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Given a set of n horizontal (or vertical) wire segments 
run on different layers with variable widths (or heights), 
and a set of m terminals placed on different layers and 
with arbitrary rectangular shapes, a generalization of the 
terminal connectivity problem ( TCP ) is considered. This 
TCP can be applied to facilitate the VLSI or PCB multi-layer 
layout. First, it is proved that this TCP is NP-hard by 
showing that it is equivalent to a minimal steiner tree 
problem, which has been proved NP-complete. Then 
an efficient algorithm for the TCP is presented which 
runs in O(m + (7 + c)n) time (with some preprocessing 
work). Experimental results are given to verify the 
effectiveness of the algorithm. 
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In this paper, a new problem concerning terminal 
connectivity is proposed as follows. Let there be a set 
of n horizontal (or vertical) wire segments orthogonally 
run on different layers with variable widths (or heights), 
and a set of m terminals placed on different layers and 
with arbitrary rectangular shapes. Assume that two 
wire segments on adjacent layers can be connected 
by a special wire segment (called a via) and that two 
or more horizontal (or vertical) wire segments on the 
same layer cannot overlap each other. First, it is 
necessary to check whether the given m separate 
terminals are interconnected by these segments or not. 
Then, if they are connected, the shortest connectivity 
path must be found by eliminating any redundant 
segments (loops, pendant or isolated segments); if they 
are not connected, the disconnected occurrences must 
be reported or highlighted. This problem is a generalization 
of the terminal connectivity problem (TCP) 1 and it 
corresponds to a net connectivity problem (NCP). Both 
TCP and NCP problems deal with two or more terminals 
and with wires connecting terminals in a VLSI or PCB 
multilayer layout scheme 2-4. 
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In practice, tens of thousands of routing segments 
are required to form an extremely complex mesh in a 
VLSI chip or a PCB multi-layer layout. Since a routing 
segment can be placed horizontally or vertically on 
different layers, after some basic operations (such as 
moving, pushing, plowing s, compaction 6, via mini- 
mization 7, and so on) are applied, the correctness of 
the net connectivity will be affected without any 
checking being performed. These kinds of design errors, 
which may occur in the VLSI or PCB layout design, can 
be classified into the following categories: geometrical 
design rule error, topological or logical error, and 
electrical performance error. In this paper, topological 
error (especially circuit connectivity) is the main concern. 
Most connectivity errors found in manual design 
examples are trivial errors 8'9, such as unreasonably 
connected nets (short circuits between subcircuits) 
or isolated nets (open circuits between subcircuits). 
However, manual checking or verification of the extracted 
(hierarchical) circuit connectivity is tedious, time- 
consuming and error-prone. Therefore, the TCP will 
certainly play an important role in this issue; moreover, 
we can achieve part of the electrical or design-rule 
checking when performing TCP operations for distinct 
nets. 

An analogous problem of finding a Manhattan path 
was presented in Lipski 1°'~1 and Asano 12 as follows: given 
a set of horizontal and vertical line segments, and 
specifying two line segments, s and t, find a path 
between s and t. Both Lipski and Asano presented an 
efficient algorithm which runs in O(nlogn) time and 
takes O(nlogn) space using a segment tree structure, 
where n is the number of horizontal and vertical 
segments. But this problem was limited to only two 
terminals (or two segments, s and t) and to no more 
than two layers. However, the TCP algorithm can find 
the shortest connectivity path through m (m>~2) 
terminals and on k (k/> 1) different layers, and it runs 
in linear time. 

A given terminal connectivity problem can be treated 
on a graph, G, composed of vertices (terminals or 
intersections) and edges (wire segments). Since finding 
the shortest connectivity path in the graph G is 
equivalent to finding a minimal steiner tree, which has 
been proved NP-complete 13, it will be shown that the 
TCP is NP-hard and needs to be solved by using heuristic 
techniques. To attack this generalized TCP, the problem 
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will be mapped onto a special data structure-~ multi- 
layer corner-stitching TM - and present an efficient 
algorithm which runs in O(m + (I + c)n) time, where 
m and n are the numbers of terminals and wire 
segments, respectively, and c is a small positive constant 
which depends on the intersections between the wire 
segments. 

Figure I shows an example of the TCP, consisting of 
seven separate terminals and 18 wire segments with 
two layers. Clearly, the seven separate terminals are 
not connected together because the terminal t7 is 
isolated from the wire segment vs. In another example 
of the TCP shown in Figure 2(a), the six separate 
terminals are connected together through the 16 wire 
segments and at least one connected path exists 
through these six separate terminals. But note that at 
least three loops in Figure 2(a) are formed and some 
of the segments are redundant for the finding of the 
shortest connectivity path. Hence, it is possible to find 
the shortest connectivity path through the six separate 
terminals by eliminating those redundant segments, as 
shown in Figure 2(b). 

h4 s 6 ~ v5 

s 2 ~ I I 

h 3 s 3 h 6 h 5 

Figure 1. Example ot a TCP with seven terminals and 18 
wire segments, which is disconnected because of isolated 
terminal t7 

Vl ~ t4 

 -ll P [] 

I I hi ....  ss' 

a 

~ . ,  : : : : ~  t4 

t 1 

[5 I D t5 
~ Dummy vertex 

t 2 
L t 3 ~  ~ , Virtual vertex 

t6 . . I ~  Terminal vertex 

b 
Figure 2. (a) Example of TCP with six teminals and 16 
wire segments; (b) shortest connectivity path 

In what follows, the TCP treated on a hyper-complete 
graph is proved NP-hard, and a heursitic technique is 
proposed for solving the TCP efficiently by mapping it 
into a multilayer corner-stitching data structure in 
which running time is linear. Some examples are 
presented to verify the effectiveness of the heuristic 
algorithm. 

PROBLEM FORMULATION 

Definition of terms 

A given TCP consists of m terminals and n orthogonal 
(horizontal or vertical) segments on different layers. 
Intersections between the wire segments are called 
dummy terminals; these consist of bends in the same 
layer and vias between segments that occupy any two 
adjacent layers. In Figure 1, there are seven terminals 
and eight dummy terminals. A terminal or dummy 
terminal is also called a vertex or dummy vertex. 

When a vertex is contacted by a segment, then the 
vertex and the segment are said to be incident 
(branching or outgoing) with each other. A terminal 
(or bend) has at most four incident segments while a 
via has at most eight incident segments in the TCP. In 
Figure 1, for example, segments h 2, v 2 and h 4 are incident 
with terminal t 2. Two vertices are said to be adjacent 
if they share an incident segment. In Figure 1, s4 and 
s6 are adjacent, but s4 and s7 are not. A terminal without 
an incident segment is called an isolated terminal. For 
example, terminal t7 in Figure 1 is an isolated terminal. 
Similarly, a segment that is isolated from the connected 
path is called an isolated segment, such as h 6 in Figure 1. 
A segment in contact with a vertex at a unique point 
is called a pendant segment, such as v2 and v~ in Figure. 
A segment that has a part of itself as a pendant segment 
is called a pendant segment, such as v 2 and v~ in Figure 1. 
segment is called a loop segment if it belongs to one 
of the segments which form a loop. In a Manhattan 
routing, at least four segments are needed to form a 
loop. For example, in Figure 1, segments v~, h4, v4, and 
h 5 are loop segments. A path containing some of the 
n segments and connecting between every pair of m 
terminals without a loop is called a connected path. A 
connected path with minimal (distance) cost is called 
a shortest connectivity path. The vertices and segments 
in the shortest connectivity path are called pathing 
vertices and pathing segments, respectively, as shown 
in Figure 2(b). 

General graphs 
A TCP can be treated on a graph G = (V, E), which 
consists of a set of vertices (m terminals and r dummy 
terminals) V =  Iv1, v2 . . . . .  %, vm+ ~ . . . . .  Vm+rl, and a 
set of n edges (horizontal and vertical wire segments) 
E----lel, e2, . . . ,  en}. An edge e k is identified with an 
unordered pair (% v i) of vertices. The vertices % vj 
associated with edge ek are called end vertices of ek. 
An edge having the same vertex as both its end vertices 
is called a self-loop edge. Also note that the definition 
allows more than one edge to be associated with any 
given pair of vertices; such edges are referred to as 
parallel edges. In this paper, it is assumed that a graph, 
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G, having self-loops and/or parallel edges is called a 
general graph. (In some graph-theory literature ~s, a 
graph is defined to be only a simple graph that has 
neither selfqoops nor parallel edges.) 

The number of edges incident on a vertex (or 
dummy vertex) v;, with self-loops counted twice, is 
called the degree of the vertex (or dummy vertex) 
and is denoted deg(v;). For the TCP, the degree of the 
terminal vertex is at most 4 and the degree of the 
dummy vertex is no less than 3 and at most 8. For example, 
in Figure 2(a), there are six terminal vertices and ten 
dummy vertices, and the degrees of vertices are: 
deg(t6) --- 2, deg(s 3) = 4, and so on. If the degree of a 
dummy vertex is reduced to 2, then the dummy vertex 
is called a virtual vertex. A hyperedge consists of an 
alternating sequence of virtual vertices and edges which 
are connected in series. Naturally, a hyperedge has at 
least one edge. For example, in Figure 2(b), there are 
three dummy vertices, three virtual vertices, and eight 
hyperedges. 

The TCP can be conceptualized as a problem of 
finding the shortest connectivity path that connects 
the m terminal vertices in a graph G without causing 
any loops. First, it must be ascertained that the graph 
G is a connected graph before the shortest connectivity 
path can be found. The graph G is considered a 
disconnected graph if one of following conditions holds: 

• G is a null graph with no edges and with m isolated 
terminal vertices 

• G has at least one isolated terminal vertex 
• G consists of two or more components each of 

which is a subgraph of G and has at least one terminal 
vertex. 

Otherwise, the graph G is a connected graph. To 
determine whether a graph G is connected or not, 
it should traverse the entire graph beginning from any 
terminal vertex. Sometimes this can be easily done 
without passing through all the vertices and the edges 
in the graph. For example, if after passing through some 
of the edges and vertices in the graph G, a connected 
subgraph consisting of all terminal vertices is readily 
obtained, then the graph G can be immediately 
determined to be a connected graph. Similarly, if after 
passing through some vertices and edges in the graph 
G, an isolated vertex is detected, the graph G is said 
to be a disconnected graph. 

Hyper-complete graphs 
It was shown above that to solve the TCP on a 
connected graph G with m terminal vertices, the 
shortest connectivity path has to be found from all the 
connected paths (or steiner trees)in the graph, allowing 
self-loops, parallel edges, dummy vertices, terminal 
vertices, and edges on different layers. A graph in which 
there exists an edge between each corresponding (out 
going) branch in every pair of terminal vertices is called 
a hyper-complete graph. Figure 3 shows three different 
hyper-complete graphs. Clearly, the hyper-complete 
graph is also a connected graph. That is, if the graph 

Macro-dummy vertex 
Dummy vertex --___.. ~ \ ~ 

erminal  

a b c 

Figure 3. Three different hyper-complete graphs: (a) G2 
with d7 = 4 a n d  d2 = O; (b) G 3 with dl = _3 a n d  d2 = 3;  
(C) G 4 with d~ = 2 a n d  d2 = 3 

G is a hyper-complete graph, it will inherently contain 
many connected paths. 

Without loss of generality, the TCP can be examined 
on a hyper-complete graph Gm= (V, E), which consists 
of a set of m vertices and r dummy vertices, 
V(Grn ) =  ( V l ,  V2 . . . .  , Vm}k-){Vm+l, Vm+2, . . . ,  Vrn+r ~, 
and a set of n hyperedges, E(G~) = {e~, e2, ... ,en}. Let 
the degree of a terminal vertex, deg(vt), be d~ and the 
degree of a dummy vertex deg(v d) be d2, so that d2 is 
at least 3 and no more than m. In the VLSI design, dl 
and d2 are at most 4 and 8, respectively, where two 
adjacent layers are connected vertically by a via. Each 
of the dl branches in the m terminal vertices forms a 
hyper-connection. The hyper-complete graph G~ in 
turn has a set of d~ hyper-connections. If a hyper- 
connection has more than one dummy vertex, it forms 
a macro-dummy vertex from these dummy vertices. 
Figure 3 shows three different hyper-complete graphs 
G2, G3 and G4. For instance, G2 has four hyper- 
connections and four hyperedges, G3 has three hyper- 
connections, nine hyperedges and three dummy vertices, 
and G4 has two hyper-connections, ten hyperedges and 
four dummy vertices (or two macro-dummy vertices). 

Properties 
After defining a hyper-complete graph G~, some of its 
properties are introduced in the following lemmas. 

Lemma 7 
Given a hyper-complete graph G~=(V, E) with 
m(m >/2) terminal vertices, let the degree of a terminal 
vertex deg(vt) be d~(d~ t> 1 ) and the degree of a dummy 
vertex deg(v d) be d2(d 2 >1 3). Then, the total number of 
hyperedges E(Gm), dummy vertices D(Gm) , and vertices 
V ( G  m) is 

IE (Gm) I  = d~ Ld2 - ifm~>3 

(0 ( m - - 3  ) i f m = 2  
ID(G~) I=  d~ 3 + i d 2 _ 2 1  ifm~>3 

IV(Gm) l -- m + I D(G~) I  

(3) 

(2) 

(3) 

Proot 
By the definition of a hyper-complete graph Gm with 
m (m/> 2) terminal vertices, G2 consists of dl hyper- 
connections with no dummy vertex, i.e. these dl 
hyperedges directly connect one terminal vertex to 
another terminal vertex. 

For m >t 3, Gm also has a set of dl hyper-connections, 
and at least one dummy vertex exists in each hyper- 

volume 22 number 7 september 1990 425 



connection because the degree, d 2, of a dummy 
vertex is at least 3 but no more than m. First, assume 
that the number of terminal vertices, m, is equal to or 
larger than 3 but no more than d2. Clearly, each 
hyper-connection in G~ has only one dummy vertex 
(the degree of which is just equal to m) and m 
hyperedges. In total, this C~ has d~ dummy vertices 
and md~ hyperedges, and the total number of vertices 
is (m + dl). 

Second, consider that the number of terminal vertices 
m is larger than d2. It is easy to see that each 
hyper-connection in this G~ must have at least one 
dummy vertex to form a macro-dummy vertex. However, 
it is important to count how many dummy vertices are 
added in a hyper-connection as the number of terminal 
vertices, m, increases. It will be seen that a hyper- 
connection in this G~ has an extra dummy vertex (and 
hyperedge) as long as the number of terminal vertices, 
m, is increased by a number ranging from 1 to disp 
(disp = d 2 - 2). Obviously, the total number of dummy 
vertices and hyperedges in Gm will be increased by a 
multiple of d~ dummy vertices and hyperedges, 
respectively• Hence, we have the following inductive 
formulation. 

if such a macro-dummy vertex, u i, exists (otherwise, x, is 
0). 

Proof 
As shown in Lemma 1, a hyper-complete graph C;,, 
with m (m/>2) terminal vertices has at least one 
connected path through these vertices, and at least 
one dummy vertex exists if the number of terminal 
vertices, m, is larger than 2. 

If no dummy vertex is included in a connected path, 
i.e. r -- 0, the number of edges in a connected path is 
exactly m -  1 hyperedges. (For example, G2 has one 
hyperedge directly connecting the two terminal vertices 
without any dummy vertex.) Otherwise, a connected 
path in Gm (m/> 3) has at least one dummy vertex, 
r~> 1. In other words, a connected path is then 
equivalent to a steiner tree; the number of required 
extra r dummy vertices in the C~ is analogous to the 
number of required r steiner points in the steiner tree• 
Therefore, the total number of hyperedges in a connected 
path is the sum of m - 1 and r hyperedges. 

The degree of any one of the r vertices is at least 2 
if a dummy vertex is degraded to a virtual vertex. With 
the r dummy vertices, at most r -  1 terminal vertices 

m = 2  
3~<m~<d2 

d2 + 1 ~ m <~ d2 + 1 (disp) 
d2 + 1 (disp) + 1 <~ m <~ d2 + 2(disp) 

d2 + ( 2 - 1 ) (disp) + 1 <~ m <~ d2 + 2 (disp) 

E(Cm) 
E(C~) 
E(G~) 
E(C~) 

E(Cm) 

= dl I D(Gm)l = 0 
= d lm I D(C~)I = d~ 
= d ~ ( m + l )  ]D(G~)I =2d~ 
=d~(m+2) ID(Gm)I =3d~ 

= d l ( m + 2 )  ]D(Gm)I = d 1 ( 1 + 2 )  

where 2 is L(m - 3)/(disp) _J. The total number of vertices 
V(Gm) is the sum of the terminals and the dummy 
vertices, i.e. [m + d~(1 + 2)]. [ ]  

Figure 3(c) shows an example of a hyper-complete 
graph, G4, with m = 4, d~ = 2, and d2 = 3. The number 
of hyperedges, dummy vertices and vertices can be 
calculated as follows. Since d i s p = d 2 - 2  = 1 and 
2 = L(m - 3)/(disp)_J = 1, then 

I E(C4) I - -  d~(m + 2 )  = 10  

{ D(C4)I =d1(1 + 2 ) = 4  

I V(G4)[ = m + ] D(G4)I = 8 

Lemma 2 
Given a hyper-complete graph Gm = (V, E) with m 
(m/> 2) terminal vertices, the number of hyperedges, 
C(Gm), in a connected path is: 

__r 
I C ( G m ) l = ( m - - 1 ) +  ~ xi 

i=1 

0 ~< r ~< min(m -- 1, d~) (4) 

where r is the number of required macro-dummy 
vertices; dl is the degree of a terminal vertex; and x, 
is a positive integer, /~, which represents the number 
of dummy vertices that form a macro-dummy vertex, 

and at least 2 ( r -  1) hyperedges can be connected to 
these dummy vertices without causing a loop. But these 
r dummy (virtual) vertices have at least 2r branches. 
By the definition of a connected path, no loop is 
included among the m terminal vertices. Figure 4 shows 
an aspect of the representation of a connected path. 
Hence, an inequality is obtained as follows. 

2r - -  2 ( r - -1 )  <~ m - - ( r - - 1 )  

2 ~ < m - - r + l  

r < ~ m - - 1  

A hyper-connection in a Gm must have at least one 
dummy vertex which forms a macro-dummy vertex, 
i.e. /~ >/1. If ig is just 1, the macro-dummy vertex is 
equivalent to a dummy vertex and the degree d 2 of 
the dummy vertex is equal to the number of terminal 
vertices m, as discussed in Lemma 1. From Lemma 1, 
if d2 (d2 >~ 3) is smaller than the number of terminal 

: . i  " i i  i " r dummy ver t ices  

• " " • [ r - I  ) terminal ver t ices 

Figure 4. Appearance of representation of connected 
path 
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vertices m, the macro-dummy vertex in Gm has at least 
two dummy vertices. In other words, a hyper-connection 
in Gm has just one macro-dummy vertex connecting 
these dummy vertices. And the total number of 
hyperedges E(Gm) will be increased by one while an 
extra dummy vertex is added to the hyper-connection. 
Hence, r is equal to the number of the macro-dummy 
vertex; xi is /~ if the macro-dummy vertex u i exists, 
other it is 0. 

However, considering a G~ with degree d~ less than 
m, the number of terminal vertices, this time the Gm 
has at most d I (not m - - l )  macro-dummy vertices. 
Therefore, the maximum value of number r is equal to 
the min ( m -  1, dl). [ ]  

By way of illustration, Figure 5(a) shows an example of 
the hyper-complete graph G3, with m = 3, d2 = 3, and 
x~ = ~ = 1, and Figure 5(b) shows all possible distinct 
connected paths among the three terminal vertices. 
These 21 connected paths are divided into two kinds 
of connected paths. One connected path contains only 
one dummy vertex (r = 1 ) in addition to the m terminal 
vertices, and the total number of hyperedges is C(G3) = 
(m -- 1 ) + :t~ = (3 - 1 ) + 1 = 3. The other connected 
path contains two virtual vertices ( r =  2) and four 
hyperedges: C ( G 3 ) = ( m - 1 ) + x 1 + ~ 2 = ( 3 - 1 ) + 1 +  
1 = 4 .  

As shown in Figure 3(c), a hyper-connection in the 
G4 (m = 4, d l =  2, d2 = 3) has two dummy vertices, i.e. 
x i - -  ~ = 2 and 1 ~< r ~< min(m - 1, d 1) = 2. This G 4 has 
two types of connected paths, r = 1 or r = 2. One of 
the connected paths contains a macro-dummy vertex, 
the total number of hyperedges is C(G4) = (m -- 1) + 
Xl = (4 -- 1 ) + 2 = 5. The other connected path contains 
two macro-dummy vertices and seven hyperedges: 
C(G4)= ( m -  1 )+  ~1 + x2 = ( 4 -  1 )+  2 + 2 = 7. 

To develop the next lemma, let the number of 
r-permutations from n objects, denoted P(n, r), be 
defined as: 

P(n, r), n ( n - - 1 ) ( n - - 2 )  ... ( n - - r  + l )  (5) 

if r = n = P ( n ,  r ) =  n!, if r > n ,  P(n, r ) =0 ,  and if r = 0 ,  
P(n, r) = 1. This definition can be applied to any natural 

a 

O 

o 

b 
Figure 5. (a) Hyper-complete graph G3 
terminal vertices, d 7 = 3 and d 2 = 3; (b) 
connected paths of G3 

with three 
all distinct 

numbers n and r. For example, P(2, 0 ) =  1 and P(2, 
3)=O. 

Now let the number of r-combinations from n objects, 
denoted C(n, r), be defined as: 

P(n, r) n ( n - - 1 ) ( n - - 2 ) . . . ( n - - r + l )  
C(n, r ) =  = 

r! r! 

(6) 

If r = n ,  C(n, r ) = l ,  if r > n ,  C(n, r ) - 0 ,  and if r = 0 ,  
C(n, r ) =  1. This definition is true for any natural 
numbers n and r. For example, C(2, 0 ) =  1 and C(2, 
3)=O.  

Lemma 3 
Given a connected path with r macro-dummy vertices 
(r/> 0) in a hyper-complete graph G~ = (V, E) with m 
terminal vertices, if 0 ~< r ~< 1, the number of connected 
paths is: 

CP r = P(dl, 1 ) (7) 

where dl is the degree of the terminal vertex. Otherwise, 
if r >/2, there are r - -  1 types of connected paths and 
the total number of connected paths to each type is 

r--1 

CP~ = ~, P(m, j)rl(m, r, i)P(dl, r) 
j = l  

where r/(m, r, j) is a type function. 

(8) 

Proof 
In a hyper-complete graph Gin, with m terminal vertices 
and dl macro-dummy vertices, its connected path 
contains r macro-dummy vertices, 0 ~< r ~< min(m - 1, 
d~), as discussed in Lemma 2. 

If r = 0 ,  the connected path does not have a 
macro-dummy vertex, i.e. the path connects directly 
to its two terminal vertices; this is the case for G2. 
Hence, the total number of connected paths in G2 
depends on the degree dl of the terminal vertex, i.e. 
CP0 = P(dl, 1 ). 

If r = 1, the connected path has only one macro- 
dummy vertex. However, a macro-dummy vertex 
connects just m terminal vertices. Hence, the total 
number of connected paths depends on the degree, dl, 
of the terminal vertex, i.e. CP1 = P(dl, 1). 

Next, consider a connected path with r macro- 
dummy vertices in Gin, r >t 2. No more than r terminal 
vertices can form a path connecting these macro- 
dummy vertices, otherwise it would generate one or 
more loops; thus, a connected path has 1, 2 . . . .  j, . . . ,  
or r - 1  terminal vertices to connect the r macro- 
dummy vertices, i.e. there are r -- 1 types of connected 
paths. Each type has j-combinations from m terminal 
vertices multiplied by j [, that is, C(m, j ) j [  = P(m, j). And 
the remaining terminal vertices, m --j, are distributed 
into r macro-dummy vertices but the degree of each 
macro-dummy vertex is at least 2. The distribution is 
not uniform to each type. There are a number of 
different combinations which vary within each type; 
therefore, a type function r/(m, r, j) needs to be 
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introduced. In addition, the r macro-dummy vertices 
have also r-permutations from the degree, d,, of a 
terminal vertex, i.e. P(d~, r). Therefore, we have r - 1  
types of connected paths, and each type has P(m, j) 
~l(m, r, j)P(dl, r) connected paths. [ ]  

The type function ~/(m, r, j), just introduced, varies with 
the type of each connected path in Gin. Given a 
connected path with r macro-dummy vertices, r ~> 2, 
and j terminal vertices, 1 ~<j~< r - -  1, which are 
predetermined (see Figure 4), there exist at most 
y ~ ( y ~ = r + j - 1 )  hyperedges causing no loop and Y2 
(Y2 = 2 r -  y~ = r - j  + 1) hyperedges, making the degree 
of each macro-dummy vertex equal to 2. Since some of 
the ( m - j )  terminal vertices are matched with these 
Y2 hyperedges, and letting the rest of terminal vertices 
be z in number, we then obtain z = ( m - j ) - y 2 =  
m - r - 1  I> 0. The type function r/(m, r, j) depends 
heavily on the value z. 

If z = 0, a connected path contains just m - 1 (since 
z = m -  r -  1 = 0, r = m -  1) macro-dummy vertices. 
In other words, the m (i.e. m - z = m - 0 = m) terminal 
vertices are distributed into r macro-dummy vertices 
and the degree of each macro-dummy vertex is just 2. 
This is a unique match and the type function r/(m, r, 
j) is always equal to 1. For example, Figure 6 shows all 
types of connected paths with five macro-dummy 
vertices in C6, each with type function 1. And in Figure 
6(c),given m = 6, r = 5, andj = 3, then y~ = r + j - -  1 = 
5 + 3 - - 1  --7, y 2 = r - j + l = 5 - 3 + 1 = 3 ,  and m -  
j = 6 - 3 = y 2  o r z = m - r - l = 6 - 5 - 1 = O .  

If z > O, a connected path contains less than m - 1 
(since z = m - - r - l > O ,  r < m - 1 )  macro-dummy 
vertices. In other words, the ( m -  z) terminal vertices 
are connected by r macro-dummy vertices such that 
the degree of each macro-dummy vertex is just 2, and 
the rest of z terminal vertices can be freely distributed 
into those r macro-dummy vertices. Experimentally, the 
distribution is not exactly uniform to each type and 
the type function tl(m, r, j) depends on different type 
combinations, but a general form is given as follows. 

L(m j),'2 j (m- - j ) !  ( 9 )  

r/(m, r, j ) =  ~ i[il!i2[ in 1 [ 
i = z + 1 ,  i=1  1 . . . .  

where i, i~, i2, . . . ,  i~_1 must satisfy the following 
condition: i + il + i2 + . . .  + i~_1 = m - j .  

For example, Figure 7 shows two types of connected 
paths with two macro-dummy vertices in Gs, m = 5, 

a 1 = I  b i = 2  C i = 3  d i : 4  

Figure 6. All types of connected paths with five macro- 
dummy vertices in G6. Their type function is always 1 

a b 

Figure 7. Two types of connected paths with two 
macro-dummy vertices in G5 

r = 2 ,  and j = l .  Then z = m - - r - - l = ! : , - - 2 - -  1=2 ,  
and the type function is equal to the sum of 4! /3[  1! 
and 4!/2!2!.  

Figure 8 shows all types of connected paths with 
three macro-dummy vertices in Cs, with m = 5, r = 3, 
and1 <~j<~2.1fj=l, t h e n z = m - r - 1  = 5 - 3 - 1  = 1, 
the type function rl(m, r, j) = r/(5, 3, 1) = 4!/2!1 ! 1 !, 
and the number of connected paths is CP, = P(5, 1) 
r/(5,3, 1 )P (4 ,3 )=1440 .1 f /=2 ,  t h e n z = m - r - 1 =  
5 -  3 - 1  = 1, type function r/(m, r, / ) =  v/(5, 3, 2 )=  
(3 !/2!1 !) + (3 !/2!1!) (note, this is not a general form) 
and the number of connected paths is CP2 = P(5, 2) 
r/(5, 3, 2) P(4, 3 )=  2880. Hence, the total number of 
connected paths is CP1 + CP ~ = 4320. 

A problem meanwhile arises. How many connected 
paths are present in a hyper-complete graph Cm with 
m terminal vertices? By Lemma 2, a connected path 
consists of m - 1  hyperedges while a Cm has no 
macro-dummy (or dummy) vertex, like G2. The number 
of connected paths CP(G2) in the G2 is equal to the 
number of 1-permutations from the degree of a terminal 
vertex, dl. Hence, CP(G2) = CP0 = P(d~, 1 ) =dl, as per 
Lemma 3. For example, in Figure 3(a), CP(G2)= 
P(4, 1 )=4 .  

For the Cm with m ~> 3, by Lemma 3, we have r - -  1 
types of connected paths and each type has a lot of 
different connected paths, where 1 ~< r ~< min(m - 1, 
d~), as discussed in Lemma 1. For example, in Figure 
3(b), C3 has two types of connected paths, containing 
one or two dummy vertices. Figure 9 shows the different 
representations of the two types of connected paths. 
For the first type of connected path, r = 1, the number 
of distinct connected paths is CPT=P(d~, r )=  
P(3, 1 )=  3. For the second type of connected path, 
r = 2 ,  since z = m - r - l = 0 ,  the type function is 
equal to 1 and the number of distinct connected paths 
is CP2 = P(m, 1 ) P(d~, r) = P(3, 1 ) P(3, 2) = 18. Therefore, 
C~ has 21 different connected paths, as shown in Figure 
5(b). 

Theorem 7 
The total number of connected paths in a hyper- 
complete graph, Gm= (V, E), with m terminal vertices, is 

min(rn -- 1, d 1 } 

CP(Gm)=P(dl, 1)1~=0,~ + 
r = 2  

r£1P(m, j ) l l (m,r , j )P(dl ,  r ) }  
j = l  

where  d~, r and t/(m, r, j) are previously defined. 

(10) 

a j-~ b J-~ 

Figure 8. All types of connected paths with three 
macro-dummy vertices in G5 

a b 

figure 9. Two dff[erent connected paths of figure 3(b) 
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Proof 
From Lemma 2, a connected path has at most 
m i n ( m - 1 ,  d~) macro-dummy vertices in a hyper- 
complete graph Gm with m terminal vertices with 
degree d~. 

By the definition of a hyper-complete graph G~, the 
number of terminal vertices must be at least 2, m/> 2. 
Also, by Lemma 3, if a G~ has just two terminal vertices, 
m = 2, then its connected path will contain no macro- 
dummy vertex, r = 0, and the total number of connected 
paths will be CP(G2)= CP0 = P(d~, 1). If a Gm has at 
least three terminal vertices, m >t 3, its connected path 
will contain a different number of r macro-dummy 
vertices, 1 ~< r ~< min(m - 1, dl), and the total number 
of connected paths will be CP(G~) = CP~ + CP2 + . . .  + 
CPrnin(m - 1, dl)' 

NP-hardneu of TCP 
Next, we want to find the shortest connectivity path 
in the hyper-complete graph G~. This path must 
contain each terminal vertex exactly once and its length 
(or distance cost) will be less than other connected 
paths if they exist. Theoretically, the problem of finding 
the shortest connectivity path can always be solved 
by enumerating all the connected paths CP(G~) (see 
Theorem 1), by calculating the distance cost of each 
path traversal, and then by picking the shortest one. 
However, for a large value of m and d~, the work 
involved is too great even for a digital computer. The 
problem is to prescribe a manageable algorithm for 
finding the shortest route. No efficient algorithm for 
problems of arbitrary size has yet been found, although 
many attempts have been made. Hence, a heuristic 
method must be applied to solve it, which gives a route 
very close to the shortest one, but does not guarantee 
the route to be the shortest. 

The problem of finding the shortest connectivity path 
in the hyper-complete graph G~ is analogous to the 
finding of a minimal steiner tree, which has been proved 
NP-complete 13. 

Theorem 2 
The problem of finding the shortest connectivity path 
in a hyper-complete graph Gm with m terminal vertices 
is NP-hard. Therefore, the TCP is also NP-hard. (The 
proof of this theorem is given in Appendix) 

In the next section, we propose a heuristic algorithm 
to solve the TCP to find the shortest connectivity path 
in linear time with some proprocessing work. 

TERMINAL CONNECTIVITY PROBLEM 
ALGORITHM 

TCP algorithm overview 

in order to solve the TCP it is necessary to begin by 
determining the connectivity of the terminals and then 
to find the shortest connectivity path if the TCP is 
proved to be connected. In order to achieve this and 
to implement the algorithm efficiently, a powerful 
structure - corner-stitching - is applied, for which a lot 
of efficient supporting algorithms have been proposed TM. 

First, it is necessary to map the m terminals and n wire 
segments into the multi-layer (corner-stitching) planes 
according to the given layer information. Then, a 
breadth-first expansion is begun from one of the 
terminals in the multi-layer planes. If any one of the m 
terminals remains unvisited, there is no connected path 
through the m terminals in the TCP. Otherwise, the 
TCP has one or more connected paths through the m 
terminals, one of which is the shortest path. To simplify 
the process of finding the shortest connectivity path, 
a maximal loop is obtained by eliminating some 
redundant segments and by skipping some unique 
segments if they exist before the shortest connectivity 
path is found. Therefore, a part of the shortest 
connectivity path can be obtained from the maximal 
loop. By combining this part of the shortest connectivity 
path and those just skipped and unique segments, the 
whole shortest path connecting the m terminals is 
finally generated. 

Figure 10 presents an overview of the TCP. First, given 
m terminals and n wire segments with their layering 
information, construct the layout in a multi-layer plane 
model. Then, traverse the terminals and wire segments 
in the multi-layer planes and determine whether or not 
the m separate terminals are connected to each other 
by those wire segments. If so, first remove those 
redundant wire segments (such as isolated and pendant 
segments) to find the maximal loop, if any; then obtain 
the shortest connectivity path of the TCP from the 
maximal loop. Otherwise, highlight the disconnected 
occurrences or try to repair them by adding or 
stretching a segment without violating electrical or 

I 1 N° 

input  m terminals 
and n wire segments 

1 
Construct ion of 

mul t i - layer  
co rner -s t i t ch ing  

Are terminals 
connected by 

these segments ? 

I Yes 

Remove the 
redundant  segments 

1 
Find the  

maximal loop 

1 
Find the shortest  
connect iv i ty  path 

Report  results  

,j 

High l igh t  the 
disconnected 
occurrences 

Yes 

Figure 10. Overview of terminal connectivity problem 
algorithm 
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design rules. For example, in Figure 1, the vertical wire 
segment v 5 can be stretched up to reach the isolated 
terminal t7 such that this TCP become connected. If 
the disconnected occurrence(s) can be repaired, then 
the connectivity checking is continued. Otherwise, all 
of the disconnected information must be reported. 

TCP heuristic algorithm 

The heuristic algorithm of the TCP is divided into six 
steps. Each step is discussed in detail, with the help of 
an example, shown in Figure 11, and its time complexity 
is also calculated. 

Since the solution of the TCP is based on the 
construction of multi-layer planes, this step is said to 
be a preprocess of the TCP. By using a corner-stitching 
data structure, all preprocessing operations are almost 
localized and with linear run time. In particular, the 
expected time of a corner-stitching tile insertion or 
deletion is constant. The same configuration requires 
a memory space about three times as great as the 
degree of time complexity. In total this construction 
takes O(m + (1 +c )n )  time complexity and requires 
three times as much memory space, where c is a 
positive constant that depends on the intersections 
between n wire segments. 

Step O: Constructing multi-layer planes 
The construction of the multi-layer planes is just a 
mapping of the m terminals and n wire segments on 
the original flat layout on to different planes. Overlapping 
tiles are not allowed in the same plane. A segment 
should be split if it is intersected by other segments. 
To construct the multi-layer planes efficiently, first map 
the m terminals and horizontal segments on to the 
multi-layer planes without considering overlapping, 
then map the remaining segments (vertical segments). 
If the vertical segments intersect the horizontal segments 
in the same layer plane, splitting operations will be 
required. Thus, the multi-layer planes of m terminals 
and n wire segments can be constructed. Figure 11(a) 
depicts the construction of a two-layer corner-stitching 
for the inputs of six terminals and 16 wire segments. 

tl ~ ~t~ t5 

t 2 , 

t 3 :! ~ 

a 

q 

t~ 

c 

q t~ t~ 

b d 

. . . .  ~ t4 t 1 

t2 

e 
Figure 77. TCP process with six terminals and 16 wire 
segments: (a) construction of mufti-layer corner-stitching; 
(b) after removal of all pendant segments; (c) maximal 
loop consisting of six dummy terminals; ( d) shortest path 
obtaining from the maximal loop; (e) results of the 
shortest connectivity path 

Step 1: Determining terminal connectivity 
After the construction of the multi-layer planes, the 
next step is to recognize whether or not at least one 
connected path between m separate terminals exists 
in the multi-layer planes. For this purpose, a breadth- 
first searching method is applied by starting from any 
terminal and passing the incident segments to reach 
its adjacent vertices. This process is continued until all 
the m terminals are visited. If an isolated terminal, a 
pendant vertex or segment, is found, the occurrence 
(which is disconnected from the connected paths) 
should, if possible, be repaired by adding or stretching 
a segment without violating any design rule, if no 
connected path is found, report or highlight the 
corresponding disconnected occurrences should be 
reported or highlighted and the TCP stopped. Otherwise, 
there exists at least one path connecting the m 
terminals. For example, the path shown in Figure 11 (a) 
is connected. To simplify the process of finding the 
shortest connected path, it is necessary to remove any 
redundant segments, such as isolated or pendant 
segments. A pendant_list is used to record these 
redundant segments during the expansion. 

Note that in the above method, all vertices and 
segments are marked exactly once, except for those 
isolated segments which are irrelevant to the 
determination of terminal connectivity. Therefore, the 
algorithm has O(m + (1 + c)n) time complexity. 

Step 2: Eliminating redundant segments 
Having established that the m separate terminals are 
connected together through some segments, this implies 
that at least one shortest connectivity path exists 
through the m terminals and that some segments are 
possibly redundant. Isolated, pendant, and loop segments 
are examples of redundant segments which are useless 
for connecting the m terminals and need to be 
removed. To illustrate, Figure 11(b) shows the 
appearance after the removal of all the pendant wire 
segments from Figure 11(a). 

Since all the pendant segments have been recorded 
in the pendant_list in Step 1, one can easily eliminate 
every alternating sequence of vertices and segments, 
whose starting segment is in the pendant_list. Further, 
the isolated segments will vanish naturally when the 
multi-layer planes are converted back to the original 
layout with m terminals and n' segments (n ~<n). 
Which loop segments need to be removed in finding 
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the shortest connectivity path will be discussed in 
Step 4. 

From the above discussion, some alternating sequences 
of vertices (vias or bends) and segments are eliminated 
in the multi-layer planes. Let np denote the number of 
these vertices and segments. Hence, the algorithm will 
take 0(%) time. In general, np is smaller than n, the 
total number of segments. 

Step 3: Searching for maximal loop 
After the elimination of the pendant segments, it is 
time to find the shortest connectivity path among the 
m terminals. Sometimes there are many unique paths 
or multiple loops between every pair of terminals in 
the multi-layer planes. But it must be established 
whether any loop exists in the multi-layer planes before 
the shortest connectivity path through the m terminals 
can immediately be obtained from the multi-layer 
planes. Otherwise, there exist some loop segments 
among the m terminals. Accordingly, first it is necessary 
to pick out the m dummy vertices forming the maximal 
loop, and then to find the shortest connectivity path 
within the maximal loop. A dummy terminal can be 
detected by searching from each terminal to a vertex 
which has more than one incident segment, excluding 
the segment that is just going in. At the same time, a 
distance cost from every terminal to its corresponding 
dummy terminal is to be recorded in this dummy 
terminal. These dummy terminals and their cost, which 
are used to find the shortest connectivity path in the 
maximal loop, will be discussed in next step. Figure 
11 (c) shows the maximal loop composed of six dummy 
terminals of Figure 11(b). 

In this step, there are some alternating sequences of 
vertices and segments from every terminal to the 
corresponding dummy terminals. These sequences are 
unique and from part of the shortest connectivity path 
among the m terminals. Let n m be the number of these 
pathing vertices and segments. Thus, the algorithm 
takes O(n m) time. In general, nm is smaller than the total 
segments n. 

Step 4: Finding shortest connectivity paths 
Step 3 generates part of the shortest connectivity path 
through the m terminals (named path_l)  and a set of 
m dummy terminals (recorded in the vertex_list) which 
form the maximal loop. If the vertex_list is empty, the 
path_l found in Step 3 is just the shortest connectivity 
path that connects the m separate terminals. Otherwise, 
it is necessary to find the shortest connectivity path 
(named path_2) within the maximal loop formed by 
the m dummy terminals by eliminating some loop 
segments. In this case, the two parts of the shortest 
connectivity paths (i.e. path_l  and path_2) must be 
combined to obtain the whole shortest connectivity 
path through the m terminals. Figure 11 (d) shows the 
shortest path obtained from the maximal loop in Figure 
11(c). 

In this step, each vertex and segment in the maximal 
loop is visited at the stages of expanding and backtracking. 
Let nw be the total number of vertices and segments 
within the maximal loop and x a positive constant that 

is the number of times a vertex or segment is visited. 
Therefore, the algorithm has O(xn w) time complexity. 

Step 5: Reporting the TCP results 
Finally, what remain in the multi-layer planes are the 
shortest connectivity path with its connecting m 
terminals and the other negligible isolated segments. 
First, to refine the shortest connectivity path in the 
multi-layer planes, it is necessary to eliminate any 
redundant bends or vias (constructed in Step 0) as 
shown in Figure 11(e). Then, the shortest connectivity 
path is converted back to the original layout with m 
terminals and n' (n' ~< n) segments. 

In summary, the TCP algorithm has O(m + (1 + c)n) 
linear time complexity, as established in the above six 
steps. Obviously, this linear time algorithm is achieved 
with the assistance of the powerful data structure - 
corner-stitching. 

EXPERIMENTAL RESULTS 

The TCP heuristic algorithm was implemented on a 
SUN 111/160 workstation using standard C and the 
Berkeley 4.2 UNIX operating system. Table 1 shows the 
experimental results, as well as some significant data, 
such as the number of layers (layer), the number of 
terminals (term), the number of original segments (seg), 
the length of original segments (len), the number of 
transferred segments (tseg), and the length of the 
shortest connectivity path (tlen). 

A circuit with n solid tiles represented with a data 
structure - corner-stitching - never requires more than 
3n + 1 space tiles even in the worst case. However, in 
actual circuit layouts, the number of space tiles required 
is close to n. Hence, the TCP algorithm takes 
O(3(m + (1 + c)n)) memory space in the worst case, 
and its time complexity is O(m + (1 + c)n). 

Figure 12 shows the curve of the sum of terminals 
and wire segments to be related to the running time. 
The running time is linearly related to the sum of given 
terminals and wire segments. Note that the running 
time is the sum of the preprocessing time (pre_time) 
and the time taken to find the shortest connectivity 
path (tcp_time). 

Figure 13(a) shows an example of tcp5 with 19 
terminals and 104 wire segments, and Figure 13(b) gives 
the shortest connectivity path. 

CONCLUSION 

We have shown that the new problem of terminal 
connectivity (TCP) in the VLSI or PCB multi-layer layout 

Table 1. Experimental data and results 

layer term seg len tseg tlen 

tcpl 1 2 95 5236 6 852 
tcp2 1 5 18 800 9 288 
tcp3 2 6 30 493 23 356 
tcp4 2 6 41 1274 17 568 
tcp5 2 19 104 2978 57 1508 
tcp6 3 38 199 5260 125 3180 
tcp7 3 60 382 8716 220 5270 
tcp8 4 74 625 12628 268 4960 
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Figure 13. (a) Example ot tcp5 with 19 terminals and 104 
wire segments; (b) shortest connectivity path 

scheme is NP-hard, because finding the shortest 
connectivity path in the TCP can be viewed as a minimal 
steiner tree problem (which has been proved NP- 
complete). We have proposed a heuristic algorithm 
based on multi-layer corner-stitching to solve the TCP 
efficiently in O(m + (1 + c)n) linear time. This algorithm 
may also be applied for the checking of electrical or 
design rules. 
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APPENDIX 1: PROOFS 

Proof of Theorem 2 

Here, an attempt is made to establish the NP-hardness 
of the process of finding the shortest connectivity path 
in hyper-complete graphs (SCPHCG) Gin, which implies 
the NP-hardness of the terminal connectivity problem 
(TCP). This is shown by reducing the known NP- 
complete 'steiner tree in graphs' (STG) problem to the 
problem of finding the shortest connectivity path. 

Steiner Tree in Graphs" 

Instance: A graph G = (V', E'), a weight w(e')e 7/ (7/ 
denotes the set of positive integers) for each e'e E', a 
subset R' ___ V', and a positive integer bound B'. 
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Question: Is there a subtree of G that includes all 
vertices of R' such that the sum of the weights of the 
edges in the subtree is no more than B'? 

Shortest Connectivity Path in Hyper-Complete 
Graphs 

Instance: A hyper-complete graph Gm = (V, E) with m 
terminal vertices, a weight w(e)e  ~_ for each e e E, a 
subset R ~_ V, and a positive integer bound B. 

Question: Is there a subtree of G m that includes all 
vertices of R but must contain m terminal vertices, such 
that the sum of the weights of the edges in the subtree 
is no more than B? 
It is easy to see that finding the shortest connectivity 
path in a hyper-complete graph G~ is NP, since a 
nondeterministic algorithm is needed only to guess a 
subset of vertices and hyperedges with distance cost 
no more than B and to check that it is legal. 

STG will be transformed in to SCPHCG. Let an 
arbitrary instance of STG be given by the graph G = (V', 
E') and the positive integer B'. A hyper-complete graph 
G~ = (V, E) must be constructed such that G~ has a 
shortest connectivity path if and only if G has a steiner 
tree with a sum of edge weights less than or equal to B'. 

Once more the construction can be viewed in terms 
of matching in a bipartite graph by assuming that the 
vertex set V' in STG can be decomposed into two 
disjoint subsets V~ and V~ such that each of the edges 
in the STG graph G joins a vertex in V~ with a vertex 
in V~. Let the subset V~ be the number of m terminal 
vertices, V~ = {v~, v2, . . . ,  vm}, and the subset V~ be the 
sum of steiner and dummy-steiner vertices, V2'= {v'~, 

' ' }  { . . . . . .  } In general, for a steiner V2 ' . . . ,  Vs  t J V l ,  V2 ' . . . ,  Vt  . 

tree, the degree of a terminal vertex is at least 1; the 
degree of a steiner vertex is at least 3 and the degree 
of a dummy-steiner vertex is always 2. For convenience, 
we use a relaxed-bipartite graph to represent an 
instance of steiner tree, that is, an edge may exist 
between a steiner vertex and dummy-steiner vertex in 
the subset V~. First, the graph G~ has m terminal vertices 
from the subset V~, which will be used to select r steiner 
or dummy-steiner vertices from the subset V~. Second, 
for each edge in E', Gm contains a number of hyperedges 
that will be used to ensure that any loop does not exist 
among the m + r vertices. One instance of matching 
in the relaxed-bipartite graph is shown in Figure 14(a). 
It has four terminal vertices, V~ = {Vl, v2, v3, v4}, one 
steiner vertex and two dummy-steiner vertices, V~ = 
{v ' l }u{v~ ' ,  v~}, and six edges, E '=  (el ,  e2 . . . . .  e6}, 
as shown in Figure 14(b). 

By the definition of the hyper-complete graph G~, 
Figure 14(b) can be transformed into an instance of 
G 4 with four terminal vertices, Vl = {v~, v2, v 3, v4}, one 
dummy vertex v d (merging of v~ and v~), one virtual 
vertex v~', one macro-dummy vertex V 2 = { v d } u ( v~' }, 
and five hyperedges, E = (e~, e2 . . . . .  es,6}, as shown in 
Figure 14(c). 

In the completed construction, the steiner tree will 
be replaced by the matching of relaxed-bipartite graph 

W I 
"~z-~ . .e V2 

Vl le2 vl ~--~v2 ~ ..... ................ ~ i "  ~ e  v;i2/ ........ ~ -~ l~v  d ............ 

' - ,  . . . . . . . . . . . . . .  • 
b v? c v~ 

Figure 14. Instance of minimal steiner tree is used in 
transforming to finding of shortest connectivity path in 
hyper-complete graph: (a) minimal steiner tree with four 
terminals and six edges; (b) relaxed-bipartite graph of 
(a); (c) bipartite graph of shortest connectivity path is 
transformed from ( b ) 

G = (V', E'), where V' 1 = {Vl, v2, . . . ,  Vm}, V 2 {vl ,  v2, 
I I  . . . ,  v 's}u{vl ' ,  v 2 . . . .  , vi' }, the subset of vertices 

R' c V' is R' = {V~ u V~}, the subset of edges F' c E' 
is F ' =  (e'l, e~, . . . ,  e'~}, and the total weight of the /:, 
steiner tree ~,i=lw~) is less than the positive integer 
bound B'. 

The construction of a hyper-complete graph 
Gm= (V, E) from the graph G is described below. The 
interconnected vertices in the subset vertices V~ are 
merged into one dummy vertex and their edges are 
also merged into one hyperedge; that is, Vl = {Vl, v2, 
.. . .  Vm}, V2= {u '  1, u 2 . . . .  , u '×}u{u~,  u~ . . . . .  u~}, the 
subset of vertices R ~ V is R = {Vl ta V2}, the subset 
of hyperedges F c: E is F = {el, e2, . . . ,  ep}, and the 
total weight of the connected path (see Theorem 1), 
2:~=1 w(ei), is less than the positive integer bound B. It 
is easy to see that Gm can be constructed from G in 
polynomial time. 

We claimed above that Gm has a shortest connectivity 
path if and only if G has a steiner tree with a sum of 
edge weights less than or equal to B. Suppose a 
connected path with m terminal vertices, r macro- 
dummy vertices, and m - 1  + r  hyperedges (see 
Lemma 2) is the shortest connectivity path of Gm. The 
r-macro-dummy vertices can be partitioned into two 
subsets of vertices, i.e. the subset of dummy vertices 
r~ and the subset of virtual vertices r2. These dummy 
and virtual vertices are equivalent to the steiner and 
dummy-steiner vertices in a steiner tree, respectively. 
Thus, those m - 1 + r hyperedges are also decomposed 
into a number of edges after the r macro-dummy 
vertices are partitioned. Therefore, the shortest 
connectivity path for G~ is completely equivalent to 
the minimal steiner tree for G. 

Conversely, given a minimal steiner tree in G, its 
steiner vertices, dummy-steiner vertices, and edges can 
be replaced by the dummy vertices, the virtual vertices, 
and the hyperedges in Gin, respectively. The degree of 
a dummy vertex is at least 3 but no more than m, the 
degree of a virtual vertex is just 2, and the hyperedge 
consists of a sequence of dummy or virtual vertices 
and edges. It is easy to see that a minimal steiner tree 
in G is also equivalent to a shortest connectivity path 
in Gin. [ ]  
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