as
shown in Figure 11(e). Then, the shortest connectivity
path is converted back to the original layout with m
terminals and n' (n' ~< n) segments.

In summary, the TCP algorithm has O(m + (1 + c)n)
linear time complexity, as established in the above six
steps. Obviously, this linear time algorithm is achieved
with the assistance of the powerful data structure -
corner-stitching.

EXPERIMENTAL RESULTS

The TCP heuristic algorithm was implemented on a
SUN 111/160 workstation using standard C and the
Berkeley 4.2 UNIX operating system. Table 1 shows the
experimental results, as well as some significant data,
such as the number of layers (layer), the number of
terminals (term), the number of original segments (seg),
the length of original segments (len), the number of
transferred segments (tseg), and the length of the
shortest connectivity path (tlen).

A circuit with n solid tiles represented with a data
structure - corner-stitching - never requires more than
3n + 1 space tiles even in the worst case. However, in
actual circuit layouts, the number of space tiles required
is close to n. Hence, the TCP algorithm takes
O(3(m + (1 + c)n)) memory space in the worst case,
and its time complexity is O(m + (1 + c)n).

Figure 12 shows the curve of the sum of terminals
and wire segments to be related to the running time.
The running time is linearly related to the sum of given
terminals and wire segments. Note that the running
time is the sum of the preprocessing time (pre_time)
and the time taken to find the shortest connectivity
path (tcp_time).

Figure 13(a) shows an example of tcp5 with 19
terminals and 104 wire segments, and Figure 13(b) gives
the shortest connectivity path.

CONCLUSION

We have shown that the new problem of terminal
connectivity (TCP) in the VLSI or PCB multi-layer layout

Table 1. Experimental data and results

layer term seg len tseg tlen

tcpl 1 2 95 5236 6 852
tcp2 1 5 18 800 9 288
tcp3 2 6 30 493 23 356
tcp4 2 6 41 1274 17 568
tcp5 2 19 104 2978 57 1508
tcp6 3 38 199 5260 125 3180
tcp7 3 60 382 8716 220 5270
tcp8 4 74 625 12628 268 4960

volume 22 number 7 september 1990 431

T 5.0T

4.0 I
m

~ 3"0 i

H 2 . 0 +

I .Of

i

r u n _ t i m e (a) = p r e t i m e (o) + t c p _ t i m e (o)

. J - J c

o f J ' ~ - -

100 200 300 400 500 600 700

Sum of terminals and wire segments

800

Figure 12. Graph of running time against sum of terminals
and wire segments

t c p 5 , T e r m n o = 1 9 , W i r _ n o = 1 0 a , W i r I n = 2 9 7 8 , P R E t m = 0 . 0 0 s , T C P _ t m = 0 . 0 0 s , T o L t m = 0 . 0 0 s

I I1 - - - - II ,I tl

I I V 9 1 1 I I

.

I '
I I I I I I I

. ~ V2 ' ' ii r~---~+ -H- - - qL~
vuu ~ ~ L~---Pr H----H

:| I] v4t3 H t 7 l l] l
wC~ vs~ tl

Ot5

a

t o p 5 , T e r m n o = l 9, Wi r n o = 5 7 , Wi r l n = 1 5 0 8 , PRE t m = 0 . 9 3 s , T C P tm=O. 38s , T o L t m = l . 31 s

vS~; ,.,~ 1.q:? ts~
,~ r II ~_L,t4
I I I
, , , , tl Jl I-1

vl 0C_t~_~ l~ ~ Ix 43ts

v9~I II

[I i I
I I I I

It vu U ~ PI p! l lLJ-___-~ I I
| I , J t3) I

v7 ~ v5 ~4 t7[[]

b

Figure 13. (a) Example ot tcp5 with 19 terminals and 104
wire segments; (b) shortest connectivity path

scheme is NP-hard, because finding the shortest
connectivity path in the TCP can be viewed as a minimal
steiner tree problem (which has been proved NP-
complete). We have proposed a heuristic algorithm
based on multi-layer corner-stitching to solve the TCP
efficiently in O(m + (1 + c)n) linear time. This algorithm
may also be applied for the checking of electrical or
design rules.

ACKNOWLEDGEMENT

This work was supported by the National Science
Council, Taipei, Taiwan, under Grant NSC 78-0404-E002-
46 and Grant NSC 79-0404-E002-33.

REFERENCES

1 Tsai, C C, Feng, W S and Chen, S J eta/. 'Generalized
terminal connectivity problem for multi-layer layout
scheme' Joint Tech. Conf. on Circuits System
Computers and Communications (June 1989) pp
173-178

2 Brown, A D 'Automated placement and routing'
Comput.-Aided Des. Vol 20 No 1 (1988) pp 39-44

3 Mueller, H and Mlynski, D A 'Automatic multilayer
routing for surface mounted technology' Inter-
national Syrup. on Circuits and System (May 1988)
pp 2189-2192

4 Soukup, J 'Circuit layout' Proc. IEEE Vol 69 No 10
(1981) pp 1281-1304

5 Scott, W S and Ousterhout, J K 'Plowing: Interactive
stretching and compaction in MAGIC' Proc. 21st
Des. Automation Conf. (June 1984) pp 166-172

6 Chow, Y E 'A subjective review of compaction'
Proc. 22nd Des. Automation ConL (June 1985) pp
396-4O4

7 Xiong, X M and Kuh, E S 'The constrained via
minimization problem for PCB and VLSI design'
Proc. 25th Des. Automation Conf. (June 1988) pp
573-578

8 Losleben, P and Thompson, K 'Topological analysis
for VLSI circuits' Proc. 16th Des. Automation Conf.
(June 1979) pp 461-473

9 Takashima, M et al. 'Programs for verifying circuit
connectivity of MOS/LSI mask artwork' Proc. 19th
Des. Automation Conf. (June 1982) pp 544-550
Lipski, W 'Finding a Manhattan path and related
problems' Networks Vol 13 (1983) pp 399-409
Lipski, W 'An O(nlog n) Manhattan path algorithm'
Inform. Process. Lett. Vol 19 (August 1984) pp
99-102
Asano, T 'Generalized Manhattan path algorithm
with applications' IEEE Trans. on CAD Vol 7 No 7
(1988) pp 797-804

13 Garey, M R and Johanson, D S Computers and
intractability: A guide to the theory of NP-complete-
hess W. H. Freeman, USA (1979)

14 Ousterhout, J K 'Corner stitching: A data-structuring
technique for VLSI layout tools' IEEE Trans. on CAD
Vol 3 No 1 (1984) pp 87-100
Deo, N Graph theory with applications to engineering
and computer science Prentice Hall, USA (1974)

10

11

12

15

APPENDIX 1: PROOFS

Proof of Theorem 2

Here, an attempt is made to establish the NP-hardness
of the process of finding the shortest connectivity path
in hyper-complete graphs (SCPHCG) Gin, which implies
the NP-hardness of the terminal connectivity problem
(TCP). This is shown by reducing the known NP-
complete 'steiner tree in graphs' (STG) problem to the
problem of finding the shortest connectivity path.

Steiner Tree in Graphs"

Instance: A graph G = (V', E'), a weight w(e')e 7/ (7/
denotes the set of positive integers) for each e'e E', a
subset R' ___ V', and a positive integer bound B'.

432 computer-aided design

Question: Is there a subtree of G that includes all
vertices of R' such that the sum of the weights of the
edges in the subtree is no more than B'?

Shortest Connectivity Path in Hyper-Complete
Graphs

Instance: A hyper-complete graph Gm = (V, E) with m
terminal vertices, a weight w(e)e ~_ for each e e E, a
subset R ~_ V, and a positive integer bound B.

Question: Is there a subtree of G m that includes all
vertices of R but must contain m terminal vertices, such
that the sum of the weights of the edges in the subtree
is no more than B?
It is easy to see that finding the shortest connectivity
path in a hyper-complete graph G~ is NP, since a
nondeterministic algorithm is needed only to guess a
subset of vertices and hyperedges with distance cost
no more than B and to check that it is legal.

STG will be transformed in to SCPHCG. Let an
arbitrary instance of STG be given by the graph G = (V',
E') and the positive integer B'. A hyper-complete graph
G~ = (V, E) must be constructed such that G~ has a
shortest connectivity path if and only if G has a steiner
tree with a sum of edge weights less than or equal to B'.

Once more the construction can be viewed in terms
of matching in a bipartite graph by assuming that the
vertex set V' in STG can be decomposed into two
disjoint subsets V~ and V~ such that each of the edges
in the STG graph G joins a vertex in V~ with a vertex
in V~. Let the subset V~ be the number of m terminal
vertices, V~ = {v~, v2, . . . , vm}, and the subset V~ be the
sum of steiner and dummy-steiner vertices, V2'= {v'~,

' ' } { } In general, for a steiner V2 ' . . . , Vs t J V l , V2 ' . . . , Vt .

tree, the degree of a terminal vertex is at least 1; the
degree of a steiner vertex is at least 3 and the degree
of a dummy-steiner vertex is always 2. For convenience,
we use a relaxed-bipartite graph to represent an
instance of steiner tree, that is, an edge may exist
between a steiner vertex and dummy-steiner vertex in
the subset V~. First, the graph G~ has m terminal vertices
from the subset V~, which will be used to select r steiner
or dummy-steiner vertices from the subset V~. Second,
for each edge in E', Gm contains a number of hyperedges
that will be used to ensure that any loop does not exist
among the m + r vertices. One instance of matching
in the relaxed-bipartite graph is shown in Figure 14(a).
It has four terminal vertices, V~ = {Vl, v2, v3, v4}, one
steiner vertex and two dummy-steiner vertices, V~ =
{v ' l }u{v~ ' , v~}, and six edges, E '= (el , e2 e6},
as shown in Figure 14(b).

By the definition of the hyper-complete graph G~,
Figure 14(b) can be transformed into an instance of
G 4 with four terminal vertices, Vl = {v~, v2, v 3, v4}, one
dummy vertex v d (merging of v~ and v~), one virtual
vertex v~', one macro-dummy vertex V 2 = { v d } u (v~' },
and five hyperedges, E = (e~, e2 es,6}, as shown in
Figure 14(c).

In the completed construction, the steiner tree will
be replaced by the matching of relaxed-bipartite graph

W I
"~z-~ . .e V2

Vl le2 vl ~--~v2 ~ ~ i " ~ e v;i2/ ~ -~ l~v d

' - , •
b v? c v~

Figure 14. Instance of minimal steiner tree is used in
transforming to finding of shortest connectivity path in
hyper-complete graph: (a) minimal steiner tree with four
terminals and six edges; (b) relaxed-bipartite graph of
(a); (c) bipartite graph of shortest connectivity path is
transformed from (b)

G = (V', E'), where V' 1 = {Vl, v2, . . . , Vm}, V 2 {vl , v2,
I I . . . , v 's}u{vl ' , v 2 , vi' }, the subset of vertices

R' c V' is R' = {V~ u V~}, the subset of edges F' c E'
is F ' = (e'l, e~, . . . , e'~}, and the total weight of the /:,
steiner tree ~,i=lw~) is less than the positive integer
bound B'.

The construction of a hyper-complete graph
Gm= (V, E) from the graph G is described below. The
interconnected vertices in the subset vertices V~ are
merged into one dummy vertex and their edges are
also merged into one hyperedge; that is, Vl = {Vl, v2,
.. . . Vm}, V2= {u ' 1, u 2 , u '×}u{u~, u~ u~}, the
subset of vertices R ~ V is R = {Vl ta V2}, the subset
of hyperedges F c: E is F = {el, e2, . . . , ep}, and the
total weight of the connected path (see Theorem 1),
2:~=1 w(ei), is less than the positive integer bound B. It
is easy to see that Gm can be constructed from G in
polynomial time.

We claimed above that Gm has a shortest connectivity
path if and only if G has a steiner tree with a sum of
edge weights less than or equal to B. Suppose a
connected path with m terminal vertices, r macro-
dummy vertices, and m - 1 + r hyperedges (see
Lemma 2) is the shortest connectivity path of Gm. The
r-macro-dummy vertices can be partitioned into two
subsets of vertices, i.e. the subset of dummy vertices
r~ and the subset of virtual vertices r2. These dummy
and virtual vertices are equivalent to the steiner and
dummy-steiner vertices in a steiner tree, respectively.
Thus, those m - 1 + r hyperedges are also decomposed
into a number of edges after the r macro-dummy
vertices are partitioned. Therefore, the shortest
connectivity path for G~ is completely equivalent to
the minimal steiner tree for G.

Conversely, given a minimal steiner tree in G, its
steiner vertices, dummy-steiner vertices, and edges can
be replaced by the dummy vertices, the virtual vertices,
and the hyperedges in Gin, respectively. The degree of
a dummy vertex is at least 3 but no more than m, the
degree of a virtual vertex is just 2, and the hyperedge
consists of a sequence of dummy or virtual vertices
and edges. It is easy to see that a minimal steiner tree
in G is also equivalent to a shortest connectivity path
in Gin. []

volume 22 number 7 september 1990 433

