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ABSTRACT--Owing to the advantages of noncontact and full- 
field measurement, an optical system called the amplitude 
fluctuation electronic speckle pattern interferometry (AFESPI) 
method with an out-of-plane setup is employed to investigate 
the vibration of a cantilever square plate with a crack ema- 
nating from one edge. Based on the fact that clear fringe 
patterns will be shown by the AFESPI method only at reso- 
nant frequencies, both the resonant frequencies and the vi- 
bration mode shapes can be obtained experimentally at the 
same time. Three different crack locations will be discussed 
in detail in this study. One is parallel to the clamped edge, 
and the other two are perpendicular to the clamped edge. 
The numerical finite element calculations are compared with 
the experimental results, and good agreement is obtained for 
resonant frequencies and mode shapes. The influences of 
crack locations and lengths on the vibration behavior of the 
clamped cantilever plate are studied in terms of the dimen- 
sionless frequency parameter (7. 2) versus crack length ratio 
(a/L). The authors find that if the crack face displacements 
are out of phase, a large value of stress intensity factor may 
be induced, and the cracked plate will be dangerous from the 
fracture mechanics point of view. However, there are some 
resonant frequencies for which the crack face displacements 
are completely in phase, causing a zero stress intensity factor, 
and the cracked plate will be safe. 
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Electronic speckle pattern interferometry (ESPI) was pro- 
1 posed in the 1970s as a method of producing interferograms 

2 without using a traditional holographic technique. The main 
difference between ESPI and holography is the interfero- 
metric image processing. The image data are digitized by 
a video camera and digital signal processor for the ESPI 
method, which eliminates time-consuming chemical devel- 
opment. Because the interferometric image is recorded and 
updated by the video camera every 1/30 s, ESPI is faster in 
operation and more insensitive to environmental noise than 
holography. Based on the reasons mentioned above, ESPI has 
become a powerful technique in many academic research and 
engineering applications. 
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The most widely used experimental setup to study vibra- 
tion by ESPI is the time-averaged method. 3 The disadvantage 
of this method is that the interferometric fringes represent 
only the amplitude but not the phase of the vibration. LCkberg 
and Hogmoen 4 developed the phase modulation method that 
uses the reference beam modulation technique to determine 
the relative phase of the vibration object. For the purpose 
of reducing noise due to the environment, the subtraction 
method was developed. 5'6 The difference of the subtraction 
method compared with the time-averaged method is that the 
reference frame is first recorded before vibration and contin- 
uously subtracted from the incoming frames after vibration. 

To increase the visibility of the fringe pattern and reduce 
environmental noise simultaneously, an amplitude fluctua- 
tion ESPI (AFESPI) method was proposed by Wang et al.7 for 
out-of-plane vibration measurement. In the AFESPI method, 
the reference frame is recorded in a vibrating state and sub- 
tracted from the incoming frame. Consequently, it combines 
the advantages of the time-averaged and subtraction methods, 
i.e., good visibility and noise reduction. Ma and Huang 8'9 
used the AFESPI method to investigate the three-dimensional 
vibrations of piezoelectric rectangular parallelepipeds and 
cylinders. Both the resonant frequencies and mode shapes 
were presented and discussed in detail. 

In the field of plate vibrations, a great amount of research 
and literature has been presented over the past century. 1~ Be- 
cause the rectangular cantilever plate is one of the most com- 
monly used types, its dynamic behavior is of importance to 
the design engineer. The study of the vibration behavior of a 
plate with a crack is a problem of great practical interest. Only 
a few papers have been published on the vibration analysis 
of a finite cracked plate. This problem combines the fields of 
vibration analysis and fracture mechanics. The presence of 
cracks will affect the static and dynamic characteristics of the 
plate, such as static deflection and natural frequency. This 
behavior should be attributed to the ways in which cracks will 
alter the local stiffness of the plate. Nevertheless, compared 
with studies in the past, there is little research on the influence 
of cracks on the vibration behavior of plates. 

Vibrations of a cracked rectangular plate were investi- 
gated by Lynn and Kumbasar, 11 who used Green's function 
to represent the deflections of plates and to obtain a homo- 
geneous Fredholm integral equation of the first kind. Stahl 
and Keer 12 studied the vibration and stability of cracked rect- 
angular plates in terms of dual-series equations, which were 
then converted to a homogeneous Fredholm integral equation 
of the second kind. However, in these studies, the crack was 
limited to a position along the symmetry axis of the plate. Hi- 
rano and Okazaki 13 studied a rectangular plate with cracks 
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perpendicular to the simply supported edges. Levy-Nadai's 
form of solution was used, and the discontinuity of deflec- 
tion and slope of the cracks on both sides were expanded into 
Fourier series along the line involving the cracks. Solecki 14 
applied similar concepts to the discontinuous conditions in 
terms of finite Fourier transformation. For more complex 
structures, application of finite element methods comes nat- 
urally. Qian et al. 15 presented a finite element method using 
an element stiffness matrix that was derived from the integra- 
tion of the stress intensity factor. Experiments by spectrum 
analysis were investigated and compared with the numerical 
computations. The method mentioned above is similar to 
the method proposed by Krawczuk, 16 but the stiffness matrix 
was presented in a closed form. Lee and Lim 17 investigated 
the vibration of a central-cracked plate based on the Rayleigh 
method. The effects of transverse shear deformation and ro- 
tary inertia were included in the numerical calculation in that 
study. 

In the a:spect of experimental studies, Maruyama and 
Ichinomiyal~ time-averaged holographic interferome- 
try to investigate the natural frequencies and corresponding 
mode shapes experimentally with regard to the influence of 
the slit length, position and inclination angle of clamped rect- 
angular plates. The determination of the location of defects in 
plates from measurements of natural frequencies of cracked 
plates was studied by Cawley and Adams. 19 

Measurement of natural frequencies is potentially a very 
attractive method of nondestructive test, since only one test 
is required to assess the integrity of the complete component. 
This removes the need for the time-consuming scanning of 
a probe over all the areas such as in conventional ultrasonic 
inspection. To determine whether this technique can be used 
to detect defects of the crack size in a beam, the vibration 

�9 behavior of cantilevered beams with edge cracks was inves- 
tigated by Gudmundson. 2~ The crack closure effect was ex- 
perimentally investigated with a fatigue crack, and it was 
found that this effect was of considerable importance for a 
vibrating beam with cracks. Cawley and Ray 21 investigated 
the changes in the natural frequencies of a beam produced 
by cracks, which were compared with changes in the natural 
frequencies caused by slots of the same depth and different 
widths. 

In this paper, we employ the optical method based on the 
AFESPI method to study the resonant properties of square 
cantilever plates with cracks. The advantage of using the 
AFESPI method is that resonant frequencies and the corre- 
sponding mode shapes can be obtained simultaneously. This 
aids the investigation of the influence of crack location and 
crack length on vibration behavior. Cracks that are parallel to 
and perpendicular to the clamped edge are chosen for inves- 
tigation. The cracks are modeled by sawing cuts in the speci- 
mens. In addition to the AFESPI method, numerical compu- 
tations based on a finite element package are presented, and 
good agreement is found in comparison with experimental 
results. Furthermore, crack face displacements and crack- 
opening displacements are calculated to study the fracture 
problem induced by the resonant vibration. It is interesting 
to discover that at some resonant frequencies, the crack face 
displacements are completely in phase, which yields a zero 
stress intensity factor, and crack propagation will not occur. 
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Fig. 1--Schematic diagram of electronic speckle pattern inter- 
ferometry experimental setup for out-of-plane measurement 

Theory of the AFESPI Method for Out-of-plane 
Vibration Measurement 

The optical arrangement for out-of-plane vibrating mea- 
surement by ESPI is shown schematically in Fig. 1. If the 
image of the specimen is taken at the stress-free state, the 
light intensity detected by a CCD camera can be expressed 
by the time-averaged method as 

' f,i  + I s  + 2/~/~A/~ COS dp)dt Io=~ 
o (i) 

= IA + Is  + 2 ~  cOS d~, 

where IA is the object light intensity, Is is the reference light 
intensity, �9 is the CCD refreshing time and ~b is the phase 
difference between object and reference light. 

Assuming the specimen vibrates periodically, the light in- 
tensity taken by a CCD camera can be represented as 

if{ I1 --'-- ~ IA + IS + 2/V/f~A/~ COS 

0 

[2 1 ]} qb+ -~--( +cosO)Acosmt dt,  

(2) 

where ~. is the wavelength of laser, 0 is the angle between 
object light and observation direction, A is the vibration am- 
plitude and m is the angular frequency. 

Let 1" = ~ (1 + cos 0) and assume x = ~-~ ,  where m is 
an integer, and eq (2) can be expressed as 

Ii ~-- IA -1- IB -[- 2/V/W~A/B(COS (~)J0(rA), (3) 

where J0 is a zero-order Bessel function of the first kind. 
When these two images (I0 and 11) are subtracted and 

rectified by the image-processing system, i.e., subtract eq (1) 
from eq (3), the resulting image intensity can be expressed 
as 

I = I]  -- I0 = 2/qQ-~A/B[(COS if) [Jo(FA)  - 1] [. (4) 

E_xperimental Mechanics �9 9 



The light intensity of the image shown in eq (4) is called 
the subtraction method, and the reference image is recorded 
before loading is applied. 

Instead of using the subtraction method, the AFESPI 
method is employed in this study by taking two images while 
the specimen vibrates and assuming that the vibration ampli- 
tude of the second image has changed from A to A + AA due 
to the instability of the apparatus. The light intensity of the 
second image will be 

"t 

0 

[qb + F(A + AA) cos cot]} dr. 

(5) 

Expand eq (5) by using Taylor series and neglect higher 
order terms to obtain 

12 = IA + IB + 2/V/~a/~(cos r 

(6) 

When these two images (11 and 12) are subtracted and 
rectified by the image-processing system, i.e., subtract eq (3) 
from eq (6), the resulting image intensity can be expressed as 

(cos r . (7) 1 = 1 2 - 1 1  = - - - f - - -  

Compared with the subtraction method, where the ref- 
erence image is taken at the stress-free state, the reference 
image is recorded and subtracted at the vibrating state by 
the AFESPI method. From eq (4) and eq (7), the domi- 
nant function of the AFESPI method is ] J0(FA)[ and that of 
the subtraction method is tJ0(FA) - 1]. Owing to the dis- 
crepaney between the dominant functions, the nodal lines of 
vibrating interferometric patterns obtained by the AFESPI 
method are the bright fringes and those obtained by the sub- 
traction method are the dark fringes. This characteristic of 
AFESPI can be used for qualitative observation or for quan- 
titative analysis for the fringe patterns. Furthermore, the sen- 
sitivity and fringe visibility of the AFESPI method are better 
than those of the subtraction method. It can be verified that, 
compared with the subtraction method, the number of fringes 
presented by the AFESPI method is about twice as much (un- 
der the assumption of same vibration amplitude). In addition 
to the theory of out-of-plane measurement mentioned above, 
the in-plane vibration measurement by the AFESPI method 
can be derived in a similar way. 8 

Experimental Result and Numerical Analysis 

An aluminum square plate (6061T6) with a straight crack 
is used in this study for vibration analysis. The material prop- 
erties of the plate are mass density O = 2700 kg/m 3, Yotmg's 
modulus E = 70 GPa and Poisson's ratio v = 0.33. Three 
plates with different locations of the crack are discussed in 
the present study, which include two vertical cracks (VC 1 and 
VC2) and one horizontal crack (HC). The locations of cracks 
and the geometric dimension of the square plate are illus- 
trated in Fig. 2. The cracks are modeled by sawing cuts with 
a width of 0.2 mm. The crack length a is taken to be 1 cm, 
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Fig. 2--Geometric dimensions and configurations of (a) VC1, 
VC2 and (b) HC plates 

2 cm, 3 cm, 4 cm and 5 cm for three locations of cracks. 
For convenience, we note that VC 1-2 represents the crack 
type VC 1 with crack length 2 cm. To increase the contrast of 
fringe patterns, the surfaces of these plates were coated with 
white paint mixed with fine powder. 

The resonant frequencies and mode shapes can be deter- 
mined from this experimental setup at the same time. An 
He-Ne laser with 30 mW and wavelength k = 632.8 nm 
is used as the coherent light source. The laser beam is di- 
vided into two parts, the reference beam and object beam, 
by a beam splitter. The object beam travels to the specimen 
and then reflects to the CCD camera. The reference beam 
goes directly to the CCD camera via a mirror and a reference 
plate. Note that the optical path length and the light intensi- 
fies of these two beams should remain identical in the exper- 
imental setup. The plate is excited to resonance by a 5 mm 
x 5 mm x 10 mm piezostaek actuator (Physik Instrumante) 
that is attached behind the specimen. The piezoelectric actu- 
ator is usually attached in the center of the opposite face of 
the cracked plate. However, if the nodal lines or crack faces 
pass the center of the specimen, the piezoelectric actuator is 
moved to other locations. To achieve the sinusoidal output, a 
digitally controlled function generator HP33120A (Hewlett 
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Packard) connected to a 4005 power amplifier (Electron In- 
struments) is used. 

Numerical results of resonant frequencies and mode 
shapes are calculated by the ABAQUS finite dement 
package 22 in which eight-node two-dimensional shell ele- 
ments ($8R5) are selected. The finite element mesh in the 
vicinity of the crack tip is divided because of stress concen- 
tration at the crack tip. By placing the first node away from 
that point at one-quarter of the distance to the second point 
(hence, the "quarter point" method), the stress near the crack 
tip will behave as a square root singularity. 

Table 1 shows the experimental and numerical results of 
resonant frequencies of the first seven modes for crack lengths 
2 cm and 5 cm of VC1, VC2 and HC cracked plates. The 
results are quite consistent. All the experimental measured 
frequencies are lower than the numerical frequencies. The 
main reason is believed to be that the clamped condition of 
the cantilever cracked plate for the experimental setup is not 
ideally rigid. 

The contours of resonant mode shapes in the finite element 
calculation are plotted for comparison with the experimental 
observation. Only experimental results of the mode shapes 
for a long crack (crack length = 5 cm) are presented here due 
to space limitations. Figures 3-5 show the first seven mode 
shapes for both experimental measurements and numerical 
simulations. In these figures, we indicate the phase of dis- 
placement in finite element results as + or - .  The regions 
of the same sign have in-phase motion, and nodal lines are 
located between + and - regions. The brightest fringes rep- 
resent the nodal lines of the vibrating cracked plate at resonant 
frequencies. The rest of the fringes are contours of constant 
displacement. The experimental and numerical results agree 
well for both the resonant frequencies and the mode shapes. 

To discuss the influences of the crack length and crack 
location on the resonant frequencies, the resonant frequency 
f is expressed by means of a dimensionless frequency pa- 
rameter ~2 given by 

2 / 1 2 p ( 1  - '0 2) 
, (8)  

where L is the length and h is the thickness of the square 
plate. 

Figure 6 shows the dependence of resonant frequency 
(k 2) on nondimensional crack length (a/L) for three cracked 
plates. In most cases, the frequencies vary inversely as the 
crack length increases. This phenomenon can be expected be- 
cause the rigidity of the cracked plate decreases as the crack 
length increases. Generally, the dependence of resonant fre- 
quencies on crack length for lower modes is not as great 
compared with higher modes. For VC1 and HC cases, the 
frequencies of mode 6 decrease violently for a l l  > 0.2; on 
the contrary, mode 7 decreases only slightly for a l l  > 0.2. 
For the VC2 plate, the frequencies of mode 6 and mode 7 
both decrease in a similar way. The influence of crack loca- 
tion on the resonant frequencies for different crack lengths 
is shown in Fig. 7. For mode 1, the frequencies decrease as 
the crack length increases for HC type and remain constant 
for VC 1 and VC2. It is interesting to note that for the can- 
tilever cracked plate, the resonant frequency of the first mode 
is independent of the crack length for the crack that is perpen- 
dicular to the clamped edge. We also can see from Figs. 3 and 
4 that the mode shapes for the first mode of plates VC 1 and 

Fig. 3--Mode shapes of the VC1-5 plate obtained by am- 
plitude fluctuation electronic speckle pattern interferometry 
(AFESPI) and the finite element method (FEM) 
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TABLE 1--RESULTS OF THE FIRST SEVEN RESONANT FREQUENCIES OBTAINED FROM AMPLITUDE FLUCTUATION 
ELECTRONIC SPECKLE PA'I-I'ERN INTERFEROMETRY AND THE FINITE ELEMENT METHOD FOR (A) VC1, (B) VC2 AND 
ICt HC PLATES WITH CRACK LENGTHS OF 2 cm AND 5 cm 

VC1 (2cm) VC1 (5cm) 
AFESPI (Hz) FEM (Hz) AFESPI (Hz) FEM (Hz) 

Mode 1 129 134 128 134 
Mode 2 294 302 180 186 
Mode 3 753 794 585 607 
Mode 4 883 914 635 681 
Mode 5 965 1001 788 829 
Mode 6 1738 1829 1101 1141 
Mode 7 1935 2018 1880 1940 

VC2 (2cm) VC2 (5cm) 
AFESPI (Hz) FEM (Hz) AFESPI (Hz) FEM (Hz) 

Mode I 130 134 129 134 
Mode 2 297 309 193 199 
Mode 3 773 798 448 463 
Mode 4 855 901 798 825 
Mode 5 1062 1100 965 984 
Mode 6 1645 1713 1287 1322 
Mode 7 1979 2085 1565 1637 

HC (2cm) HC (5cm) 
AFESPI (Hz) FEM (Hz) AFESPI (Hz) FEM (Hz) 

Mode 1 123 130 100 102 
Mode 2 284 296 189 197 
Mode 3 704 739 530 552 
Mode 4 942 983 727 754 
Mode 5 1061 1114 986 1011 
Mode 6 1633 1679 1051 1113 
Mode 7 1992 2111 1778 1865 

VC = vertical crack, HC = horizontal crack, AFESPI = amplitude fluctuation electronic speckle pattern interferometry, 
FEM = finite element method 

VC2 are almost the same as those for the cantilever plate with 
no crack. Hence, the existence of vertical cracks (VC1 and 
VC2) do not affect the resonant frequency of the first mode. 
For mode 2, the dependence of frequencies on crack length 
is very similar for three types of cracked plate. The nodal 
line coincides with the crack and terminates at the crack tip 
for VC1 as shown in Fig. 3. For both modes 3 and 4, mode 
shapes (see Figs. 3-5) for long cracks are quite different com- 
pared with the case of a short crack for all three plates. The 
resonant frequency of mode 5 for the VC1 plate decreases 
rapidly with increased crack length because of the change of 
mode shapes (see Fig. 3). The mode shape is anti-symmetric 
for short cracks but symmetric (in phase) for long cracks. The 
variation of resonant frequency for different crack lengths of 
mode 6 is the greatest in all cases. This implies that resonant 
frequency for mode 6 is very sensitive to the crack length. 
Note that for mode 7, the decreasing tendency of resonant 
frequencies for the VC2 plate is different from that for VC 1 
and HC plates. The mode shapes of mode 7 for VC1 and HC 
plates are similarly maintained for short and long cracks. 

Finally, the crack face displacement and the crack-opening 
displacement for different resonant frequencies of three 
cracked plates are investigated, and the results are shown in 
Figs. 8-13. In these figures, the out-of-plane displacement w 
and the crack-opening displacement along the crack face are 
normalized with Wraax, which is the maximum displacement 
in the whole plate. The distance from the crack face to the 
crack tip is denoted as x and is normalized with the crack 
length a. From the fracture mechanics point of view, the 

out-of-plane displacement will induce a mode EI (anti-plane 
mode) type of fracture. A large crack-opening displacement 
will induce a large stress intensity factor, which will initiate 
crack propagation, and the cracked plate will be dangerous. 
Figure 8(a) shows crack face displacements of the VC1-2 
plate for seven modes. There are four modes (modes 1, 3, 4 
and 7) for which the displacement of the two crack faces is 
in phase, and three modes (modes 2, 5 and 6) for which the 
displacement is out of phase. Figure 8(b) shows the crack- 
opening displacement (i.e., the difference of the displacement 
between upper and lower crack faces) for the VC1-2 plate. 
If the crack face displacement is in phase, one finds that the 
crack-opening displacement will be zero. The crack-opening 
displacement varies almost linearly along the crack face for 
the case of out-of-phase motion. The results for a long crack, 
i.e., the VC1-5 plate, are shown in Figs. 9(a) and 9(b). There 
are four modes (modes 1, 3, 5 and 7) that are in phase and 
three modes (modes 2, 4 and 6) that are out of phase, and the 
crack-opening displacement is zero for the case of in phase, 
It is also indicated that if the displacement is zero at some 
points in the crack face, i.e., modes 5 and 7 in Fig. 9(a) for 
the VC1-5 plate, then the nodal line will pass that point. The 
experimental result of the crack face displacement for the 
VC1 plate is shown in Fig. 3. It is worth noting that if the 
displacement of the crack face is out of phase, the crack tip 
is always located in the nodal line. It is concluded that the 
crack-opening displacement is zero when the displacement 
of the crack faces is in phase (i.e., modes I, 3, 4 and 7 for the 
VC1-2 plate and modes 1, 3, 5 and 7 for the VC1-5 plate); 
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Fig. 4---Mode shapes of the VC2-5 plate obtained by am- 
plitude fluctuation electronic speckle pattern interferometry 
(AFESPI) and the finite element method (FEM) 

Fig. 5--Mode shapes of the HC-5 plate obtained by amplitude 
fluctuation electronic speckle pattern interferometry (AFESPI) 
and the finite element method (FEM) 
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Fig. 6---Results of resonant frequencies obtained from ampli- 
tude fluctuation electronic speckle pattern interferometry and 
the finite element method (FEM) for (a) VC1, (b) VC2 and (c) 
HC plates 
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Fig. 7--Comparison of resonant frequencies of the VC1, 
VC2 and HC plates for the first seven modes 

hence, the stress intensity factor is zero, which implies that 
the crack is safe in these resonant frequencies for the VC1 
plate. 

The crack face displacements for the VC2-2 plate are 
shown in Fig. 10(a). There are five modes (modes l, 2, 3, 
5 and 7) that are in phase and two modes (modes 4 and 6) 
that are out of phase. The crack face displacements of some 
modes (modes 2, 3, 5 and 7) are in phase, but the magnitudes 
of the displacements are different in upper and lower crack 
faces; hence, the crack-opening displacement for these cases 
is not zero [the result is shown in Fig. 10(b)]. From the frac- 
ture mechanics point of view, the most dangerous case for the 
VC2-2 plate is mode 6, since it has the largest value of crack- 
opening displacement. The crack face displacements and the 
crack-opening displacements for the VC2-5 plate are shown 
in Figs. l l(a) and ll(b), respectively. Note that the crack 
faces cross each other for modes 5 and 7 at x / a  = 0.41 and 
x/a = 0.6, respectively. The dangerous cases for the VC2-5 
plate are modes 2, 3 and 7. It is found that the crack-opening 
displacement of mode 1 for both VC2-2 [see Fig. 10(b)] and 
VC2-5 [Fig. 1 l(b)] plates is zero along the crack face; hence, 
the stress intensity factor is zero for the VC2 plate. 

The crack face displacements and the crack-opening dis- 
placements for the HC-2 plate are shown in Figs. 12(a) and 
12(b), respectively. Only modes 4 and 6 are out of phase, and 
the crack-opening displacement for mode 1 is very small. The 
most dangerous case for the HC-2 plate is mode 6. The crack 
face displacements and the crack-opening displacements for 
the HC-5 plate are shown in Figs. 13(a) and 13(b), respec- 
tively. The crack faces for mode 7 cross each other, and 
mode 4 has the largest crack-opening displacement along the 
crack faces. 

Because the crack will introduce a new free boundary of 
the cantilever plate, the mode shape of a cracked plate is 
complicated and quite different from that of a plate without 
a crack. The resonant frequencies and mode shapes of the 
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Fig. 8---(a) Normalized displacement (wlwm~) and (b) crack- 
opening displacement (COD) values of the crack faces for the 
VC1-2 plate 

first mode for u and VC2 plates are exactly the same as 
those of the uncracked plate. Furthermore, the crack-opening 
displacement of the crack is zero, and the cracked plate is safe 
in the first resonant mode from the fracture mechanics point of 
view. If the crack is perpendicular to the fixed boundary of the 
cantilever plate, the existence of the crack has no influence on 
the resonant frequency and the mode shape of the cantilever 
cracked plate. In general, the cantilever cracked plate will be 
dangerous at a resonant frequency for which the crack face 
displacement is out of phase; it is less dangerous when the 
crack face displacement is in phase. 
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opening displacement (COD) values of the crack faces for the 
VC1-5 plate 

Conclusions 

Investigation of the vibration problem by employing the 
ESPI method has the advantages of real-time and noncontact 
measurement, submicron sensitivity, digital image process- 
ing and so on. In this paper, the AFESPI optical setup with 
good fringe visibility and noise reduction was established 
to obtain the resonant frequencies and corresponding mode 
shapes of cantilever cracked plates at the same time. Com- 
pared with the spectrum analysis method or modal analysis 
method, AFESPI is more convenient in experimental mea- 
surement. Numerical calculations of resonant frequencies 
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Fig. 11--(a) Normalized displacement (W/Wmax)  and (b) 
crack-opening displacement (COD) values of the crack faces 
for the VC2-5 plate 

and mode shapes based on a finite element package are also 
performed in this study, and good agreements are obtained in 
comparison with experimental measurements. The influence 
of  the crack location and crack length on the vibration behav- 
ior of the cantilever cracked plate is discussed in detail. It is 
found that if the crack is perpendicular to the fixed bound- 
ary, the resonant frequency and mode shape are exactly the 
same as that of a cantilever plate with no crack. The displace- 
ment and crack-opening displacement along the crack face 
were also investigated. The displacements at some modes are 
found to be completely in phase, which makes zero crack- 

opening displacement (i.e., modes 1, 3, 4 and 7 for the VC 1-2 
plate; modes 1, 3, 5 and 7 for the VC1-5 plate; and mode 1 
for the VC2-2 plate). For these cases, the stress intensity fac- 
tor will be z e ro ,  implying that the crack will not propagate 
at these resonant frequencies. The out-of-plane motion of a 
vibrating cracked plate is investigated in this study, and the 
effect of  the contact of crack faces is neglected. However, 
if the in-plane vibration of the cracked plate is studied, then 
this crack contact effect will be of considerable importance 
and should be taken into account in the analysis of a vibrating 
plate with cracks. 
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crack-opening displacement (COD) values of the crack faces 
for the HC-2 plate 
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