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SUMMARY

Seismic traveltime tomography is commonly discretized by a truncated expansion of the
pursued model in terms of chosen basis functions. Whether parametrization affects the
actual resolving power of a given data set as well as the robustness of the resulting earth
model has long been seriously debated. From the perspective of the model resolution,
however, there is one important aspect of the parametrization issue of seismic tomography
that has yet to be systematically explored, that is, the space–frequency localization of a
chosen parametrization. In fact, the two most common parametrizations tend to enforce
resolution in each of their own particular domains. Namely, parametrization in terms
of spherical harmonics with global support tends to emphasize spectral resolution while
sacrificing the spatial resolution, whereas the compactly supported pixels tend to behave
in the opposite manner. Some of the significant discrepancies among tomographic models
are very likely to be manifestations of this effect, when dealing with data sets with non-
uniform sampling. With an example of the tomographic inversion for the lateral shear
wave heterogeneity of the Da layer using S–SKS traveltimes, we demonstrate an alter-
native parametrization in terms of the multiresolution representation of the pursued
model function. Unlike previous attempts of multiscale inversion that invoke pixels
with variable sizes, or overlay several layers of tessellation with different grid intervals,
our formulation invokes biorthogonal generalized Harr wavelets on a sphere. We show
that multiresolution representation can be constructed very easily from an existing
block-based discretization. A natural scale hierarchy of the pursued model structure
constrained by the resolving power of the given sampling is embedded within the
solution obtained. It provides a natural regularization scheme based on the actual ray-
path sampling and is thus free from a priori prejudices intrinsic to most regularization
schemes. Unlike solutions obtained through spherical harmonics or spherical blocks
that tend to collapse structures onto ray paths, our parametrization imposes regionally
varying Nyquist limits, that is, robustly resolvable local wavelength bands within the
obtained solution.
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1 I N T R O D U C T I O N

Ever since the early phase of modern global tomographic

study, the dichotomy among approaches that invoke different

parametrizations has been obvious (Dziewonski 1982, 1984;

Clayton & Comer 1983). With the large amount of seismic travel-

time measurements available today, more and more detailed

tomographic images of the Earth have been published each year.

However, inconsistencies among these recent models with high

nominal resolutions have become a controversial issue that

demands to be resolved (e.g. Dziewonski & Woodhouse 1987;

Morelli & Dziewonski 1987a,b; Tanimoto 1990; Woodward &

Masters 1991; Pulliam & Stark 1993; Stark & Hengartner 1993;

Wang & Zhou 1993; Su et al. 1994; Morelli & Dziewonski 1995;

Stark 1995; Masters et al. 1996; Zhou 1996; Grand et al. 1997;

Bijwaard et al. 1998; Boschi & Dziewonski 1999). Different

data sets, numerical algorithms of inversion, parametrizations

and regularization schemes are among the major factors that

these discrepancies might arise from. The latter two factors have

been at the centre of disputes that have attracted considerable

attention. It is noted that although seismic tomography is in

essence a continuous inverse problem, the data kernel based on

ray theory is, however, not band-limited. This precludes the

direct evaluation of the Gram matrix, which consists of inner

products of data kernels. Discretization through finite para-

metrization of the pursued model is thus inevitable. Rendering

the continuous model function into a finite set of para-

meters, it is clear that any finite parametrization invokes an
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implicit regularization scheme that imposes selective weightings

on different model components. The intertwined effects from

parametrization and regularization further complicate the inter-

pretation and comparison among earth models obtained by

different groups. Clearly, to have a solution with the resolving

power that is compatible with the actual sampling while avoid-

ing either implicit or explicit extra unjustifiable prejudices should

be the main concern of choosing a particular type of basis

function to execute the finite parametrization. In this study, we

first review briefly some of the problems associated with the

general finite parametrization. An alternative parametrization

based on spherical wavelets expansion is then introduced and

invoked in a tomographic study of the lateral shear wave

heterogeneity of the Da layer. Solutions obtained from para-

metrizations based on the three different types of basis functions,

namely, spherical harmonics, spherical pixels and spherical

wavelets, are compared and discussed.

2 T H E G E N E R A L P A R A M E T R I Z A T I O N

Given a finite amount of observations, di with observational

error ei, i=1 . . . N, the goal of a continuous geophysical inverse

problem is usually to estimate the model function m(r) with the

spatial variables r, governed by the data rule:

di ¼ ðgiðrÞ, mðrÞÞ þ ei , (1)

where inner products (gi(r), m(r))=b gi(r)m(r)dr and gi(r) is

the ith data kernel or the Fréchet derivative of a non-linear

data functional. It has been shown that the natural unbiased

representation of components of m(r) resolvable by the given

data is

mðrÞ ¼
XN

i¼1

aigiðrÞ , (2)

since any component orthogonal to the subspace spanned

by gi(r) is in the null space (Parker 1977), which makes no

contribution to the data. The coefficients ai are then obtained

by solving

d ¼ Ga : (3)

The Gram matrix, G, is defined with elements Gij=(gi(r), gj (r)).

For seismic tomography based on ray theory, the complete

evaluation of G is usually not accessible. It is then inevitable

that the model function is parametrized in terms of a chosen set

of orthonormal basis functions wi(r), (wi(r), wj (r))=dij such that

mðrÞ ¼
XL

l¼1

bl�lðrÞ þ m1ðrÞ , (4)

with the truncation level L. The expansion remainder is

m*(r)=S?
k=L+1 bkwk(r), with ? designating higher-mode con-

tributions beyond the truncation level. The common practice is

then simply to ignore the expansion remainder and solve for the

expansion coefficients bl, l=1 . . . L, governed by

d ¼ ALbL : (5)

The elements of the NrL matrix AL are defined by

(AL)il=(gi(r), wl(r). It should be pointed out that L is usually

chosen arbitrarily, while the substitution of eq. (1) or (3) by

eq. (5) is in fact not formally justified. Eqs (3) and (5) can be

related by noting that (Trampert & Snieder 1996)

G ¼ ALAT
L þA?AT

? , (6)

with elements of A? defined by inner products of data

kernels and truncated higher modes of the expansion basis

functions. In other words, truncated expansion of the model

function can be interpreted as a truncated expansion of the

data kernel, which leads to an approximation of the Gram

matrix G‹ =ALAL
T The damped least-squares (DLS) inverse

operator based on this approximation is thus

~G�1 ¼ ðALAT
L þ h2IÞ�1 , (7)

and the actual solution in terms of the coefficients b̂ obtained is

Æ“ ¼ ~G�1d , bŒ l ¼ ð�l , m“ Þ ¼
XN

i¼1

a“ lð�l , giÞ ,

i.e.

bŒ L

bŒ ?

" #
¼

AT
L

AT
?

2
4

3
5 ~G�1d ¼ R

bL

b?

" #
,

R ¼
AT

L
~G�1AL AT

L
~G�1A?

AT
?
~G�1AL AT

?
~G�1A?

2
4

3
5 :

(8)

Note that on the right-hand side of eq. (8), the resolving

relation between the estimated b̂L and the actual bL (upper

submatrix, R11 andR12) corresponds to the familiar solution of

the discretized inverse problem, since

AT
LðALAT

L þ h2IÞ�1ðAL þA?Þ

¼ ðAT
LAL þ h2IÞ�1ðAT

LAL þAT
LA?Þ : (9)

Although it is clear from eq. (8) that R is the com-

plete resolving operator, only R11 has been conventionally

examined in appraising the solution obtained. The second term

(R12= (AL
TAL+ h2I)x1AL

TA?) contributes to the previously

discussed potential spectral leakage (Trampert & Sneider 1996).

It stems from the unclean resolution of the b̂L component from

b?, arising from non-orthogonality among the adopted modes

and the truncated higher modes for the sampling portrayed by

the given data set (i.e. elements of AL
TA?l0).

2.1 Comparison between different parametrizations

Interestingly, since the truncated expansion is now interpreted

simply as a means of approximating the Gram matrix (eq. 6),

it is possible to examine the obtained solution in terms of

other expansions. For example, suppose that in evaluating the

approximating Gram matrix G‹ , the matrix A1 with elements

A1
il=(gi(r), w1

l (r)) in eq. (7) is implemented by choosing the

spherical harmonic functions, w1
l (r), in a global tomography

problem. Once G‹ and thus the appropriateG‹ x1 are calculated,

a different set of basis functions, for example, spherical blocks

(w2
l (r)), can be used to calculate a different A2 matrix in com-

puting the final model structure using eq. (8). That is, all

the matrices AL, A? in eq. (8) are substituted by the second
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parametrization, while G‹ x1 is calculated by the first para-

metrization. This suggests that the final solution obtained

through a particular chosen discretization can be inspected in

terms of other different expansions up to any truncation level.

This might be useful in comparing solutions obtained through

different discretizations. More importantly, it indicates that

good resolution obtained through one particular parametrization

does not imply that the resolving kernel (R) will behave

satisfactorily in another domain. For example, parametrization

in terms of spherical harmonics tends to have better spectral

resolution but usually poor spatial resolution whereas the pixels

discretization is vice versa. This is another way of interpreting

the spurious artefacts within sampling gaps associated with

spherical harmonic discretization that lacks spatial resolution.

Since model components represented by these two common

parametrizations are theoretically equivalent when the sampling

density is spatially uniform (Senso 1990), the inconsistency

among inversion results derived from different parametrizations

manifests itself only with non-uniform sampling. However,

Boschi & Dziewonski (1999) showed that over-damping can

effectively diminish the inconsistency even for highly non-

uniform sampling. One explanation is that over-damping will

in fact severely sacrifice the resolving power of the given data

set such that only relatively long-wavelength model components

that are equally effectively represented by the two different

parametrizations are retained.

Another interesting point is that although the approximation

of the Gram matrix (eq. 7) is formulated with the expansion

truncated at the level L, it does not prevent the evaluation of

those expansion coefficients of the higher modes. Keeping only

b̂L in the final solution, as has been common practice, is thus

invoking unjustifiable a posteriori smoothing that is responsible

for unrealistic spurious structures appearing within data gaps

(Pulliam & Stark 1993). In fact, the b̂? part of the solution

is usually not negligible. While a solution based only on b̂L that

embeds spurious structures within data gaps might indicate a

satisfactory fit to the data, incorporating contributions from

b̂? will diminish those artefacts but usually deteriorate the fit

significantly. As will be discussed later, this commonly exercised

procedure, which retains only b̂L is very different from para-

metrizing the inverse problem with a high truncation level (L)

and then synthesizing the final solution up to a lower level

(lsyn<L). The lower synthesizing level might be based on the

aim of further reducing the model variance of the obtained

solution (Kuo & Wu 1997).

2.2 Spectral leakage

Trampert & Sneider (1996) proposed an anti-leakage operator

by minimizing both the data misfit and the contribution

from the R12 term. They have shown with a surface wave

tomographic example that the construction (their eq. 9),

bŒ L ¼ ½AT
LW

�1AL þ ðh2
L=h

2
?ÞI��1AT

LW
�1d , (10)

has been very successful in annihilating the spectral leakage,

where

W�1 ¼ ðA?AT
? þ h2

?IÞ�1 (11)

is the anti-leakage operator. However, let CM=(h2
? /h2

L)I and

thus CM
x1=(h2

L /h2
?)I. A little algebraic manipulation of eq. (10)

yields

bŒ L ¼ ½AT
LW

�1AL þC�1
M ��1AT

LW
�1d

¼ CMAT
LðALCMAT

L þWÞ�1d

¼ AT
L½ALAT

L þ ðh2
L=h

2
?ÞA?AT

? þ h2
LI�

�1d : (12)

In other words, the solution obtained through the anti-

leakage operation (10) is equivalent to the solution obtained by

implementing an alternative inverse operator of the Gram

matrix of the form

~G�1 ¼ ½ALAT
L þ ðh2

L=h
2
?ÞA?AT

? þ h2
LI�

�1 (13)

Numerically, the computational advantage of eqs (10) and (11)

over the schematic expression eq. (12) is obvious. However, it

is interesting to note that for 0<(h2
L/h2

?)<1, the formulation

can be interpreted as special cases of the weighted least-squares

solution of the original continuous inverse problem. In addi-

tion to the minimum-norm damping (the third term in eq. 13),

the second term describes the relative weighting among the

adopted modes and those truncated. In fact, differences among

formulations with different parametrization and regularization

schemes can usually be compared in terms of having different

forms of quelling (Backus 1970; Chou & Booker 1979) that

implement each of their own particular weighting functions

(Meyerholtz et al. 1989). Most of these particular weighting

functions are, however, based on a priori prejudice that is

seldom physically justifiable.

Another interesting practice implied by eq. (13) is that

instead of actually carrying the parametrization to infinitely high

modes, the ? might indicate a level higher than the truncation

level (L) that we are actually interested in. In other words,

the anti-leakage scheme of Trampert & Sneider (1996) is, in

essence, consistent with our general consensus that even though

we are only comfortable with conservatively inverting for

relatively lower-mode components of the model function, the

discretization still has to be carried up to sufficiently high

modes to avoid spectral leakage as much as possible. Kuo & Wu

(1997) invoked such a procedure to obtain what they thought

were robust features of lateral shear wave heterogeneity within

the Da layer. As discussed earlier, this is very different from

invoking only low modes in the parametrization and evaluating

the solution obtained in terms of those modes that were

actually activated in the initial parametrization. In contrast,

Boschi & Dziewonski (1999) favoured the conclusion that with

sufficient damping, long-wavelength components of an over-

parametrized model are consistent with those obtained from

an underparametrized model, and that aliasing (our spectral

leakage) problems are negligible. Again, we argue that this is

possibly due to the effect of over-damping essentially giving up

resolving power of shorter-wavelength model components of

the data such that the non-orthogonality among higher and

lower modes no longer manifests itself in the final solution. One

risk, however, is that over-damping might also underestimate

the long-wavelength components significantly.

In summary, the aim of devising a parametrization scheme

that is equipped with an intrinsic natural regularization and

takes into consideration the dual resolution of frequency-space

motivates us to explore the fast-developing theory of multi-

resolution analysis (Mallat 1989). The seismic tomography

example considered in this study utilizes S–SKS differential
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traveltime residuals to constrain lateral shear wave hetero-

geneity within the Da layer. This problem has been tackled by

Kuo & Wu (1997) and Kuo et al. (2000) by spherical harmonic

functions so that interesting comparisons can be executed. To

proceed with the alternative multiresolution parametrization

on the spherical surface, an implementation of spherical wavelet

functions has to be devised.

3 F I N I T E P A R A M E T R I Z A T I O N B Y
S P H E R I C A L W A V E L E T S

Discrete wavelets in the 1-D and 2-D plane settings have

developed rapidly in the past two decades. However, the charac-

teristics of classical wavelets constructed from dyadic trans-

lates and dilates of one particular function have prohibited

its generalization to general manifolds. In a series of studies,

Sweldens (1995, 1996) proposed the lifting scheme to build

so-called second-generation wavelets that are fast to compute

and easily applicable to general manifolds. Schröder & Sweldens

(1995) constructed a suite of spherical wavelets for efficiently

representing functions on the sphere. Based on their work,

we modify the construction to be compatible with seismic

tomography around the spherical surface.

The construction of spherical wavelets starts with building

almost equal-area patches or faces that cover the spherical

surface. Beginning with a regular geodesic polyhedron (e.g. an

icosahedron in Fig. 1a), successive refinement by subdividing

each spherical triangle into four children leads to a spherical

tessellation depending on the refinement level (Fig. 1b). For

example, from coarse levels ( j) to finer levels ( j+1), spherical

triangle D j
C consists of four subtriangles D0

j+1, D1
j+1, D2

j+1,

D3
j+1. Each subtriangle can then be further refined to finer

levels j+2, j+3 . . . etc. For a particular ray path (bold dotted

trace in Fig. 1a), the traveltime residual (d) is related to

the average slowness (oi
j+1, i=1, 2, 3) and the path length

(li
j+1) by

. . .þ l
jþ1
0 o

jþ1
0 þ l

jþ1
1 o

jþ1
1 þ l

jþ1
2 o

jþ1
2 þ l

jþ1
3 o

jþ1
3 þ . . . ¼ d : (14)

Define a multiresolution representation of the slowness,

j j
! ¼ 1

A
j
!

ðA jþ1
0 o

jþ1
0 þ A

jþ1
1 o

jþ1
1 þ A

jþ1
2 o

jþ1
2 þ A

jþ1
3 o

jþ1
3 Þ

c j
m ¼ 1

2
ðo jþ1

m � j j
!Þ ,

8>>><
>>>:

(15)

where l j
C is the average slowness in the level j, and c j

m is used to

parametrize the deviation of the slowness at the level j+1

interpolated from level j. Because the areas A0
j+1, Am

j+1 of D0
j+1,

Dm
j+1, m=1, 2, 3, are slightly different, compensating weights

are incorporated. A j
C is the spherical area of D j

C. Similarly, the

resident path length can be spanned with the dual basis and

the expansion coefficients would be

~j j
! ¼ ðl jþ1

0 þ l
jþ1
1 þ l

jþ1
2 þ l

jþ1
3 Þ

~c j
m ¼ 2 l jþ1

m � A jþ1
m

A
jþ1
0

l
jþ1
0

 !
8>>><
>>>:

: (16)

Simple decomposition (from finer scale level j+1 to coarse-

scale j) and synthesizing (coarse to fine) algorithms defined in

eqs (15) and (16) correspond to the Bio–Harr basis functions

(Schröder & Sweldens 1995) of a particular multiresolution

representation on the sphere. l j
C in eq. (15) is the expansion

coefficient of the primary scaling function w j
T (Fig. 1c) at scale

level j, whereas the three c j
m are coefficients of the primary

wavelets y j
m (Fig. 1d). Similarly, l̃ j

C and c̃ j
m in eq. (16) are

coefficients of the dual scaling function w̃ j
T (Fig. 1e) and the

dual wavelets Ỹ j
m (Fig. 1f). Schröder & Sweldens (1995) showed

that although Bio–Harr wavelets have only one vanishing

moment, more vanishing moments could actually be added to a

new multiresolution analysis by the dual lifting scheme.

1

02 3

(a) (b)

0

1

2 3

(c)

0

1

2 3

(d)

0

1

2 3

(e)

0

1

2 3

(f)

-2 -0.125 0 0.25 0.375 1 2

Figure 1. Spherical tessellation constructed from the root level

with a spherical icosahedron. (a) Geodesic triangles (20 faces of the

icosahedron) are successively subdivided into four subtriangles. An

example of this refinement from coarse level (level j) to finer level

(level j+1) is indicated by Dj
C=D0

j+1+D1
j+1+D2

j+1+D3
j+1. The dotted

line represents an example of a ray path. (b) 5120 spherical triangles at

refinement level 5. (c) Magnitude response of the primary scaling

function used for multiresolution representation of the slowness model.

(d) Magnitude of one of the three primary wavelets at the same scale

level as in (c). (e), (f) Magnitudes of the dual scaling function and one of

the dual wavelets.
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Let the inner product on the sphere be represented by

( f, g)=b fgdV; it is straightforward to verify that

ð� j
T , ~�

j
T Þ ¼ dT ,T 0

ðt j
m, ~t

j0

m0 Þ ¼ dm,m0dj, j

ð� j
T , ~t

j
mÞ ¼ 0

ðt j
m, ~�

j
T Þ ¼ 0

8>>>>>>><
>>>>>>>:

: (17)

Based on the biorthogonality of eq. (17), eq. (14) can be

written as

. . .þ ~j j
!j j

! þ
X3

m¼1

c j
m~c

j
m þ . . . ¼ d : (18)

Biorthogonality implied by eqs (17) and (18) is very important.

It suggests that the actual implementation of the multi-

resolution parametrization can be easily incorporated in an

existing block parametrization. The direct implementation

follows the general expansion by going through eqs (4) and (5)

and constructing the Gram matrix by evaluating the path-

length for each of the basis functions. This requires con-

siderable efforts of tedious book keeping. Alternatively, we

can construct the Gram matrix for the spherical blocks

by evaluating the path integral (eq. 14) on the finest level

(leaf level). Note that each row of this matrix corresponds

to one particular ray. The elements of each column are

path lengths within one particular block on the finest level.

Simply performing wavelet decomposition for each row by the

dual decomposition (eq. 16) to the coarse level (root level) is

equivalent to rewriting eq. (14) as eq. (18). That is, after this

reconfigured matrix is inverted, the solution automatically

gives the coefficients of the multiresolution representation of

the slowness model. Synthesis from the root level to the leaf

level can then be performed to inspect the spatial distribution.

Both the decomposition and the synthesis procedures are

straightforward to implement and numerically fast to compute.

Note that in this implementation, the slowness decomposition

(eq. 15) leads to an unbiased estimate of the average slowness at

each scale-level, whereas the length of the ray path increases

from fine to coarse scales (eq. 16). That is, depending on the

sampling, local long-wavelength components will be better con-

strained. This implies a natural, data adaptive weighting scheme

toward robust and relatively long-wavelength components.

Unlike imposing other a priori smoothness preferences on the

pursued model variation, no external criterion on the form of a

particular smoothing is invoked along with the parametrization.

Furthermore, since the weighting depends on the accumulation

of path length and is thus sampling-adaptive, it imposes non-

stationary, heterogeneous smoothing in accord with the locally

resolvable bandwidth instead of enforcing a stationary band

throughout the whole region of interest.

4 A N E X A M P L E O F M U L T I S C A L E
T O M O G R A P H Y : S H E A R V E L O C I T Y
H E T E R O G E N E I T Y W I T H I N T H E D a
L A Y E R

Tomographic experiments using the S–SKS differential travel-

time data set (Kuo & Wu 1997; Kuo et al. 2000) to constrain

the lateral shear wave heterogeneity of the Da layer are carried

out using the multiscale parametrization described above. A

five-level refinement of the initial icosahedron results in a

tessellation with 5120 (=20r4(5x1)) spherical triangles cover-

ing the entire spherical surface (Fig. 1). A simple block-

type inversion is first performed based on a discretization

using these spherical triangles as pixels. The approximated

Gram matrix, with elements defined by lengths of ray paths

within each triangle (eq. 14), is then reconfigured through

the decomposition process from the leaf (finest) level to the

root level according to eqs (16) and (18). The reconfigured,

or decomposed, Gram matrix is constructed very quickly in

a straightforward, in situ fashion. The reconfiguration does

not hinder the matrix inversion via an iterative scheme such

as the LSQR method (Paige & Saunders 1982) for sizeable

problems. However, in this study, for the sake of exploring

other theoretical characteristics, all the solutions are obtained

by singular value decomposition (SVD), no matter which

parametrization the approximated Gram matrix is based upon.

After the SVD, a threshold that is a fraction of the maximum

singular value is set up, such that only those singular values,

greater than the threshold are kept to synthesize the inverse

operator.

Based on the truncated singular-values construction, some

characteristics of the solution obtained from the reconfigured

Gram matrix (based on the multiresolution expansion) and

the original matrix (based on the original spherical triangles

discretization) can be compared. Note first that the singular-

value spectrum (Fig. 2a) is modified as a result of regrouping

the resolvable components in terms of coefficients of the chosen

basis functions. Standard variance reduction versus model

covariance trade-off curves for both solutions are generated by

adjusting different thresholds of the singular-value truncation

(Figs 2b, c and d). The variance reduction is simply defined

by data fitting expressed as a percentage of the L2 norm of

the data. Assuming uniform, uncorrelated error statistics for

traveltime measurements, the model covariance is evaluated

by the diagonal sum of the square matrix G x1(G x1)T

(Menke 1984), where Gx1 is the generalized inverse operator

of the Gram matrix G formed by the singular-value truncation

described above. Note that the model covariance obtained

through inverting the reconfigured Gram matrix is significantly

smaller than that obtained by inverting the original Gram

matrix. This is not unexpected, since the coefficients of the

longer-wavelength basis functions embedded within the multi-

scale hierarchy are always better constrained. This is one of the

virtues of the proposed parametrization that leads to solutions

more robust with respect to the potential data errors. Based on

the trade-off curve (Fig. 2c) we conservatively pick the robust

solution with a relatively low variance reduction (48 per cent).

The resulting shear wave velocity perturbation is displayed

by synthesis from the root level, gradually incorporating finer

details of higher scale levels (from top to bottom in the left

column of Fig. 3). Note that the image constructed by synthesis

up to scale-level 5 is essentially the same as synthesis up to

scale-level 4. That is, details finer than the wavelength of scale-

level 5 (approximately 1.32u) are not robustly resolvable by the

data. A solution with the same variance reduction but obtained

by inverting the original Gram matrix, which is based on the

parametrization in terms of spherical triangular pixels, is also

displayed for comparison. Note that this solution can also be

decomposed into the scale hierarchy (right column in Fig. 3) in

a straightforward fashion according to eq. (15). The difference
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between solutions obtained via these two different para-

metrizations is clear (compare the left and right columns in

Fig. 3). We find that unlike the spherical wavelets solution,

which has heterogeneous resolvable scales, the spherical pixels

solution tends to collapse significant structures gradually along

the ray paths. Furthermore, magnitudes of long-wavelength

(low scale-level) components of the spherical pixels solution are

considerably lower than the spherical wavelets solution, a point

we will come back to for more discussions.

Another solution with a similar variance reduction that

is parametrized in terms of the globally supported spherical

harmonics up to the 40th degree is also obtained. The com-

parison among solutions obtained via the three different para-

metrizations is shown in Fig. 4. The overall spatial patterns of

the three solutions are similar, with remarkable clustering

of the calculated plume roots (Steinberger & O’Connell 1998)

around the low-velocity anomalies. However, there are signi-

ficant discrepancies among these images. Note that the data set

has been carefully sorted to ensure that the sampling coverage

is as uniform as possible (Kuo et al. 2000) which explains

the consistency between the spherical harmonics solution

and the spherical pixels solution. Otherwise, with the presence

of large data gaps or regionally redundant sampling, it is well

known that considerable spurious artefacts will appear within

data gaps for solutions parametrized by globally supported

basis functions (Pulliam & Stark 1993), unless the inversion

is heavily damped (Boschi & Dziewonski 1999). The major

difference between the three solutions, however, is that while

both the spherical harmonics solution and the spherical pixels

solution tend to collapse structures along the ray paths, the

grouping of local structures into longer wavelengths in the

spherical wavelets solution is different.

Other than the overall spatial pattern, the level-wise contri-

butions to the variance reduction, the root-mean-square model

norm of the three solutions as well as the power spectrum when

projected onto the spherical harmonics expansion are also

compared (Fig. 5). Note that from the discussion in Section 2.1,

it is possible to project the spherical harmonics solution onto a

representation in terms of spherical pixels and thus perform the

level-wise decomposition. Inspecting the variance reduction of

the spherical harmonics solution, projected and decomposed,

from the root level and gradually incorporating higher scale-

level details, it is found that contributions from scale-level 5

actually deteriorate the data fitting. This is caused by the fact

that the spherical harmonics parametrization was carried only

up to the 40th degree, with the degrees of freedom less than

the level 5 refinement of the spherical pixels discretization.

From eq. (8) and the subsequent discussions, the projection

of the spherical harmonics solution onto the spherical pixels

representation invokes components higher than the truncation

level (degree 40) that are usually assumed negligible when

constructing the final solution. It is also noted that there

are significant contributions on the variance reduction from

fine structures in scale-level 5 for both the spherical harmonics

and the spherical pixels solution (Fig. 5a). In fact, if the

discretization had been carried to even higher scale levels, this
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Figure 2. Comparison of tomography of S–SKS differential traveltimes parametrized by spherical pixels (dash line and circle symbol) and spherical

wavelets (solid line and cross symbol) that is constructed (see the text) from spherical pixels. (a) Normalized singular value spectrum (by the maximum

singular value) indicates the effect of reconfiguration of the Gram matrix. (b) Multiscale parametrization yields models with model variance

significantly lower (an order of magnitude) at the same level of variance reduction. Note that the horizontal scale is model variance on a logarithmic

scale. (c), (d) The variance reduction versus model variance trade-off curves for the spherical pixels and the spherical wavelets formulations.
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trend would still persist such that eventually all structures are

collapsed onto the ray paths. This is, however, not the case for

the spherical wavelets solution, where the model contributions

needed to satisfy the data essentially peak at scale-level 4,

suggesting that a global maximum resolvable wavelength is no

shorter than the characteristic wavelength of this scale level.

Another way of further inspecting these three solutions is

to examine their level-wise contribution of the L2 model norm.

In Fig. 5(b), root mean squares of the L2 model norm are

presented for each scale level. Again, it is clear that the

contribution from scale-level 5 is insignificant for the spherical

wavelets solution, while it tends to be important for the other

two common parametrizations. All three solutions are also

projected into the spherical harmonics domain to compare

their power spectra (Fig. 5c). They are all clearly dominated by

the degree 2 component. However, magnitudes of the degree 2

power for each solution are quite different. First, it is noted

that the spherical pixels solution has lower degree 2 magnitude

than the spherical harmonics solution. The reason for this

discrepancy is that the degrees of freedom invoked by the

former is greater than the latter (5120 versus 1681). It is already

mentioned that the data kernels based on ray theory are not

band-limited in the across-ray directions. In other words, there

will always be energy spread through shorter and shorter

-4 -3 -2 -1 0 1 2 3 4
Figure 3. Based on the trade-off portrayed in Fig. 2(d), a robust solution with variance reduction of 48 per cent is chosen to examine images obtained

by model parametrizations in terms of spherical wavelets (left column) and spherical blocks (right column). From top to bottom, the shear wave

perturbation within the Da layer is synthesized up to higher scale levels to incorporate structures with finer details. Note that structures up to scale-

level 5 are almost identical to the image portrayed up to the level 4 on the left column. That is, finer details above scale-level 4 are not robustly

resolvable with the given data set. On the other hand, the contribution from finer details up to scale-level 5 is still significant for the spherical pixels

parametrization on the right.
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wavelengths to put structures onto the ray paths. Since these

short-wavelength components are not orthogonal to the long-

wavelength components with a non-uniform sampling cover-

age, the more the energy spread through higher modes, the

more the energy that belongs to the lower modes will be peeled

away along with the increasing damping. That is, with the same

variance reduction, the solution parametrized with higher degrees

of freedom will always end up with lower power in the lower

modes (see also examples in Kuo et al. 2000). One noticeable

difference of the proposed multiscale parametrization from the

other two is that this alternative parametrization distinctly

preserves the magnitudes of the long-wavelength components.

4.1 Inversion experiment for synthesized data generated
from artificial structures

The S–SKS traveltime data set is inevitably noisy since it is

collected through real geophysical observations with con-

siderable effort. To further clarify the characteristics of the

tomographic solutions obtained through these different para-

metrizations, it is suggested that a comparison experiment

should be executed on a synthesized data set that is generated

from known artificial structures. We have designed such an

experiment with a relatively broad positive shear wave speed

perturbation centred at the south Pacific, and a narrow belt

of negative perturbation across the north Pacific (Fig. 6a).

The reason for choosing such structures instead of the com-

monly adopted checkerboard test is that we wish to explore

the potentially non-stationary resolving capability intrinsic to

standard tomographic problems. We utilize the same ray-path

sampling as in the real data set to generate traveltime anomalies

to be inverted by the three formulations based on different

parametrizations. The solutions obtained are compared in

Fig. 6. For the relatively broad positive structure, the scattered

images obtained through spherical pixels and truncated spherical

harmonics indicate the obvious effect of the ray sampling,

whereas the multiscale solution shows a natural grouping

into locally coherent structures but still reflects the rigours of

the local sampling. For the relatively narrow belt of negative

perturbation, the grouping is also obvious. However, note that

at places along the belt where the sampling is adequate, both

the conventional block and spectral solutions are capable of

recovering high-resolution variations in the across-belt direction.

This capability is not sacrificed with the multiscale para-

metrization. The heterogeneous, sampling-adaptive resolving

(a) spherical harmonics (b) 

(c) spherical wavelets (d)

(e) spherical blocks (f)

-4 -3 -2 -1 0 1 2 3 4

Figure 4. Comparison of solutions with the same variance reduction

(48 per cent), but parametrized in terms of different basis functions.

(a), (b) Tomographic inversion parametrized by spherical harmonics up

to the 40th degree. (c), (d) Spherical wavelets parametrization (the same

as those in the left column of Fig. 3). (e), (f) Spherical pixels (same

as the right column of Fig. 3). Images in the left column (a, c, e) have

map projections centred on longitude 180u, while those in the right

column are centred on 0u. Circles are positions of the plume roots at the

core-mantle boundary calculated by Steinberger & O’Connel (1998).

Note the apparent effect of the ray traces within solutions based on

both spherical harmonics and spherical pixels, while the grouping of

structures within the spherical wavelets solution is quite different.

(a) artificial structure (b) spherical harmonics

(c) spherical blocks (d) spherical wavelets

(e) spherical spline
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Figure 6. Comparison of solutions obtained by different para-

metrizations for artificial, noise-free data. The variance reductions

are all around 80 per cent. (a) The artificial structures used to generate

the synthesized data. There is a broad Gaussian variation with s=30u
centred at (150uW, 40uS) and a narrow belt of negative pertur-

bation of shear wave speed across the north Pacific. (b) Tomographic

inversion parametrized by spherical harmonics up to the 40th degree.

(c) Spherical pixels parametrization. (d) Spherical wavelets. (e) Spherical

splines (see text). (f) Power spectra of the original structure and

from solutions of tomographic inversions (black: original structure;

red: spherical wavelets; magenta: spherical spline; blue: spherical

harmonics; green: spherical pixels).

524 L.-Y. Chiao and B.-Y. Kuo

# 2001 RAS, GJI 145, 517–527



capability of the multiscale parametrization is revealed in this

experiment. In contrast, if a priori smoothness preference is

invoked, a uniform global smoothing will be enforced. We

test this effect by a spherical spline parametrization that is

implemented by simply adding an l (l+1) weighting to each

degree of the expansion harmonics (see Parker 1994). The

smoothing effect on the resulting image (Fig. 6e) is obvious.

Although it seems to offer a better recovery of the positive

structure, the narrow belt of the negative anomaly broadens

considerably, and loses the peak amplitude along the belt in

general.

5 D I S C U S S I O N

It was pointed out earlier that the conventional DLS solution,

equipped with the minimum L2 norm regularization, of the

common spherical harmonics or the spherical pixels para-

metrization will tend to collapse all structures onto the ray paths.

In the early years of global seismic tomography, relatively

fewer degrees of freedom were invoked in studies parametrized

with the globally supported spherical harmonics. The rationale

was to aim at resolving conservatively yet robustly the long-

wavelength components of Earth structures. However, it is

becoming clear that such practices are prone to contamination

by spectral leakage effects. General consensus has been estab-

lished that even if only the relatively low modes or long-

wavelength features are the pursued structures of interest, the

parametrization still has to be carried to finer details as far

as possible. However, as indicated previously, since the travel-

time data kernel is not band-limited in the across-ray direction

based on ray theory, finer parametrization of tomographic

problems with non-uniform sampling will always result in

significant structures in the short-wavelength components that

eventually collapse structures completely on the ray paths.

One misleading consequence of the obtained earth model with

high nominal resolution is then interpreting the high-frequency

components resulting from the ray distribution as meaningful

Earth structures. This phenomenon might not be easily detected

since ray coverage in standard tomographic problems is usually

highly non-uniform, which means that the locally resolvable

bandwidths are regionally variable. Consequently, one important

point worth re-emphasizing is that, even with the currently

available abundance of traveltime measurements and the con-

tinually improving computational resources that enable finer

and finer parametrizations, the nominal resolution of a para-

metrized tomographic image does not necessarily imply the

actual resolution of the pursued earth structure.

Another related problem with fine parametrization inverted

along with the minimum-norm regularization is that, with finer

and finer parametrizations and thus increasing degrees of

freedom, the magnitudes of the long-wavelength components

tend to decrease rapidly. As discussed previously, this can be

attributed to spreading energies throughout the spectrum.

It might be argued that this phenomenon and the collapsing

onto the ray paths are both due to the regularization scheme

based on the model-norm minimization. Invoking alternative

regularization schemes, such as the first or second derivative

type of minimization (e.g. VanDeCar & Snieder 1994), or

more generally the quelling operator (Chou & Booker 1979;

Meyerholtz et al. 1989), might avoid these effects. However,

minimum norm regularization bears merit because it results

in solutions embedding the least contributions from the null

space. In contrast, quelling types of regularization interpolate

the model function where it is not constrained by the data. In

essence, the procedure of quelling modifies the data rule such

that the modified data kernels are convolved with a smooth

spatial function w(r) with local supports in both spatial and

wavenumber domains. The pursued model is now the roughened
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Figure 5. Further comparison of characteristics of solutions obtained

by the three different parametrizations. The spherical pixels solution is

marked by a dotted line and grey circles, while the spherical harmonics

solution is marked by a dashed line with solid triangles and the

spherical wavelets solution by a solid line with crosses. (a) Successive

contributions on the variance reduction from structures of different

scale levels. For the spherical wavelets solution, detailed structures finer

than scale-level 4 have negligible contributions, while the finer details

are still significant for the spherical pixels solution (see also Fig. 3).

Note that scale-level 5 contributions of the spherical harmonics

solution actually deteriorate the data fit (see the text). (b) Root-

mean-square norms of the three different solutions. Again, note that

structures from scale-level 5 of the spherical wavelets solution is

insignificant, while this is not the case for the other two solutions.

(c) Power spectrum of the three solutions. While they are all characterized

by the obvious degree 2 dominance, the absolute degree 2 magnitudes

are quite different (see discussions in the text).
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model function deconvolved by w(r), that is, m(r)*wx1(r).

The implicit regularization scheme embedded with the DLS

solution of the modified system is now based on the mini-

mization of the roughened model function, that is, ||m*wx1||
rather than ||m||. It is conceivable that the modified data kernel

now has an approximated finite width depending on the function

w(r) For example, the regularization based on minimization

of the second spatial derivatives of the model function is

essentially the convolution with wx1(r) that has a spectral

response characterized by k2, k being the wavenumber. In the

case of spherical harmonics, a weighting is defined by l (l+1),

with l being the degree (Parker 1994) that is implemented in our

spherical spline parametrization (Fig. 6e). This covolutional

quelling procedure has been reported to be effective in avoiding

the collapse of images onto the ray paths and in preserving

magnitudes of long-wavelength components (Meyerholtz et al.

1989; Delprat-Jannaud & Lailly 1993). Although it has been

argued that unlike Bayesian inference, which requires a priori

probabilistic information about the model function (Gouveia

& Scales 1997), an appropriate roughening operator wx1(r)

has to be pre-determined for this regularization. A similar

formulation that invokes an a priori model covariance operator

depending on the ‘correlation length’ has also been proposed

(Tarantola & Nercessian 1984). It is noted that some formu-

lation in invoking the quelling is derived directly from the

original continuous problem (e.g. Chou & Booker 1979;

Tarantola & Nercessian 1984) instead of applying the quelling

after the finite parametrization. However, as long as the

discretization is carried up to a truncation level such that

the ‘correlation length’ is significantly wider than the shortest

discretization wavelength (e.g. the grid interval of a pixels-based

parametrization), the effect will be the same. The preferred

wx1(r), or the appropriate correlation length, will strongly affect

the solution obtained. In fact, the general truncated expansion,

in terms of either spherical harmonics or spherical pixels, can

be treated as a particular case of convolutional quelling with the

characteristics of w(r) being a boxcar function in the spectral or

spatial domain. In this interpretation, there is no problem of

the infinite convergence onto the rays. However, it does not

seem to be physically justifiable to choose a particular width of

the weighting function w(r), unless the formulation is based on

other finite theory (e.g. Marquering et al. 1999; Hung et al.

2000) rather than the ray theory. More importantly, once the

preferred smoothing operator is chosen, it enforces stationary

weighting on the local scale structure. This might in fact impede

the ability to image critical short-wavelength structures at places

where the data is capable of resolving (Megnin et al. 1997).

The multiscale parametrization proposed in this study

can also be interpreted as a particular type of quelling that is

implicitly invoked in all inversion schemes equipped with a

regularization scheme. However, instead of choosing a particular

a priori weighting function, the intrinsic scale hierarchy of

the ray-path sampling determines locally the model bandwidth

that is robustly resolvable. The effect of natural grouping

into long-wavelength features rather than onto the ray paths

and the preservation of the long-wavelength components have

been demonstrated to be natural consequences of this para-

metrization. One important potential advantage of this para-

metrization is the ability to examine the non-stationary variation

of spectral contents (Bergeron et al. 1999) directly from the

obtained solution. Furthermore, although the formulation

in this paper is centred on the multiresolution decomposition

of the path length, it does not prohibit similar decomposition of

other general forms of data kernel. In fact, combined with the

convolution quelling, which renders seismic rays into ray tubes

with finite width, the same reconfiguration of the resulting

Gram matrix can be undertaken. In other words, a priori model

information based on viable physical grounds can still be

incorporated.

6 C O N C L U S I O N S

Parametrization in terms of basis functions with global support

tends to focus on frequency resolution and sacrifices spatial

resolution. Parametrization in terms of basis functions with

local support, on the other hand, does the opposite. Invoking

curvature type and other smoothing regularization by way of

quelling the data kernel with a finitely supported smoothing

function might bring the two extremes closer together since a

finite width will be imposed on the rays. However, a priori

bandwidth has to be determined. Furthermore, this band-

width is not flexible with respect to data sampling that varies

regionally. To confront this, pixels with spatially variable size

have been implemented (Fukao et al. 1992; Wang et al. 1998;

Bijwaard et al. 1998). Zhou (1996), on the other hand, overlaid

a series of tessellations with cell sizes of different scales that are

not mutually orthogonal. The wavelet parametrization demon-

strated in this study is data-adaptive. The spatially varying

bandwidth, which is robustly resolvable by the given data, is

automatically adapted by the local hierarchy portrayed by the

multiresolution representation of the pursued model variation.

The example of S–SKS traveltime tomography utilizing the

multiscale parametrization has been shown to be very easily

implemented. Based on an existing parametrization in terms of

spherical pixels, straightforward reconfiguration of the Gram

matrix yields a robust solution that is less prone to the apparent

pattern of the ray distribution but will still faithfully reflect the

sampling density. We intend to extend this parametrization to

3-D tomographic problems as well as to explore alternative,

more sophisticated types of wavelet basis functions than the

generalized Harr wavelet.
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