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Identifying spatial characteristics
of transmissivity using simulated
annealing and kriging methods

Yu-Pin Lin - Yih-Chi Tan - Shahrokh Rouhani

Abstract Groundwater flow and transport modeling
require proper and accurate hydrogeological prop-
erties. These hydrogeological data, including infor-
mation on transmissivity or hydraulic conductivity,
may contain significant uncertainty, displaying
complex spatial variation. This study identified the
spatial patterns and variations in transmissivity in
the southeast of Yun-Lin County and the north of
Chia-Yih County in Taiwan to reveal the spatial
characteristics of hydrogeological formation for
groundwater study. The spatial maps of transmis-
sivity were estimated and simulated using ordinary
kriging and simulated annealing methods. Correla-
tion analysis revealed that realizations of simula-
tions could fully display the characteristics of
transmissivity within this study area. Correlation
analysis also indicated that both estimation and
simulation results displayed similar patterns. The
spatial maps of the estimation and simulation of
transmissivity indicated that simulated annealing
could not only reproduce the statistics and spatial
variation of the measured transmissivity, but could
also identify the global spatial continuity patterns of
transmissivity. The simulated maps of transmissiv-
ityalso fully illustrate the characteristics of the geo-
logical and aquifer characteristics of the study area.
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Introduction

All soil and geologic formations exhibit apparently ran-
dom variations in their spatial hydrological properties
(Freeze 1975). Transmissivity is a fundamental parameter
of hydrogeological properties in characterizing aquifers
for groundwater models. Proper modeling of preferential
flow paths and of transport behavior requires the use of
transmissivity fields which reproduce the spatial vari-
ability patterns observed in the field (Capilla and others
1998). These transmissivity fields sometimes contain
significant uncertainties, including complex (unexplain-
able) variations in observed values of measurable attri-
butes over the investigated area. These spatial and
temporal variations can be extremely complicated. Thus,
the reconstruction of the transmissivity field from the
experimental hydraulic head data, an inverse problem,
arises not only from the complexity of the diffusion
equation linking the two variables, but also from con-
sidering the physical aspects of the site under study; such
as the boundary conditions, the effective recharge, and
the geology (Roth 1998).

In practical applications, the validity of the purely ana-
lytical techniques proposed to date is limited by certain
assumptions which simplify their application, like linea-
rizing the flow equation to obtain a solution (Roth 1998).
Therefore, characterizing the spatial variabilities of
transmissivity for groundwater models is important.
Because of these variations in hydrogeological properties,
numerous authors have used statistical procedures to
model spatial structures of interesting geohydrologic and
physicochemical properties. Examples of such works in-
clude Bakr and others (1978), Journel and Huijbregts
(1978), Delhomme (1979), Smith and Freeze (1979),
Chirlin and Dagan (1980), Smith (1981), Clifton and
Neuman (1982), Anderson and Shapiro (1983), Hoek-
sema and Kitanidis (1985), Neuman and others (1987),
Rubin (1990), Bjerg and others (1992), Fabbri (1996),
Eggleston and others (1996), Christensen (1997), Di
Federico and Neuman (1997), and Salandin and Fiorotto
(1998).
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The kriging process yields weighted-average estimates
which may fail to preserve the variability of the investi-
gated process. Minimizing the variance in prediction error
requires smoothing the actual variability (Journel and
Huijbergts 1978). The estimated values based on kriging
display a lower variation than the actual investigated
values. To correct this shortcoming, geostatistical simu-
lation can be performed. Simulation generates equally
likely sets of values for a variable, which are consistent
with available in-situ measurements. This frequently im-
plies that the simulated values have the same mean and
variogram as the original data, and may also coincide with
the original data at measurement points. Simulation
focuses mainly on reproducing the fluctuations in the
observations, instead of producing the optimal prediction
(Sterk and Stein 1997).

Geostatistical conditional simulation, such as by simulated
annealing, attempts not only to generate a set of values
with some specified mean and covariance, but also to re-
produce observed data at several locations. Geologists use
simulation to visualize fluctuations in major geologic
patterns, investigate the fossil morphology, and map
stratigraphical and structure surfaces (Christakos 1992).
For instance, investigation measurements and simulated
values can be used to analyze the spatial distribution of a
particular variable. Varljen and Shafer (1991) established a
conditional simulation to determine a cap by simulating
transmissivity. Furthermore, Eggleston and others (1996)
used geostatistical simulations and ordinary kriging to
reproduce the hydraulic conductivity structure in the
formation of natural log, and made the structure sensitive
to limited data. Later, Mowrer (1997) used sequential
Gaussian simulation to map potential old-growth forest
conditions across a 121ha first-order subalpine watershed.
Additionally, Sterk and Stein (1997) employed a simulated
annealing method to create multiple realizations of wind-
blown mass transport, thus overcoming the smoothing
effect of kriging estimation. Furthermore, Kentwell and
others (1999) used a sequential Gaussian fractal simulation
to increase the prediction accuracy of the grade tonnage
curve. Meanwhile, Wang and Zhang (1999) used a turning
band method to reproduce multiple realizations for heavy
metals. Also, Lin and Chang (2000a) used sequential
Gaussian simulation to map the spatial pattern and iden-
tify polluted sites of soil heavy metals. Lin and others
(2000) applied sequential Gaussian simulation to charac-
terize spatial structure of transmissivity. Finally, Lin and
Chang (2000b) applied sequential Gaussian simulation to
characterize spatial structure of transmissivity.

This study uses conditional simulation techniques and
ordinary kriging to produce the realizations and maps of
transmissivity in a real case study. The descriptive statis-
tics, spatial structure (experimental variogram), correla-
tion and spatial patterns of estimated and simulated
results are also discussed herein. Finally, the estimation
and simulation results are mapped into GIS to compare
with the spatial distribution of geological formation for
characterizing and verifying the spatial distribution of
estimated and simulated transmissivity in the study area.

Cases and solutions

Materials and methods

The selected study area covers 154.67 km” and is on the
east banks of the middle and upper streams of the Peikang
River in the southeast part of Yun-Lin County and the
north part of Gia-Yih County, Taiwan (Fig. 1). Figure 1
displays the branch streams of the Peikang River. The
geological features of the study area from Dulliu Hill to the
Peikang River include the Toukoshan Formation, Lichi
Formation, terrace deposits and alluvium, as presented in
Fig. 1. Part of the west bank of the Peikang River belongs to
the alluvia fan of the Chuo-Shuei River. The fan has a
typical alluvia fan stratum structure, with a thick gravel
layer on the east side reducing gradually to the west and
southwest, whereas the muddy and sandy stratum thickens.
Tsao (1982) studied and reported the field data of the well-
drilling lag and the aquifer of this study area. According to
the reports of Tsao (1982) and Lin and others (2000),
Tapei city has the deepest well bores in the county, with an
average depth of 199.7 m. Meanwhile, wells in Talin town
rank second, with an average depth of 179.3 m, and wells
in Tounan and Kukeng towns are 176.5 and 106.5 m, re-
spectively (Tsao 1982; Lin and others 2000). The average
thickness of the aquifer in the well-drilling log ranges from
30.6 to 52.8 m. The depth of the aquifer in the alluvia fan
part of the Chuo-Shuei River and the west bank of the
Peikang River is 80 m at Huwei town and an average of
100 m at Tuku and Yuanchang towns (Lin and others
2000). Figure 2a presents the locations of sampling wells of
transmissivity data measured by using the pumping test
and provided by Yu-Ling Irrigation Association. Figure 2b
illustrates the measured values of transmissivity ranged
from 8.637 to 407.483 m°/h at the sampling points of this
study area. Table 1 lists the basic descriptive statistics of
the measured data. Meanwhile, Fig. 3a presents the his-
togram of the measured transmissivity. These results
confirm that the measured transmissivity data display a
skewed distribution and a significant spatial variation.

Ordinary kriging
Geostatistical techniques like kriging incorporate the
spatial or temporal characteristics of actual data into sta-
tistical estimation. Geostatistics provide a variogram of
data within a statistical framework, including spatial and
temporal covariance functions. As expected, these vario-
gram models are termed spatial or temporal structures,
and are defined in terms of the correlation between any
two points separated either spatially or temporally. Vari-
ograms provide a means of quantifying the commonly
observed relationship whereby samples close together tend
to have more similar values than samples farther apart.
The variogram y(h) is defined as:

)(h) = (1/2)Var{Z(x) — Z(x + h)] (1)

where h denotes the lag distance separating pairs of points,
Var represents the variance of the argument, Z(x) is the
value of the regionalized variable of interest at location x,
and Z(x+h) denotes the value at the location x+h.
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An experimental variogram y(h), is given by:

n(h)
y(h) = 1/[2n(h)] Z [Z(xi + h) = Z(x;)]’ ()

where y(h) denotes the variogram for interval lag distance
class h, and n(h) represents the number of pairs separated
by the lag distance h.

An anisotropic experimental variogram is defined as:

n(h,0)
p(h,0) = 1/[2n(h,0)] > [Z(xi + h, 0) — Z(x)]*

i=1

(3)

where 0 is the angle along x; to x;+h.

Ordinary kriging, as applied within moving data neigh-
borhoods, is a non-stationary algorithm corresponding to
a non-stationary random function model with varying
mean but stationary covariance (Deutsch and Journel
1992). Kriging estimates are weighted sums of the adjacent
sample concentrations. The weights depend on the corre-
lation structure exhibited. For illustration, if data appear
highly continuous in space, points closer to the estimates
receive higher weights than those farther away. The cri-
terion for selecting these weights is to minimize estimation
variance. In this framework, kriging estimates can be re-
garded as the most accurate linear estimator (i.e., best
linear unbiased estimator). At an unsampled location and
for a given variogram, a kriging estimate can simply be
considered an optimally weighted average of the sur-
rounding sampled data (Cressie 1990). Kriging estimates
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the value of the random field at an unsampled location X,
based on the given measured values in the linear form
(Rouhani 1985)

Z4(X0) = > MnZ(Xy) (4)

where Z*(X,) denotes kriging estimates at X,, Z(X;) rep-
resents measured values at X, i=1, ..., N, and 4,y is kriging
weight for Z(X;) to estimate Z*(X,).

Simulation by simulated annealing
The annealing algorithm requires that the image is per-
turbed by simulating thermal perturbation (Deutsch and
Cockerham 1994). However, simulated annealing is an
optimization technique to generate an initial field by
drawing random values from a given histogram. Swapping
the values in pairs of grid nodes not involving a condi-
tioning datum sequentially modifies this initial field. A
swap is accepted if the objective function is lower (Deutsch
and Journel 1992). This objective function (O) is defined as
an average squared difference between the experimental
and given variogram.

) (P
0= 2

where y(h) is the pre-specified variogram, and y*(h) rep-
resents the variogram of the simulated realization.
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Fig. 2
a The locations of sampling wells in the study area. b Measured values
of transmissivity

A temperature function (the Boltzman distribution) in the
simulated annealing procedure controls how the speed at
which the optimization function is reduced by allowing
certain switches which increase the optimization function
(Deutsch and Journel 1992; Eggleston and others 1996).
The parameter t of the temperature function is termed the
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temperature in the annealing procedure. The higher the p " L Open—Ouid if Onew < Oota 6
temperature, the more chance of an unfavorable swap {accept} = t herwi (6)
being accepted (Deutsch and Journel 1992). € » otherwise

Table 1 N Mean Median  Min Max SD Skewness Kurtosis
Descriptive statistics of measu- 2 2 2 2 2
red transmissivity. SD Standard (m’/h) (m’/h) (m’/h) (m°/h) (m/h)
deviation; T transmissivity; T 92 93.088 64275  8.637 407.483 92082  1.872 3.352

N sampling numbers
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In this work the variogram models of transmissivity are
also fitted within GS+ (Gamma Design 1995). The source
codes of OKB2DM and SASIM in GSLIB (Deutsch and
Journel 1992) were modified to perform ordinary kriging
and simulated annealing for estimating and simulating
transmissivity. These simulations and estimates were
performed in a square 38 column by a 28-row grid com-
prising 1,664 50x50 m cells. Five simulations of simulated
annealing are performed in these 1,664 cells. The results
are transferred into Arcview 3.0a (ESRI 1998) to display
them and identify the spatial patterns of transmissivity.

Results and discussion

Spatial correlation structure
Experimental variograms were calculated for transmissiv-
ity at the same active lag and lag interval for isotropic and
anisotropic spatial structure analyses. A reasonably con-
sistent set of best-fit models with minimum RSS (model
reduced sum of squares) and maximum r’ (regression
coefficient) values were generated by least squares model
fitting of these variograms. Moreover, in anisotropic
structure analyses the principal axis is the base axis, de-
fined as the initial direction for anisotropic structure an-
alyses, from which the offset angles are calculated. Offset
angles are at 0, 45, 90 and 135° clockwise from the base
axis (Gamma Design 1995). The axis of 0° is defined in
relation to the north-south axis. The points aligned suffi-
ciently closely to one or another of these angles, with a
22.5° tolerance, are included in the anisotropic analysis of
that angle.
Table 2 lists the parameters from representative models,
including the spherical, exponential and Gaussian models.
A Gaussian model with nugget effect=5,630 (m°/h)?,
sill=9,120 (m?/h)* and range=19.09 km had the best fit
among other available models (exponential or spherical)
for the values investigated herein. Similarly, for aniso-
tropic variography the experimental variogram of mea-
sured transmissivity was calculated for the transmissivity
data investigated herein at 0, 45, 60 and 90° with 22.5°
tolerance. The best fit variograms of transmissivity in the
above directions are the Gaussian model with nugget ef-
fect=6,160.0 (m*/h)?, sill=4,760.0 (m*/h)?, minimum ran-
ge=17.24 km and maximum range=17.24 km, as listed in
Table 3. The variogram model with the same minimum
and maximum range reveals that the spatial structure of
measured transmissivity is isotropic. These variography
results also confirm that the measured transmissivity data

Table 2
Variogram model of measured transmissivity. RSS Model reduced
sums of square; 7 regression coefficient

display an isotropic formation with a high nugget effect.
The nugget effect illustrated that some transmissivity data
display small-scale variation in the study area.

Statistics concerning estimation and simulation
The estimations and simulations are based on the above
isotropic variogram model and 92 observations of trans-
missivity. Figures 3b-c and 4 display histograms of esti-
mates and simulations. These histograms illustrate that the
simulation method accurately matched the right- and left-
hand tails of the distribution for transmissivity, which
contain the high and low transmissivity values. Moreover,
these figures also show that the shapes of histogram kur-
tosis of simulated realizations fitted those of the measured
transmissivity.
Table 4 lists the statistics relating to kriging estimates and
simulations of transmissivity. Simulated annealing repro-
duce the statistics of transmissivity better than most
techniques, including the mean values listed in Tables 1
and 4. Table 4 shows that annealing simulation can better
produce the empirical data relating to measured trans-
missivity.
The simulated median values are almost similar to those of
the measured data, as listed in Tables 1 and 4. The sim-
ulation results also indicate that the 25th percentiles of the
transmissivity simulations are identical to those of the
measured data, as listed in Tables 1 and 4. Meanwhile, the
25th and 75th percentiles of the simulations are identical
to those of the measured data, as listed in Tables 1 and 4.
The mean values of ordinary kriging estimated values in
the investigation area closely approach the mean of the
empirical values of transmissivity. The median, variance,
kurtosis, and skewness of the simulations closely ap-
proximate the investigated transmissivity data, as dis-
played in Tables 1 and 4. The above results indicate that
the ordinary kriging process may not preserve the vari-
ability and skewness of the investigated process. Moreover,
minimizing the variation in prediction error involves
smoothing the actual variability. Simulated annealing can
reproduce the statistics of empirical data. However, sim-
ulated annealing reproduces the distribution of the in-
vestigated transmissivity more accurately. These figures
also indicate that kriging produces smoothed data which
cannot capture the spatial variability of the measured
transmissivity data in the study area.

Correlation of estimation and simulation
In the correlation analysis, both the Pearson and Spear-
man correlation coefficients were calculated for

Table 3
Anisotropic variogram models of measured transmissivity. RSS Model
reduced sums of square; r° regression coefficient

Model Nugget  Sill Max. Min. RSS r
Model Nugget Sill Range RSS s effect (m*/h)> range range
(m*h)>  (m’h)’ (km) (m?/h)* (km)  (km)
Exponential 3860.00 12790.00 12.46 2.28E09 0.268  Exponential  4970.00  6520.00 9.39 9.39 8.50E8 0.187
Spherical 4300.00 9610.00 20.14 2.25E09 0.278  Spherical 5490.00  5340.00  20.00 20.00 8.41E8 0.199
Gaussian 5630.00 9120.00 19.09 2.21E09 0.290  Gaussian 6160.00  4760.00 17.24 17.24 8.76E8 0.208
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Table 4

Descriptive statistics of kriging OK SASI SAS2 SAS3 SAS4 SASS

gsrtgi‘:laatfs Eﬁdi;"?‘gfgc;?;ugfe 4 1,664 1,664 1,664 1,664 1,664 1,664

annealiny G rﬁuﬁ’tion‘ SD stan. Mean 87.066 90.433 93.587 94.880 90.290 91.251

dard devgiation i Median 73.366 64.749 65.583 70.000 62.265 65.593
SD 39.848 85.074 91.010 90.093 89.262 87.826
Skewness 1.211 1.866 1.803 1.771 1.900 1.868
Kurtosis 0.330 3.577 3.027 2.963 3.427 3.423
Min. 33.783 8.637 8.637 8.637 8.637 8.637
Max. 196.713 407.483 407.483 407.483 407.483 407.483
25th percentile 59.564 34.491 31.171 33.915 30.611 33.250
75th percentile 103.336 123.387 128.368 129.547 116.554 120.063

1,664 pairs, to identify the interrelationships of estimation
and simulation, especially realizing simulations, as listed
in Tables 5 and 6.

Table 5 lists Pearson correlation coefficients among esti-
mated results and simulated realizations. The range of
correlation coefficients between kriging estimates and each
realization varies from 0.577 to 0.787, and exhibits a strong
linear correlation, as illustrated in Table 5. These results
imply that the kriging estimates and simulated realizations
have a common origin and exhibit a similar spatial pattern
of transmissivity in the study area. Moreover, the corre-
lation coefficients among the realizations are strongly
significant at the 0.01 probability level according to the
2-tailed test, as presented in Table 5. The range of these
coefficients is from 0.602 to 0.842.

Table 6 lists Spearman correlation coefficients among es-
timates and simulations. The correlation between esti-
mates and each simulation shows a significant coefficient
(0.719-0.884) at the 0.01 level. The correlation coefficients
(0.713-0.913) of estimates and simulations are extremely
significant at the 0.01 level. Meanwhile, the nonparametric
correlation results indicate that simulation realizations
exhibit similar spatial patterns to each other.

To assess the results of estimation and simulation on the
eastern section of the Peikang River, 1,624 cells were se-
lected from estimated and simulated maps of transmis-
sivity using Arcview 3.0a. Table 7 displays the Pearson
correlation coefficients among estimated results and sim-
ulated realizations at these 1,624 cells. The range of cor-
relation coefficients between kriging estimates and each

Environmental Geology (2001) 41:200-208
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realization is from 0.595 to 0.787, and displays a strong
linear correlation, as shown in Table 7. These results
confirm that the kriging estimates and simulated realiza-
tions have a common origin and exhibit a similar spatial
pattern of transmissivity in the eastern part of the Peikang
River. Moreover, the correlation coefficients among the
realizations are extremely significant at the 0.01 proba-
bility level according to the 2-tailed test, as presented in
Table 7. These coefficients range from 0.614 to 0.895.
Table 8 lists Spearman correlation coefficients among es-
timates and simulations for these 1,624 cells. According to
this table, the correlation between kriging estimates and
each simulation reveals a significant coefficient (0.726-
0.885) at the 0.01 level. The correlation coefficients (0.726-
0.945) among simulations are strongly significant at the
0.01 level. These nonparametric correlation results dem-
onstrate that realizations of simulations on the eastern
part of Peikang River exhibit similar spatial patterns.
Moreover, these results also indicated that the realizations
of simulated annealing simulation consistently present the
spatial distribution of transmissivity on the east bank of
the Peikang River.

Spatial patterns of transmissivity
Ordinary kriging and simulated annealing simulation for
transmissivity in this study area are also performed and
mapped in a geographic information system. The kriging
estimated and conditional simulated transmissivity maps
illustrate that the low values formed an approximately
triangular shape in the center of this study area (Figs. 5
and 6). The maps also show that the transmissivity values
gradually increased from this triangularly shaped area to
the surrounding area of this center area, as illustrated in
Figs. 5 and 6. Moreover, the high transmissivity values
were located on the Dulliu Hill in the east part of the study
area and on the west of the Peikang River in the north-
western part of the study area, as illustrated in Figs. 5 and
6. Moreover, the transmissivity values of the study area
gradually decreased from the Dulliu Hill to the center of
the area. However, these simulated transmissivity maps
fully display the characteristics of the geological formation
of this study area (Figs. 1, 5 and 6). These maps also
confirm that the study area has a rather typical alluvia fan
stratum structure, since the gravel layer on the east side is
thick, gradually thinning towards the west and southwest,

Table 5
Pearson correlation coefficient OK SAS1 SAS2 SAS3 SAS4 SAS5
of eCS;‘rIrne‘I;lt‘i)gnaiI;dsflfi‘flllca;;‘:nét OK 1.000 0.773%* 0.577% 0.656** 0.787%* 0.685%*
the 0.01 level (two_%aﬂe d test): SAS1 0.773** 1.000 0.602** 0.712%* 0.842%* 0.739%*
. > % o *% %% *%
OK ordinary kriging; SAS simu- SAS2 0.577+* 0.602+* 1000 0.611 0.649"* 0.688*
lated annealing simulation SAS3 0.656 0.712 0.611 1.000 0.629 0.624
SAS4 0.787** 0.842%* 0.649** 0.629%* 1.000 0.811%
SAS5 0.685** 0.739%* 0.688** 0.624%* 0.811%* 1.000
Table 6
Spearman correlation coefficient OK SASI SAS2 SAS3 SAS4 SAS5
of eCS;‘rIrne‘i:t‘i’gnair;dsflgli‘ﬁlca;;‘;“;t OK 1.000 0.884* 0.719%* 0.813%* 0.860** 0.813%*
the 0.01 level (two_%aﬂe ) 0K SAS1 0.884** 1.000 0.832%* 0.913%* 0.942%* 0.898**
. > %% %% *% %% 6%
ordinary kriging: SAS simulated SAS2 0.719* 0.832+* 1000 0.905 0.713* 0.844*
annealing simulation SAS3 0.813 0.913 0.905 1.000 0.803 0.855
SAS4 0.860** 0.942%* 0.713** 0.803** 1.000 0.901%*
SAS5 0.813** 0.898** 0.844%* 0.855%* 0.901%* 1.000
Table 7
Pearson correlation coefficient OK SASI SAS2 SAS3 SAS4 SAS5
of zséﬁle?;lt(i)gnair;dsiSIE?f;lca;rll?[na.t OK 1.000 0.777%* 0.595%* 0.672%* 0.787%* 0.765%*
the 0.01 level (twofaﬂe 4 0K SAS1 0.777** 1.000 0.614%* 0.715%* 0.845%* 0.781%*
. > %% %% *% %% *%
ordinary kriging: SAS simulated SAS2 0.595% 0.614* 1.000 0.623 0.671* 0.725*
annealing simulation SAS3 0.672 0.715 0.623 1.000 0.642 0.622
SAS4 0.787** 0.845%* 0.671** 0.642%* 1.000 0.895%*
SAS5 0.765%* 0.781%* 0.725%* 0.622%* 0.895%* 1.000
Table 8
Spearman correlation coefficient OK SASL SAS2 SAS3 SAS4 SAS5
of ecsctlrrrrﬁ:t(i)gnair;dsflﬁglca;;?nalt OK 1.000 0.885%* 0.726%* 0.817%* 0.860%* 0.826%*
the 0.01 Lovel (twofaﬂe a): 0K SAS1 0.885%* 1.000 0.839** 0.914%* 0.945%* 0.901%*
ordinary krigine: SAS cimulated  SAS2 0.726** 0.839%* 1.000 0.910%* 0.729%* 0.843%*
e ahr’l’ shgn uﬁ;tion SAS3 0.817%+ 0.914%* 0.910%* 1.000 0.811%+ 0.855%*
g SAS4 0.860%* 0.945%* 0.729%* 0.811%* 1.000 0.919%*
SAS5 0.826** 0.901%* 0.843** 0.855%* 0.919%* 1.000
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The spatial maps of transmissivity of a kriged values; b simulated
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whereas the thickness of the muddy and sandy stratum
increases correspondingly.

The maps in Figs. 5 and 6) illustrate that the spatial con-
tinuity and discontinuity patterns produced by simulated
annealing simulation visually resemble those in the map of
the investigated transmissivity data. Comparison of Figs. 5
and 6) shows that the kriging results may overestimate the
size of the low transmissivity area located in the center of
the study area, and underestimate the size of extremely
high transmissivity areas located in the east of this study
area. These maps also illustrate that kriging estimates are
much smoother than in any of the simulations. Comparing
the estimated and simulated transmissivity maps, the map
made by ordinary kriging estimates shows that kriging
tends to smooth out extreme values in the investigated
data set, as presented in Figs. 5 and 6). Meanwhile, kriging
provides the optimal estimate of transmissivity at un-
sampled sites, but does not reproduce the spatial vari-
ability of the investigated transmissivity data in this case
study. Simulated annealing simulation can reproduce the
spatial variation of the investigated transmissivity data.
Moreover, each simulation realization provides a measure
of spatial uncertainty throughout the study area. Mean-
while, the spatial pattern of kriging-estimated results could
also be used to enhance the spatial patterns of simulated
transmissivity. The simulation realizations illustrated that

Cases and solutions

N
W E
S
86-22
B 22-46.8
W 468-849
W 84.9-1446
B 1446- 407.5
(m’/hr)
0 7 Km
—

(c)

Fig. 6a—c
The spatial maps of transmissivity of a simulated values (SAS3);
b simulated values (SAS4); ¢ simulated values (SAS5)

the north, northeast and southeast parts may require ad-
ditional wells to understand the uncertainty of transmis-
sivity in the study area.

Conclusion

This study has demonstrated the spatial variability and
patterns in measured transmissivity data within the area of
interest. Although kriging and simulated annealing can
both be used to identify the spatial variability and pat-
terns, ordinary kriging failed to reproduce transmissivity
statistics any better than simulation techniques. Mean-
while, besides reproducing the spatial variation of the
measured transmissivity, simulated annealing identified
global spatial continuity patterns. Compared to global
statistics and spatial patterns of transmissivity measure-
ments, the simulated annealing method achieved more
accurate results than kriging. Realizations of simulated
annealing simulation were consistent in presenting the
spatial patterns and uncertainty of transmissivity in the
study area. The simulated transmissivity maps fully dis-
play the characteristics of the geological formation and
tendencies in the study area. The kriging estimated and
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simulated results were also effective in assessing uncer-
tainty and adding additional samples for transmissivity.
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