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Abstract

In this paper, we present a robust method to estimate the three-dimensional ego-motion of an observer moving in
a static environment. This method combines the optical #ow "elds observed with multiple cameras to avoid the
ambiguity of 3-D motion recovery due to small "eld of view and small depth variation in the "eld of view. Two residual
functions are proposed to estimate the ego-motion for di!erent situations. In the non-degenerate case, both the direction
and the scale of the three-dimensional rotation and translation can be obtained. In the degenerate case, rotation can still
be obtained but translation can only be obtained up to a scale factor. Both the number of cameras and the camera
placement a!ect the accuracy of the estimated ego-motion. We compare di!erent camera con"gurations through
simulation. Some results of real-world experiments are also given to demonstrate the bene"ts of our method. � 2001
Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

Motion analysis is concerned with the estimation of the
relative motion between an observer and objects. The
relative motion is derived from the movement of the
observer, the objects, or both. Usually, there are two stages
in estimating the motion: "rst, "nding the point corre-
spondences or computing the optical #ow "eld; second,
interpreting the motion from the point correspondences
[1}6] or the optical #ow "eld [7}11]. Instead of calculat-
ing the point correspondences or the optical #ow "eld as
an intermediate result, some other methods estimate the
motion directly from the spatial and temporal gradients
[12,13]. In this paper, we concentrate on the estimation
of the so-called ego-motion of an observer moving in
a static environment by using the optical #ow "elds.

Ego-motion provides useful information for human
computer interaction and vehicle navigation [14}18]. In
the literature, Burger and Bhanu [14] computed the 2-D
region of focus of expansion (FOE) as the heading direc-
tion of a land vehicle from displacement vectors. Irani
et al. [19] removed the e!ects of rotation by registering
2-D regions. Then they computed the camera translation
from the epipolar "eld. Pei and Liou [18] estimated the
vehicle-type motion by using image point and line fea-
tures. These works estimated the motion according to the
camera center, that is, rotation around the axis through
the camera center followed by translation. In the applica-
tion of human computer interaction and navigation, it
is more desirable to compute the motion according to the
observer's center [15].

One of the major problems in motion recovery is the
ambiguity problem. Multiple kinds of motion induce
similar optical #ow "elds and it is di$cult to determine
the motion from the observed optical #ow "eld. Horn
[20] and Brodsky et al. [21] stated that the motion "elds
and their directions are hardly ever ambiguous, but the
ambiguity problem arises if the camera's "eld of view is
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Fig. 1. An arbitrary con"guration of K cameras.

small and the variation of the relative depth in the "eld of
view is also small [5,22,23]. In the application of vehicle
navigation, for example, consider an airplane with a cam-
era looking down the land or a car with a camera looking
far away. If the "eld of view of the camera is not large
enough, the depth map in the view is almost constant.
Moreover, it is unsuitable to avoid this problem by using
a camera with a large "eld of view because lens distortion
and low resolution may seriously decrease the accuracy
of the estimated optical #ow.

Another problem in motion recovery is the scaling
factor problem concerned with the depth and the transla-
tional motion. With only one camera, only the direction
of the translation and the relative depth according to the
camera center can be estimated [1,8]. The inverse depth
and the translation are multiplied together and they can
be determined only up to a scale factor.

In this work, we propose a robust method to estimate
the three-dimensional ego-motion according to the speci-
"ed observer center. Several cameras are mounted on
the observer and are calibrated [24,25] according to the
speci"ed observer center. We use the optical #ow "elds
observed with these cameras to avoid the ambiguity
problem. Both the direction and the scale of rotation and
translation motion can be obtained by minimizing the
proposed residual function of the non-degenerate case.
In some special case (degenerate case), for example, when
the cameras are not placed well or the observer is under-
going pure translation motion, another residual function
can be used to determine the direction and the scale of
rotation and the direction of translation.

In the following, we present the proposed method of
ego-motion estimation for non-degenerate and degener-
ate cases in Sections 2.1 and 2.2, respectively. Then we
explain why the ambiguity problem can be avoided by
using multiple cameras in Section 3. The number of
cameras and their placement dramatically a!ect the
accuracy of the estimated motion. We compare the
performance of di!erent camera con"gurations through
simulation in Section 4. The results of real-world experi-
ments shown in Section 5 demonstrate the bene"ts of our
method. Finally, conclusions are stated in Section 6.

2. Ego-motion estimation

Consider an arbitrary con"guration of K cameras
shown in Fig. 1. Without loss of generality, each focal
length, f

�
, of the kth camera is set to 1. We want to

estimate the ego-motion according to the global coordi-
nate system, C

�
, attached to the moving observer, where

C
�
"�O, I"[e

�
�e
�
�e
�
]�, O is the origin, e

�
"[1, 0, 0]�,

e
�
"[0, 1, 0]�, and e

�
"[0, 0, 1]�. The kth camera

coordinate system, C
�
, in C

�
can be expressed

as C
�
"�b

�
, R

�
"[u

��
�u

��
�u

��
]�. The 3�1 vector b

�
de-

notes the position of O
�
and R

�
is a 3�3 orthonormal

matrix. These extrinsic camera parameters b
�
and R

�
of

each camera are calibrated beforehand [24,25]. At any
time instance, we compute the optical #ow "elds from the
images captured from all the cameras. Let N

�
denote the

number of image points where the optical #ow vectors
are calculated in the kth image. Our goal is to compute
the 3-D ego-motion according to the global coordinate
system from the K optical #ow "elds.

The 3-D coordinates of a point P in coordinate
systems C

�
and C

�
are P ([P

�
,P

�
,P

�
]�) and P

�
([P

��
,P

��
,P

��
]�), respectively. These two coordinate vec-

tors satisfy

P"R
�
P
�
#b

�
. (1)

Relative to the global coordinate system C
�
, the instan-

taneous 3-D ego-motion of the point P in the static
environment is

PQ "!��P!t, (2)

where � and t denote the 3-D angular velocity and the
translational velocity of the undergoing ego-motion [26].
This 3-D relative motion can also be expressed in the kth
camera coordinate system as

PQ
�
"!�

�
�P

�
!t

�
, (3)

where

�
�
"R�

�
� and t

�
"R�

�
[(��b

�
)#t]. (4)

According to the perspective projection camera model,
the 3-D point P

�
is projected on the kth image plane at

p
�
, where

p
�
,�

p
��

p
��

1 �" 1

P
��

P
�
. (5)
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After temporally di!erentiating both sides of Eq. (5) and
substituting Eq. (3) into PQ

�
, we have

v
�
,p�

�
"!(�

�
�p

�
)!

PQ
��

P
��

p
�
!

1

P
��

t
�
, (6)

where v
�
is the optical #ow vector at the image point p

�
.

Applying cross product (�) by p
�
to Eq. (6), we obtain

p
�
�[v

�
#(�

�
�p

�
)]"!

1

P
��

(p
�
�t

�
). (7)

Then we further apply inner product of t
�
to both sides of

Eq. (7) and derive the following fundamental equation
which does not contain the unknown depth P

��
:

�p
�
�[v

�
#(�

�
�p

�
)]� ) t

�
"0. (8)

The above equation is essentially the in"nitesimal ver-
sion of the epipolar constraint equation [27}29]. Since
we want to estimate the 3-D ego-motion � and t accord-
ing to the speci"ed coordinate system, C

�
, by using the

observations from all the K cameras, the above funda-
mental equation is re-expressed in terms of � and t by
using Eq. (4):

R
�
�p

�
�[v

�
#(R�

�
��p

�
)]� ) (��b

�
#t)"0. (9)

Once the camera parametersR
�
and b

�
of the kth camera

are calibrated and the optical #ow vector v
�
at the image

position p
�
is estimated, Eq. (9) can be used to determine

the 3-D motion parameters, � and t, without recovering
the depth of the image point.

Suppose there are N
�
#ow vectors associated with the

kth camera. We use p
��

and v
��

to represent the ith point
and its optical #ow associated with the kth camera.
Eq. (9) can be rewritten as

m�
��
(h

�
#t)"0, (10)

where

m
��
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��
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��p
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)]�, (11)

h
�
,��b

�
. (12)

2.1. Non-degenerate case

According to Eq. (10), we de"ne a residual function
J�
�
which depends on the unknowns � and t

J�
�
(�, t),

�
�
���

��

�
���

��m�
��
(h

�
#t)���. (13)

Based on the least-squares criterion, the optimal esti-
mates of � and t can be obtained by minimizing J�

�
. By

letting �J�
�
/�t"0, we have

t"M��c, (14)
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(15)

In the following, the matrix M is sometimes written as
M(�) to emphasize that M is a function of �.

By substituting Eq. (14) into Eq. (13), we have a new
residual function J

�
which only depends on the unknown

angular velocity �:

J
�
(�),!c�M��c#

�
�
���

��

�
���

��m�
��
h
�
���. (16)

Therefore, the optimal estimate of � (denoted by �( )
based on the least-squares criterion is the one that min-
imizes the residual function J

�
(�). Once we have �( , the

estimate of t, denoted t) , can be easily obtained by using
Eqs. (14) and (15).

2.2. Degenerate case

In some situations, we cannot obtain � and t by
solving Eqs. (14) and (16).

(1) K"1: Only one camera is used in this case. Eq. (15)
becomes M"���

���
m

�
m�

�
and c"!���

���
m

�
m�

�
h

"!Mh. Eq. (16) becomes J
�
(�)"!h�M�M��

Mh#h�Mh"0. Therefore, we cannot use this resid-
ual function, J

�
(�), when there is only one camera.

(2) ∀k, h
�
"0: Eq. (16) becomes J

�
(�)"0 and useless.

Three situations will su!er h
�
"0 for each k. First,

�"0, that is, there is no rotational motion (pure
translational motion). Second, for each k, b

�
"0.

This means that O and every O
�
coincide at the same

point. Third, b
�
�� � for each k.

(3) ∀k, h
�
"c

�
t: When h

�
is parallel to t, Eq. (10) be-

comes (c
�
#1)m�

��
t"0. In this case, only the direc-

tion of t can be obtained.

We have to de"ne a new residual function of degener-
ate case to deal with the above-mentioned situations.
Only situation (3) is considered because situation (1) is
a special case of situation (2) by letting O

�
"O, thus

b
�
"0, and situation (2) is a special case of situation (3)

by letting c
�
"0. When h

�
"c

�
t, Eq. (10) can be reduced

into the following form:

m�
��
t"0 or m�

��
t
	
"0. (17)

The second form of Eq. (17) indicates that only the
translational direction is recoverable in these degenerate
cases.

Similarly, we can de"ne a residual function J�
�
as

J �
�
(�, t

	
),

�
�
���

��

�
���

��m�
��
t
	
���, (18)
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Fig. 2. Two cameras are mounted on the left and right side of
the moving vehicle. Two types of motion, pure translation along
the X-axis of GCS and pure rotation around the Z-axis of GCS,
are under consideration.

where t
	
is de"ned as the unit vector of the direction of

translation, t. Expanding Eq. (18), we have
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��
m�

���t	
"t�

	
Mt
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where the Hermitian matrix M is de"ned in Eq. (15).
When t

	
O0, the Rayleigh quotient, �M(t

	
)"

t�
	
Mt

	
/t�
	
t
	
"t�

	
Mt

	
, is always larger than the smallest

eigenvalue, 	, of the Hermitian matrix M. That is, the
minimum value of the residual function J�

�
(�, t

	
) is the

smallest eigenvalue of M(�) [29,30].
Given an estimate of �, the best estimate of t

	
should

be the eigenvector ofM(�) corresponding to the smallest
eigenvalue. We de"ned a new residual function J

�
which

only depends on the unknown � as

J
�
(�),the smallest eigenvalue of M(�). (20)

Therefore, the optimal estimate of �, denoted by �( , is
the one which minimizes the error function J

�
(�). The

optimal estimate of t
	
(denoted by t)

	
) is the eigenvector of

M(�( ) corresponding to the smallest eigenvalue.

3. Motion 5eld ambiguity

In this section, we will explain through simulation why
the ambiguity problem can be avoided by combining the
optical #ow "elds observed with multiple cameras. Con-
sider a moving vehicle with two cameras mounted on the
left and right sides and looking outward as Fig. 2 shows.
Two types of motion are under consideration: one is the
pure translation motion toward the front direction and
the other is the pure rotation motion around the vertical
axis of the vehicle. First, let us consider only the left
camera (camera 1). The optical #ow "elds generated by

the pure translation and the pure rotation are very sim-
ilar, as shown in Figs. 3(a) and (b), if the "eld of view of
the camera is not large enough (303 in this example) and
the depth variation in the "eld of view is very small. From
this single #ow "eld, it is di$cult to determine whether
the motion is pure translation or pure rotation.

The ambiguity of motion recovery from the optical
#ow "eld is illustrated by the following simulation. The
vehicle in Fig. 2 is moving straightforward with velocity
10 mm/s. The depth in the "eld of view is constant (2 m in
this simulation). The optical #ow "eld of camera 1 is used
to recover the ego-motion of the vehicle by minimizing
J
�
(�) (degenerate case, because pure translation motion

is considered). Gaussian noise with three di!erent per-
centages of the length of the optical #ow is applied on the
optical #ow "eld. The residual error of function J

�
(�)

is calculated from �
�
"!0.5 to 0.5 (�

�
"�

�
"0) and is

plotted in Fig. 4. There are two local minima, that is,
these two candidate motion are ambiguous. The "rst one
is located near the true motion, �

�
"0. The residual

error at �
�
"0 increase when larger noise level is ap-

plied. The recovered direction of translation (the eigen-
vector ofM) is [1, 0, 0]� when �

�
"0 and noise level is 0.

The second local minimum is located near the mis-
taken motion, �

�
"!0.283/s. As the noise level in-

creases, the residual error remains low. The reason is that
the noise of #ow can be interpreted as the result of the
recovered translation vector, [0, 1, 0]�, according to the
global coordinate system of the vehicle. To sum up, when
the "eld of view is small and the depth in the "eld of view
is constant, pure translation motion is ambiguous with
rotation motion. If the noise of the optical #ow is not
negligible and we search for the global minimum as the
recovered motion, pure translation motion might be in-
terpreted as rotation motion.

Next, let us consider the left and right cameras to-
gether on this moving vehicle. If there is only translation,
the optical #ows observed with the two cameras will be
the same in scale but opposite in direction. If there is only
rotation, the optical #ows will be the same in both the
scale and the direction as shown in Fig. 3. Therefore, if
we can combine the information contained in the two
#ow "elds appropriately, a more precise and unique
motion can be obtained.

The motion "elds of the two cameras are used in
another simulation and the residual error of J

�
(�) is

plotted in Fig. 5. The only one local minimum (near
�

�
"0) means that there is no ambiguity and the accu-

rate motion can be obtained.

4. Camera placement

Camera placement dramatically a!ects the robustness
and accuracy of the ego-motion estimation with multiple
cameras. In Section 2.2, we have described that in some
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Fig. 3. (a) and (b) are the optical #ow "elds of the camera 1 when the vehicle is translating (a) and rotating (b). They look very similar and
it is di$cult to distinguish between them. (c) and (d) are the optical #ow "elds of the camera 2 when the vehicle is translating (c) and
rotating (d). Considering the optical #ow "elds from both the cameras together, their scales are the same in two kind of motions but the
directions are opposite only in pure translation motion.

Fig. 4. The residual function J
�
(�) by using the optical #ow

"eld of camera 1 from �
�
"!0.5 to 0.53/s. These two local

minima mean that these two kinds of motion are ambiguous.

Fig. 5. The residual function J
�
(�) by using the optical #ow

"elds of cameras 1 and 2 from �
�
"!0.5 to 0.53/s. There is

only one local minimum and the solution is unique.
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Fig. 6. The seven cameras used for the simulation of camera
placement.

Table 2
The average angles (in deg) between the estimated and the true translation motions of seven con"gurations of camera placement

Con"guration 1 2 3 4 5 6 7
Cameras 1,2 1,3 1,4 1,2,3 1,2,5 1,2,3,6 1,2,3,5,6,7

1% noise 39.91 1.46 18.81 5.41 12.76 0.39 0.17
5% noise 55.71 10.78 46.00 31.95 47.41 5.43 2.71
10% noise 56.15 24.24 52.37 46.55 52.79 13.82 11.83

Table 1
The average angles (in deg) between the estimated and the true translation directions of seven con"gurations of camera placement

Con"guration 1 2 3 4 5 6 7
Cameras 1,2 1,3 1,4 1,2,3 1,2,5 1,2,3,6 1,2,3,5,6,7

1% noise 0.10 0.37 0.39 0.08 0.06 0.07 0.04
5% noise 0.51 6.56 6.47 0.56 0.32 0.46 0.23

10% noise 1.42 36.04 35.63 1.74 0.67 1.00 0.47

special con"gurations of the camera placement, it even
turns into degenerate case and only the direction of
translation can be estimated. In this section, we will
discuss what is the better con"guration of the camera
placement to obtain more accurate ego-motion.

In Fig. 6, seven cameras are mounted on the observer
and the viewing directions of cameras 1 to 7 are
Z, !X, !Z, Z, !>, X, and >, respectively. The
displacements between the origins of the camera co-
ordinate systems and the origin of the observer are
[0, 0, 100]�, [!100, 0, 0]�, [0, 0,!100]�, [100, 0, 100]�,

[0,!100, 0]�, [100, 0, 0]�, and [0, 100, 0]�, respectively.
The optical #ow "elds of seven kinds of composition of
these cameras are used to compute the ego-motion and
the accuracy of the result is compared.

In degenerate case, 1000 random trials of 3-D transla-
tion motion (the range of each component of the transla-
tion motion is from !15 to 15 mm/s) are generated and
the optical #ow "elds for all the cameras are calculated.
Gaussian noise of three di!erent noise levels is applied on
the optical #ow "eld. Because only the direction of the
translation can be estimated in this case, we compare the
performance of the seven con"gurations by calculating
the angle between the estimated and the true translation
direction, as shown in Table 1. From Table 1, we can
observe that: (1) in general, more cameras provide more
accurate motion estimation; and (2) orthogonal camera
placement (con"gurations 1 and 5) are better than col-
linear (con"guration 2) and coplanar (con"gurations
4 and 6) camera placement.

In non-degenerate case, 1000 random trials of 3-D
rotation and translationmotion are generated. The range
of each component of the rotation motion is from !0.5
to 0.53/s and the range of each component of the transla-
tion motion is from !15 to 15 mm/s. Again, the perfor-
mance of the same seven camera con"gurations is com-
pared, as shown in Table 2, by computing the angle
between the estimated and the true translation direction.
Because three-dimensional translation including its scale
can be obtained in this case, the distance between the
estimated and the true translation motion is also com-
pared in Table 3. Con"gurations 6 and 7 which use more
cameras still can obtain more accurate motion. In this
case, collinear (con"guration 2) and coplanar (con"gura-
tions 4 and 6) camera placement can obtain better
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Table 3
The average distance (in mm) between the estimated and the true translation motions of seven con"gurations of camera placement

Con"guration 1 2 3 4 5 6 7
Cameras 1,2 1,3 1,4 1,2,3 1,2,5 1,2,3,6 1,2,3,5,6,7

1% noise 12.99 5.36 9.74 6.36 8.94 4.44 4.03
5% noise 14.31 12.86 13.72 13.33 13.94 12.79 12.82
10% noise 14.58 14.26 14.30 14.41 14.54 14.27 14.27

Fig. 7. A picture of the IIS head.

Fig. 8. The coordinate systems and camera con"guration of the
real experiments.

motion estimation than orthogonal ones (con"gurations
1 and 5).

5. Experimental results

This section shows some results of real experiments.
We used a well-calibrated binocular head [25] (referred
to as the IIS head) to simulate a moving observer with
two cameras mounted on it. The IIS head is built for
experiments of active vision, which has four revolute
joints and two prismatic joints, as shown in Fig. 7. The
two joints on top of the IIS head are for camera verge or
gazing. The next two joints below them are for tilting and
panning the stereo cameras. All of the above four joints
are revolute and are mounted on an X}> table which is
composed of two prismatic joints. The lenses of the

binocular head are motorized to focus on objects at
di!erent distances.

To simplify the coordinate transform, we let the global
coordinate system and the left camera coordinate system
be identical. Then the left camera coordinate system
(¸CCS) can be expressed by ¸CCS"�b



,R



�, where

b


"0 and R



"I. We let the angle between the optical

axes of left and right cameras be about 903. Notice that
the z-axis of ¸CCS is the same as the optical axis of the
left camera, the x-axis points toward the left side of the
left camera, and the y-axis points toward the upper side
of the left camera. The focal lengths of both cameras are
25 mm, and the "elds of view are 153. The coordinate
systems and the camera con"guration are illustrated in
Fig. 8.

5.1. Experiment 1

We let the IIS head move forward, such that the left
camera of the IIS head looks ahead and the right camera
looks to the right. Table 4 lists the true motion para-
meters used in this experiment. We estimated the ego-
motion for three cases: using the left camera only, using
the right camera only, and using both the left and right
cameras. The scenes viewed from the left and right
cameras are shown in Figs. 9(a) and (b), respectively. The
optical #ow "elds observed with the left and right
cameras are shown in Figs. 9(c) and (d), respectively. The
depth of the scene viewed from left camera is in the range
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Table 4
True motion parameters used in experiment 1

Rotation Translation

� (deg/frame) Direction Mag.
(mm)

�
�

�
�

�
�

t
�	

t
�	

t
�	

��t��
0.00 0.00 0.00 !0.017 0.045 1.00 20.00

Fig. 9. The images and the optical #ow "elds used in experiment 1: (a) The scene viewed from the left camera. (b) The scene viewed from
the right camera. (c) The optical #ow "eld obtained from the left camera. (d) The optical #ow "eld obtained from the right camera. The
optical #ow vectors in the "gures are enlarged by a factor of two.

Table 5
Rotational parameters estimated in experiment 1

�( (deg/frame) Error

�(
�

�(
�

�(
�

���( !�
��
�

��

Both 0.017 !0.034 0.012 0.040
Left 0.00 !0.052 !0.052 0.073
Right !0.012 0.22 0.00 0.22

from 1.3 to 1.5 m, while the depth of the scene viewed
from the right camera is about 5 m.

Tables 5 and 6 list the estimates of the rotational
parameters and translational parameters. The results

show that using both cameras performs better than using
only one camera. The performance of using only the left
camera is also acceptable because the translation direc-
tion is close to the optical axis of the left camera. When
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Table 6
Translational parameters estimated in experiment 1. 
(tK

	
, t

	���
�
)

is de"ned as the angle between tK
	
and t

	���
�

t
	
(translational direction) Error

tK
�	

tK
�	

tK
�	


(tK
	
, t

	���
�
)

Both 0.040 0.054 1.00 3.303
Left 0.062 0.049 1.00 4.543
Right !0.990 !0.051 0.10 83.393

Table 7
True motion parameters used in experiment 2

Rotation Translation

� (deg/frame) Direction Mag.
(mm)

�
�

�
�

�
�

t
�	

t
�	

t
�	

��t��
0.017 0.50 !0.023 !0.62 !0.012 !0.78 1.89

Fig. 10. (a) The optical #ow "eld obtained from the left camera.
(b) The optical #ow "eld obtained from the right camera. The
optical #ow vectors in the "gures are enlarged by a factor of two.

Table 8
Rotational parameters estimated in experiment 2

�( (deg/frame) Error

�(
�

�(
�

�(
�

���( !�
��
�

��

Both 0.00 0.52 !0.029 0.025
Left 0.0057 0.57 0.0057 0.086
Right 0.017 !0.0057 !0.011 0.50

Table 9
Translational parameters estimated in experiment 2. 
(tK

	
, t

	���
�
)

is de"ned as the angle between tK
	
and t

	���
�

t
	
(translational direction) Error

tK
�	

tK
�	

tK
�	


(tK
	
, t

	���
�
)

Both !0.052 !0.034 !1.00 36.00
Left 0.049 0.055 !1.00 36.00
Right 0.083 0.99 !0.095 89.00

only the right camera is used, the ambiguity problem
mentioned in Section 3 occurred and the translational
motion is mis-classi"ed as rotational motion because the
"eld of view is relatively small and the depth variation in
the "eld of view is also small.

5.2. Experiment 2

In experiment 2, we let the IIS head pan with a small
angle. Table 7 is the true motion parameters used in this
experiment. Again, we estimated the ego-motion by using

the left camera only, the right camera only, and both the
left and right cameras, respectively. The scenes viewed
from the left and right cameras are the same as Figs. 9(a)
and (b). The #ow "elds observed with left and right
cameras are shown in Figs. 10(a) and (b), respectively.

The experimental results of this experiment are given
in Tables 8 and 9. As expected, the experiment using both
the left and right cameras obtains the most accurate
motion. The ambiguity problem occurred again when
using the right camera only because the depth of the
scene viewed from the right camera was as far as 5 m.
Hence, the optical #ow "eld was very similar to the one
caused by small pure translation. Notice that the errors
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of the translational direction are larger than the ones
obtained in Experiment 1. The reason is that the magni-
tude of translation in this experiment was so small that
the estimate of translation was seriously corrupted by the
noise of the optical #ow "eld.

6. Conclusions

In this paper, we have proposed a method for 3-D
ego-motion estimation using a multiple-camera vision
system. This method combines the information con-
tained in the multiple optical #ow "elds observed with
di!erent cameras to avoid the ambiguity problem.
Hence, the accuracy of the estimated motion can be
improved. Two residual functions are proposed to deal
with di!erent cases: non-degenerate case and degenerate
case. In the non-degenerate case, 3-D rotation and trans-
lation including their scales can be obtained. In the
degenerate case, 3-D rotation and the direction of trans-
lation can be obtained. Simulations and real experiments
show that using multiple cameras can provide more
robust and accurate estimate of ego-motion.

One potential application of our multiple-camera ap-
proach is the `inside-outa (or `outward lookinga) head
tracker for virtual reality. The current outward looking
head tracker requires structured environments, e.g. regu-
lar pattern in the ceiling. Our approach does not require
specially designed environment, as long as the environ-
ment has enough features for computing optical #ow.
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