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Abstract A thorough understanding of the charac-
teristics of transmissivity makes groundwater deter-
ministic models more accurate. These transmissivi-
ty data characteristics occasionally possess a com-
plicated spatial variation over an investigated site.
This study presents both geostatistical estimation
and conditional simulation methods to generate
spatial transmissivity maps. The measured trans-
missivity data from the Dulliu area in Yun-Lin
county, Taiwan, is used as the case study. The spa-
tial transmissivity maps are simulated by using se-
quential Gaussian simulation (SGS), and estimated
by using natural log ordinary kriging and ordinary
kriging. Estimation and simulation results indicate
that SGS can reproduce the spatial structure of the
investigated data. Furthermore, displaying a low
spatial variability does not allow the ordinary krig-
ing and natural log kriging estimates to fit the spa-
tial structure and small-scale variation for the in-
vestigated data. The maps of kriging estimates are
smoother than those of other simulations. A SGS
with multiple realizations has significant advan-
tages over ordinary kriging and even natural log
kriging techniques at a site with a high variation in
investigated data. These results are displayed in
geographic information systems (GIS) as basic in-
formation for further groundwater study.

Keywords Geostatistical simulation 7 GIS 7
Kriging 7 Spatial variability 7 Transmissivity

Introduction

Transmissivity is the main basic parameter for hydrogeo-
logical properties in groundwater models. This parameter
sometimes contains significant levels of uncertainty, in-
cluding complex (unexplainable) variations in the ob-
served values of measurable attributes over an investi-
gated area. For instance, Freeze (1975) noted that all soil
and geological formations contain seemingly random var-
iations in their spatial hydrogeological properties. There-
fore, characterizing the spatial distribution of transmis-
sivity for groundwater models is essential. These hydro-
geological property variabilities have induced many au-
thors to use statistical procedures to model the spatial
structures of interesting geohydrological and physico-
chemical properties. Examples of such works include
Bark and others (1978), Journel and Huijbregts (1978),
Delhomme (1979), Smith and Freeze (1979), Chirlin and
Dagan (1980), Smith (1981), Clifton and Neuman (1982),
Anderson and Shapiro (1983), Hoeksema and Kitanidis
(1985), Neuman and others (1987), Rubin (1990), Bjerg
and others (1992), Eggleston and others (1996), Fabbri
(1997), Christensen (1997), Difederico and Neuman
(1997), and Salandin and Fiorotto (1998).
The kriging process yields weighted-average estimates
that may fail to preserve the variability of the investi-
gated process. Minimizing the prediction error variance
involves smoothing the actual variability (Journel and
Huijbergts 1978). The estimated values based on kriging
display a lower variation than the actual investigated val-
ues. However, estimation techniques are designed to min-
imize local uncertainties and not to reproduce global pat-
terns (Christakos 1992). Geostatistical simulation can be
performed to correct the above deficiency. Simulation
generates equally likely sets of values for a variable,
which are consistent with the available in situ measure-
ments. This often implies that the simulated values have
the same mean and the same variogram as the original
data, and may also have to coincide with the original
data at the measurement points. Simulation focuses
mainly on reproducing the fluctuations in the observa-
tions, instead of producing the optimal prediction (Sterk
and Stein 1997). On the other hand, the investigated data
occasionally possess a skewed, even lognormal, distribu-
tion. Therefore, lognormal kriging was developed within
geostatistics to account for the frequently skewed distri-
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bution of the investigated data (Roth 1998). This tech-
nique transforms the data into a lognormal formation be-
fore kriging estimation. Notable works on this technique
include Rendu (1979), Journel (1980), Dowd (1982), Ri-
voirard (1990), Christensen (1997), Fabbri (1997), and
Roth (1998).
Conditional simulation attempts not only to generate a
set of values that have some specified mean and covar-
iance, but also to reproduce observed data at several lo-
cations. Thus, conditional simulations are useful in many
instances. For example, such measurements can be used,
along with simulated values, to analyze the spatial distri-
bution of the variable in question, assuming that a varia-
ble is investigated at several locations. Varljen and Shafer
(1991) established a conditional simulation to determine
a cap by simulating transmissivity. Eggleston and others
(1996) applied conditional simulation and ordinary krig-
ing to reproduce hydraulic conductivity structure and
sensitivity under limited amounts of data. Later, Mowrer
(1997) applied a sequential Gaussian simulation (SGS) to
create maps of potential old-growth forest conditions
across a 121-ha first-order subalpine watershed. More re-
cently, Kentwell and others (1999) used SGFS to enhance
the prediction accuracy of a grade tonnage curve.
In this study, conditional simulation technique, natural
log ordinary kriging and ordinary kriging are applied
herein to produce the realizations and maps of transmis-
sivity in a real case study. The descriptive statistics, spa-
tial structure (experimental variogram) and spatial pat-
terns of estimated and simulated results are also dis-
cussed. Finally, the estimation and simulation results are
also shown in geographic information systems (GIS).

Case study

The study area is located on the east banks of the middle
and upper streams of the Peikang River in Yun-Lin
County, Taiwan. The branch streams of the Peikang Riv-
er, such as the Ta Huko River and Huahsing River, in-
cluding Huwei, Tuku, Yuangchang, Tounan, Tapei and
Kukeng, are also included as illustrated in Fig. 1. The lo-
cations of sampling wells are also shown in Fig. 1. The
geological conditions of the study area from Dulliu Hill
to the Peikang River encompass the Toukoshan forma-
tion, terrace deposits and alluvium as presented in Fig. 2.
The stream origins carry the material washed away by
rainfall at the Liushuang formation of Dulliu Hill and de-
posit them on the Tainan formation as falling-stone de-
posits. The Liushuang formation is mainly an inter-layer
of mudstone and shale in which most of the accumulated
material is muddy. Moreover, a layer containing gravel
mixed with soil or a muddy stratum with gravel also ap-
pears. Part of the west bank of the Peikang River belongs
to the alluvia fan of the Chuo-Shuei River. It has a rather
typical alluvia fan stratum structure because the east side
gravel layer is rather thick and reduces gradually to the

Fig. 1
The locations of sampling wells in the study area

Fig. 2
The geological distribution in the study area

west and south-west, while increasing the thickness of the
muddy and sandy stratum.
The well-drilling depth in Taipei County is the deepest in
the country, with an average depth of 199.7 m. Talin
Town is second, with an average depth of 179.3 m,
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Fig. 3
The sampling points with a measured T (transmissivity);
b ln(T)

Table 1
Descriptive statistics of measured transmissivity

n Mean
(m2/h)

Median
(m2/h)

Min
(m2/h)

Max
(m2/h)

Std dev
(m2/h)

Skewness Kurtosis

T 92 93.088 64.275 8.637 407.483 92.082 1.872 3.352
ln(T) 92 4.092 ln 4.163 ln 2.156 ln 6.010 ln 0.981 P0.096 P0.667

T Transmissivity

whereas Tounan and Kukeng are at 176.5 and 106.5 m,
respectively. The average thickness of the aquifer in the
well-drilling depth range is 30.6–52.8 m. The depth of the
aquifer at the alluvia fan part of the Chuo-Shuei River
and of the west bank of the Peikang River is 80 m at Hu-
wei and an average of 100 m at Tuku and Yuanchang.
The measured T (transmissivity) and ln(T) at the sam-
pling points are displayed in Fig. 3. The basic descriptive
statistics of the measured data are listed in Table 1. The
coefficients of variance (CV) of T and ln(T) are 0.989 and
0.240 respectively. The histograms of the measured T and
ln(T), performed by using statistical software (SPSS), are
presented in Fig. 4. These results confirm that the mea-
sured transmissivity data display a skewed distribution
and a wide range variation in space.

Kriging

Geostatistics (Journel and Hijbregts 1978; ASCE 1990a,b)
is comprised of a collection of techniques for the analysis
of spatially correlated data. Such techniques as kriging
incorporate the spatial or temporal characteristics of ac-
tual data into statistical estimation processes. These tech-
niques can be linear, such as point kriging, ordinary krig-
ing and block kriging.
Geostatistics provide a variogram of data within a statis-
tical framework, and includes spatial and temporal covar-
iance functions. Unsurprisingly, these models are general-
ly referred to as spatial or temporal structures, and are
defined in terms of the correlation between any two
points separated by either spatial or temporal distances.
Kriging estimates are calculated as weighted sums of the
adjacent sampled concentrations. These weights depend
on the exhibited correlation structure. For instance, if
data appear to be highly continuous in space, those
points closer to the estimated points receive higher
weights than those farther away. The criterion for the se-
lection of these weights is a minimization of the estima-
tion variance. In this framework, Kriging estimates may
be regarded as the most accurate among all linear esti-
mators (i.e. best linear unbiased estimator). Therefore, a
kriging estimate can be thought of as simply an optimally
weighted average of the surrounding sampled data given
the variogram at an unsampled location (Cressie 1990).

Sequential Gaussian simulation
(SGS)

Simulation is conducted upon the Gaussian transforma-
tion of the available measurements in the SGS process so
that each simulated value is conditional on the original
data and all previously simulated values (Deutsch and
Journel 1992; Rouhani and others 1995). A simulated val-
ue at a visited point is randomly selected from the nor-
mal distribution function defined by the kriging mean
and variance based on neighborhood values. Finally, the
simulated normal values are transformed back into simu-
lated values for the original variable. At a new randomly
visited point, the simulated value is conditional on the
original data and previously simulated values. This proc-
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Fig. 4
The histograms of investigated data a transmissivity T b
logarithm ln(T)

Table 2
Variogram model of measured T

Model Nugget (C)
(m2/h)2

Sill (S)
(m2/h)2

Range (L)
(km)

RSS r2

Exponential (gpCcS[1–exp(–h/L)]) 3860.00 12790.00 12.46 2.28E09 0.268
Spherical (gpCcS[1.5(h/L)–0.5(h/L)3]) 4300.00 9610.00 20.14 2.25E09 0.278
Gaussian (gpCcS[1–exp(–h2/L2)]) 5630.00 9120.00 19.09 2.21E09 0.290

Variogram; h Distance between two points; RSS Model reduced sum of squares

ess is repeated until all points are simulated at each reali-
zation over the study area. 
The NSCORE (normal score) program in the Geostatisti-
cal Software Library (GSLIB) (Deutsch and Journel 1992)
is employed herein for fitting a normal variogram be-
cause it normalizes the investigated data. The variogram
models of T, normalized T and lnT also fit within the
GSc (Gamma Design 1995). Using SGSIM (sequential
Gaussian simulation) and OKB2DM (ordinary kriging 2-
dimesion) programs in the GSLIB enables ordinary krig-
ing, ln kriging and a SGS to be performed for soil trans-
missivity. These simulations and estimations are placed
within a square (52 columns by 32 rows) grid consisting
of 1664 (0.3by 0.3 km) cells. Five simulations are pro-
duced and the results are also transferred into an Arc-
view 3.0 (ESRI 1998) for display.

Results and discussion

Variography
Variograms are calculated for the data at an active lag of
2418 m and an active step of 0.17 km for the isotropic
variography experiment. A least squares model to fit
these variograms generated a relatively consistent set of
best-fit models that have the lowest RSS (model reduced
sum of squares) and highest r2 values. Table 2 lists the
parameters of the representative models. A Gaussian
model with a nugget effectp5630 (m2/h)2, sillp9120
(m2/h)2 and rangep19.09 km has the best fit among the
models (exponential or Gaussian) available in the soft-
ware. The best fit variograms of the natural log and nor-
malized investigated values are Gaussian model with a
nugget effectp0.75, sillp1.01 and rangep6.00 km, and a
spherical model with a nugget effectp0.65 (ln(m2/h)2),
sillp0.35 (ln(m2/h)2) and rangep5.13 km as depicted in
Tables 3 and 4. The variogram models with the high nug-
get effect illustrate a high small-scale variation or a meas-
urement error.
Similarly, the anisotropic variography experimental vario-
grams of measured T, normalized T and ln(T) con-
structed in 07, 457 607 and 907 have a 22.57 tolerance for
the investigated transmissivity data. The best fit vario-
grams of T and ln(T) herein are a Gaussian model with a
nugget effectp6160.0 (m2/h)2, sillp4760.0 (m2/h)2, mini-
mum rangep17.24 km and maximum rangep17.24 km,
and a Gaussian model with a nugget effectp0.76 (ln(m2/
h)2), sillp0.20 (ln(m2/h)2), minimum rangep4.55 km
and maximum rangep4.55 km as demonstrated in Ta-
bles 5 and 6. The normalized variogram of these four ex-
amples with a 22.57 tolerance is a Gaussian model with a
nugget effectp0.74, sillp0.24, and minimum
rangep4.30 km and maximum rangep4.30 km as dis-
played in Table 7. These variograms are isotropic because
they have the same minimum and maximum value range.
These spatial structure analyses also illustrate that the
measured T data display an isotropic formation and a
high nugget effect.

Descriptive statistics
The ordinary kriging estimates, ln kriging estimates and
simulations are based on the above isotropic variogram
models and 92 observations as summarized in Tables 8
and 9. The minimum value of kriging estimation is high-
er than the minimum value of measured T as demon-
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Table 3
Variogram model of ln(T)

Model Nugget (C)
(Ln (m2/h))2

Sill (S)
(Ln (m2/h))2

Range (L)
(km)

RSS r2

Exponential (gpCcS[1–exp(–h/L)]) 0.70 1.03 3.15 0.0910 0.552
Spherical (gpCcS[1.5(h/L)–0.5(h/L)3]) 0.70 1.01 6.63 0.081 0.552
Gaussian (gpCcS[1–exp(–h2/L2)]) 0.75 1.01 6.00 0.077 0.573

Variogram; h Distance between two points; RSS Model reduced sum of squares

Table 4
Variogram model of normalized T

Model Nugget (C)
(dimensionless)

Sill (S)
(dimensionless)

Range (L)
(km)

RSS r2

Exponential (gpCcS[1–exp(–h/L)]) 0.61 0.39 1.68 8.184 0.054
Spherical (gpCcS[1.5(h/L)–0.5(h/L)3]) 0.65 0.35 5.13 8.060 0.069
Gaussian (gpCcS[1–exp(–h2/L2)]) 0.70 0.30 4.51 8.085 0.068

Variogram; h Distance between two points; RSS Model reduced sum of squares

Table 5
Anisotropic variogram models of measured T

Model Nugget effect (C)
(m2/h)2

Sill (S)
(m2/h)2

Max range (L1)
(km)

Min range (L2)
(km)

RSS r2

Exponential (gpCcS[1–exp(–h’/L2)]) 4970.00 6520.00 9.39 9.39 8.50E8 0.187
Spherical (gpCcS[1.5(h’/L2)–0.5(h’/L2)3]) 5490.00 5340.00 20.00 20.00 8.41E8 0.199
Gaussian (gpCcS[1–exp(–h’2/L2

2)]) 6160.00 4760.00 17.24 17.24 8.76E8 0.208

Variogram, h: distance between two points, h’p
L2

L1

h

RSS Model reduced sum of squares

strated in Table 8. In contrast, the maximum value of
kriging estimation is significantly lower than that of mea-
sured T. These results illustrate that kriging tends to
smooth out extreme values of the investigated data set.
Moreover, the skewness and kurtosis of kriging estimates
are also lower than those of measured T. Thus, kriging
cannot produce the proper distribution for the investi-
gated data.
The mean, median, variance, kurtosis and skewness of
the simulations are extremely close to those of the inves-
tigated data shown in Table 8. The CV of ordinary krig-
ing estimates is 0.459, whereas the CVs of simulations
(Sim 1, 2, 3, 4 and 5) are 0.983, 0.989, 0.955, 0.977 and
1.011. The above results indicate that the ordinary krig-
ing process may not preserve the variability of the inves-
tigated process. Moreover, this minimization of the pre-
diction error variance involves smoothing the actual var-
iability. Nevertheless, SGS can reproduce the statistics for
the investigated transmissivity.
The simulations are transformed into a natural log for-
mat to compare the results of ln kriging and SGS. The
mean, median, standard deviation, kurtosis and skewness
of the simulations are extremely close to those of the in-

vestigated data as displayed in Table 9. The standard de-
viation of ln kriging estimation is significantly lower than
the standard deviation of ln(T) as presented in Table 9.
The CV value of ln ordinary kriging is 0.119, whereas the
CV values of simulations 1, 2, 3, 4 and 5 in natural log
formation are 0.236, 0.239, 0.229, 0.234 and 0.246, which
are very close to that (0.240) of the investigated data.
Similarly, the natural log kriging results display the
smoothing effect and low variation on the estimated val-
ues as presented in Table 9. The natural log ordinary
kriging process may not preserve the variability of the in-
vestigated natural log process. The SGS performs multiple
realizations that obtain statistics similar to the investi-
gated data, as demonstrated in Table 9.
The histograms of simulations and estimations are also
rendered by statistical software (SPSS). Comparing the
histograms (Figs. 4–6) reveals that the histograms of the
simulated realities more closely fit the histogram of the
investigated data than that of ordinary kriging estimates,
and even natural log kriging estimates. Figures 4–6 reveal
that both the upper and lower tails of the distribution are
well produced by simulation.
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Table 6
Anisotropic variogram models of ln(T)

Model Nugget effect
(Ln (m2/h))2

Sill
(Ln (m2/h))2

Max range
(L1) (km)

Min range
(L2) (km)

RSS r2

Exponential (gpCcS[1–exp(–h’/L2)]) 0.67 0.28 1.31 1.31 67.10 0.036
Spherical (gpCcS[1.5(h’/L2)–0.5(h’/L2)3]) 0.72 0.23 5.05 5.05 66.83 0.037
Gaussian (gpCcS[1–exp(–h’2/L2

2)]) 0.76 0.20 4.55 4.55 66.84 0.039

Variogram, h: distance between two points, h’p
L2

L1

h

RSS Model reduced sum of squares

Table 7
Anisotropic variogram models of normalized T

Model Nugget
(dimensionless)

Sill
(dimensionless)

Max range
(L1) (km)

Min range
(L2) (km)

RSS r2

Exponential (gpCcS[1–exp(–h’/L2)]) 0.65 0.33 1.48 1.48 72.46 0.036
Spherical (gpCcS[1.5(h’/L2)–0.5(h’/L2)3]) 0.70 0.28 4.90 4.90 72.12 0.034
Gaussian (gpCcS[1–exp(–h’2/L2

2)]) 0.74 0.24 4.30 4.30 72.15 0.037

Variogram, h: distance between two points, h’p
L2

L1

h

RSS Model reduced sum of squares

Table 8
Descriptive statistics of kriging estimates and simulations

n Mean
(m2/h)

Median
(m2/h)

Min
(m2/h)

Max
(m2/h)

Std dev
(m2/h)

Skewness Kurtosis

T 92 93.088 64.275 8.637 407.483 92.082 1.872 3.352
Ok 1664 87.066 73.366 33.783 196.713 39.848 1.211 0.330
Sim (1) 1664 90.203 61.611 8.709 407.971 88.642 1.915 3.557
Sim (2) 1664 91.790 63.849 8.650 407.980 90.753 1.865 3.222
Sim (3) 1664 99.109 72.950 8.697 407.859 94.618 1.761 2.695
Sim (4) 1664 91.165 64.274 8.642 407.920 89.028 1.908 3.469
Sim (5) 1664 86.736 59.406 8.649 407.690 87.643 1.917 3.494

T Transmissivity; Ok Ordinary kriging; Sim Simulation

Table 9
Descriptive statistics of ln kriging estimates and simulations

n Mean ln
(m2/h)

Median ln
(m2/h)

Min ln
(m2/h)

Max ln
(m2/h)

Std dev. ln
(m2/h)

Skewness Kurtosis

Ln (T) 92 4.092 4.163 2.156 6.010 0.981 P0.096 P0.667
lnOk 1664 4.086 3.963 3.152 5.193 0.487 0.575 P0.525
Sim (1) 1664 4.071 4.121 2.164 6.011 0.961 P0.082 P0.659
Sim (2) 1664 4.077 4.157 2.158 6.011 0.975 P0.078 P0.713
Sim (3) 1664 4.174 4.290 2.163 6.011 0.957 P0.135 P0.642
Sim (4) 1664 4.087 4.163 2.157 6.011 0.955 P0.095 P0.645
Sim (5) 1664 4.007 4.084 2.158 6.011 0.986 P0.041 P0.750

Ln Transmissivity; lnOk Natural log of ordinary kriging; Sim Simulation
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Fig. 5
The histograms of kriging estimate and simulations: a Kriging;
b Simulation 1; c Simulation 2; d Simulation 3; e Simulation 4;
f Simulation 5

Fig. 6
The histograms of natural log format of kriging estimate and
simulations: a ln kriging; b Simulation 1; c Simulation 2;
d Simulation 3; e Simulation 4; f Simulation 5Experimental variogram

The experimental variograms of the measured, estimated
and simulated values are also performed with the same
lag interval as displayed in Fig. 7. These experimental
variograms indicate that the ordinary kriging values dis-
play a well-structured variogram with a low spatial varia-
bility, but cannot perform the spatial structure and small-
scale variation for the investigated values as presented in
Fig. 7a. The experimental variograms of all simulations
tend to fit the experimental variogram of the investigated
data according to Fig. 7a. These experimental variograms
illustrate that a SGS can perform very well in terms of re-
producing the spatial structure (experimental variogram)
for the investigated values, whereas ordinary kriging does
not perform well.
The experimental variograms of natural log simulations
also closely fit the spatial structure for the natural log of
investigated values as displayed in Fig. 7b. The natural
log ordinary kriging estimates also display a well-struc-
tured variogram with a low spatial variability, but cannot
perform the small-scale variation for the investigated val-

ues as demonstrated in Fig. 7b. These results are an im-
provement of the above descriptive statistic results, indi-
cating that the simulation can reproduce the statistics of
the investigated data.

Spatial distribution
Ordinary kriging and a SGS for transmissivity in the
study area are also performed and mapped in GIS. The
map of ordinary kriging estimates reveal that kriging
tends to smooth out extreme values of the investigated
data set as displayed in Fig. 8a. The simulation maps in
Figs. 8 and 9 illustrate that the large- and small-scale
continuity patterns produced by the SGS are visually sim-
ilar to those in the investigated data map. Subjectively
comparing Figs. 3a and 8a reveals that the kriging results
may overestimate areas with high transmissivity, and un-
derestimate areas with extremely high transmissivity. The
conditional simulated maps of T are rather irregular, and
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Fig. 7
The experimental variograms of measured, estimated and
simulated values in a T (transmissivity); b ln(T)

Fig. 8
The spatial maps of transmissivity of: a Kriging; b Simulation 1;
c Simulation 2

Fig. 9
The spatial maps of transmissivity of: a Simulation 3;
b Simulation 4; c Simulation 5

sites with high transmissivity values in all simulations
may have a low value at neighboring points as shown in
Figs. 7, 8 and 9. These maps also illustrate that kriging
estimates are significantly smoother than those of any of
the simulations. Although kriging provides the optimal
estimation of transmissivity at unsampled sites, it cannot
reproduce the spatial variability for the investigated data
in this case study. However, a SGS can reproduce the
spatial variation for the investigated data. Moreover, each
realization of the simulations provides a measure of spa-
tial uncertainty over this study area.
The ln ordinary kriging results also overestimate areas
with high lnT, and underestimate areas with very high
lnT, as shown in Figs. 3b and 10a. The natural log trans-
formed simulations mapped in Tables. 10 and 11 are also
rather irregular because a high transmissivity area in si-
mulations may have low transmissivity at neighbor sites,
as displayed in Table 11. These maps also illustrate that
natural log kriging estimates are markedly smoother than
the simulations’ estimates.

Summary
The spatial structure analyses in this study reveal that the
measured transmissivity data display isotropic formations
and high nugget effects at the Dulliu area in Yun-Lin
County, Taiwan. The variogram models with a high nug-
get effect of investigated transmissivity data illustrate a
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Fig. 10
The spatial maps of lnT of: a ln kriging; b Simulation 1;
c Simulation 2

Fig. 11
The spatial maps of lnT of a Simulation 3; b Simulation 4;
c Simulation 5

high small-scale variation. Although Kriging provides the
optimal estimation of T at unsampled sites, the estimated
values based on ordinary kriging and natural log kriging
display lower variations than the actual investigated
transmissivity data. These two techniques fail to repro-
duce the measured extreme T and ln(T) values. A SGS
can reproduce both the extreme measured transmissivity
and overall transmissivity spatial distribution. SGS with
multiple realizations has significant advantages at a site
with high variation in investigated data compared with
ordinary and natural log kriging techniques. These alter-
native realizations of transmissivity can also be the input
data of groundwater flow models. Thus, these three tech-
niques may be effective in assessing the uncertainty of in-
vestigated data and a SGS can also be applied to assess
stochastic elements in a complex transmissivity study.

References

Andersson J, Shapiro AM (1983) Stochastic analysis of one-
dimensional steady state unsaturated flow: a comparison of
Monte Carlo and perturbation methods. Water Resources Res
19 : 121–133

ASCE (American Society of Civil Engineers) Task Committee on
geostatistical techniques in geohydrology (S. Rouhani, Chair-
man and Principle Author) (1990a) Review of geostatistics in
geohydrology, I. Basic concepts. ASCE J Hydraul Engineer
116 : 612–632

ASCE (American Society of Civil Engineers) Task Committee on
geostatistical techniques in geohydrology (S. Rouhani, Chair-
man and Principle Author) (1990b) Review of geostatistics in
geohydrology, II Applications. ASCE J Hydraul Engineer
116 : 633–658

Bark AA, Gelhar LW, Gutjahr AL, MacMillan JR (1978)
Stochastic analysis of spatial variability in subsurface flows, 1.
Comparison of one-and-three dimensional flows. Water Re-
sources Res 14 : 263–271

Bjerg PL, Hinsby K, Christensen TH, Gravesen P (1992)
Spatial variability of hydraulic of an unconfined sandy aquifer
determined by a mini slug test. J Hydrol 136 : 107–122

Chirlin GR, Dagan G (1980) Theoretical head variogram for
steady flow in statistically homogeneous aquifers. Water Re-
sources Res 16 : 1001–1015

Christakos G (1992) Random field models in earth sciences.
Academic Press, New York



Cases and solutions

120 Environmental Geology 40 (1-2) December 2000 7 Q Springer-Verlag

Christensin S (1997) On the strategy of estimating regional-
scale transmissivity fields. Groundwater 35 : 131–139

Clifton PM, Neuman SP (1982) Effects of kriging and inverse
modeling on conditional simulation of the Avra Valley aquif-
er in southern Arizona. Water Resources Res 18 : 1234–1251

Cressie C (1990) The origins of kriging. Math Geol 22 : 239–252
Delhomme JP (1979) Spatial variability and uncertainty in

groundwater flow parameters: a geostatistical approach. Wa-
ter Resources Res 15 : 269–280

Deutsch C, Journel AG (1992) GSLIB, Geostatistical software
library and user’s guide. Oxford University Press, New York

Difederico V, Neuman SP (1997) Scaling of random-fields by
means of truncated power variograms and associated spectra.
Water Resources Res 33 : 1075–1085

Dowd PA (1982) Lognormal kriging-the general case. Math
Geol 14 : 474–500

Eggleston JR, Rojstaczer SA, Peirce JJ (1996) Identification
of hydraulic conductivity structure in sand and gravel aquif-
ers: Cape Cod Data Set. Water Resources Res 32 : 1209–1222

ESRI (Environmental Systems Research Institute) (1998) Arc-
view GIS, ESRI, Redlands, CA

Fabbri, P (1997) Transmissivity in the geothermal euganean
basin: a geostatistical analysis. Groundwater 35 : 881–887

Freeze RA (1975) A stochastic-conceptual analysis of one-di-
mension groundwater flow in nonuniform homogeneous me-
dia. Water Resources Res 11 : 725–741

Gamma Design Software (1995) GSc : geostatistics for the envi-
ronmental sciences. Version 2.3. Gamma Design Software,
Plainwell, MI

Hoeksema RJ, Kitanidis PK (1985) Analysis of spatial struc-
ture of properties of selected aquifers. Water Resources Res
21 : 563–572

Journel AG (1980) The lognormal approach to predicting local
distributions of selective mining unit grades. Math Geol
12 : 285–301

Journel AG, Huijbregts CJ (1978) Mining: geostatistics. Aca-
demic Press, New York

Kentwell DJ, Bloom LM, Comber GA (1999) Improvements
in grade tonnage curve prediction via sequential Gaussian
fractal simulation. Math Geol 31 : 311–325

Mowrer HT (1997) Propagating uncertainty through spatial es-
timation processes for old-growth subalpine forests using se-
quential Gaussian simulation in GIS. Ecolog Modelling
98 : 73–86

Neuman SP, Winter CL, Newman CM (1987) Stochastic the-
ory of field-scale fickian dispersion in anisotropic porous me-
dia. Water Resource Res 23 : 453–466

Rendu JM (1979) Normal and lognormal estimation. Math Geol
11 : 407–422

Rivoirard J (1990) A review of lognormal estimators for in
situ reserves. Math Geol 22 : 213–221

Roth C (1998) Is lognormal kriging suitable for local estima-
tion? Math Geol 30 : 999–1009

Rouhani S, Lin YP, Shi Y (1995) H-area/ITP geostatistical as-
sessment in-situ and engineering properties, final technical
report. Westinghouse Savannah River Company, Aiken, SC

Rubin Y (1990) Stochastic modeling of microdispersion in het-
erogeneous porous media. Water Resources Res 26 : 133–141

Salandin P, Fiorotto V (1998) Solute transport in highly het-
erogeneous aquifers. Water Resources Res 34 : 949–961

Smith L (1981) Spatial variability of flow parameters in a stra-
tified sand. Math Geol 13 : 1–21

Smith L, Freeze RA (1979) Stochastic analysis of steady state
groundwater flow in a bounded domain, 1. One-dimensional
simulations. Water Resources Res 15 : 521–528

Sterk G, Stein A (1997) Mapping wind-blown mass transport
by modeling variability in space and time. Soil Sci Soc Am J
61 : 232–239

Varljen MD, Shafer JM (1991) Assessment of uncertainty in
timerelated capture zones using conditional simulation of hy-
draulic conductivity. Groundwater 29 : 737–748


