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Abstract

Recently, the classical Hilbert transformer is generalized into the fractional Hilbert transformer which could be
implemented optically. This modi"cation of the Hilbert transform adds an additional degree of freedom on the Hilbert
transformer and improves the performance of the transform. In this paper, the design of FIR "lters fractional Hilbert
transformer is proposed. The FIR "lters are designed in the maximally #at sense. The impulse responses of the "lters are
uniquely solved and expressed in simple analytic forms. The impulse responses can be exactly expressed as "xed point
binary values. The resulting frequency responses approximate the ideal one very well in the middle-frequency band.
E$cient hardware realization structures are obtained based on the symmetric properties of the impulse responses.
Several design examples with various transform parameters and various "lter orders are presented. Some examples of
1-D/2-D edge detection are given. The examples show that the proposed FIR "lter can enhance the selected edges very
e$ciently. � 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Recently, the classical Hilbert transformers
(HTs) are generalized into the fractional Hilbert
transformers (FHTs) which could be implemented
optically [8]. The modi"cation of the Hilbert trans-
form adds additional degrees of freedom on the
Hilbert transformer and improves the performance
of the transform on edge detection. Two alternative
de"nitions were proposed in [8]. The "rst de"ni-
tion modi"es the spatial frequency response of the

classical Hilbert transform with a fractional para-
meter. The second de"nition makes use of the clas-
sical Hilbert transform as well as the fractional
Fourier transform to fractionalize the Hilbert
transform. The fractional parameter is controlled
by the fractional Fourier transform in the second
de"nition. However, the Hilbert transform is
a special case in both de"nitions.

For digital computation and implementation,
the discrete versions of the two de"nitions of the
fractional Hilbert transform were proposed and
developed in [13]. The authors derived a frequency
mask by which the "rst de"nition of fractional
Hilbert transform can be computed in the discrete-
time frequency domain. In the second de"nition,
the fractional Fourier transform is replaced by the
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discrete fractional Fourier transform [14]. There-
fore, both of the de"nitions of the fractional Hilbert
transformer can be computed in the discrete-time
domain.

The design of digital "lters which perform the
Hilbert transform has been widely investigated.
The ideal impulse response of the Hilbert trans-
former [11,15] is given by

h
��
(n)"�

� ���
�������
��

, nO0,

0, n"0.

The design of the optimal FIR linear phase digital
"lter in the minimax sense has been often used in
practice [9,16]. The performance of the FIR Hil-
bert transformer can be improved by multiple use
of identical FIR sub"lters [18]. In [1,7], the im-
pulse responses of the FIR Hilbert transformer are
analytically solved in the maximally #at (MF)
sense. A realization scheme based on decomposing
the transfer function of Hilbert transformer into
allpass sub"lters was proposed in [5].

For image processing, the Hilbert transform is
used especially for edge detection [6]. The frac-
tional Hilbert transform can be used for a "ner
detection of the edge. A detailed analysis about the
fractional Hilbert transform on the rectangle func-
tion was proposed [2]. The authors explained how
the one-dimensional edges are selectively empha-
sized by fractional Hilbert transform.

In this paper, a design of the maximally #at FIR
fractional Hilbert transformer is proposed. We
want to design a digital FIR "lter to perform the
fractional Hilbert transform. The "rst de"nition of
the fraction Hilbert transformer in [8] is taken as
our target frequency response since this de"nition
does not involve the time-variant operation of frac-
tional Fourier transform and can be implemented
by a digital "lter. This target frequency response in
the discrete-time frequency domain can be ex-
pressed by

H
���

(�)"�
e������ for 0(�(�,

e����� for !�(�(0,
(1)

where � is the fractional parameter. In order to
design a causal FIR "lter, the ideal frequency re-
sponse expressed in Eq. (1) must be modi"ed be-

cause the response lacks of some delays and cannot
be realized in practice. For the Nth-order FIR "lter
to be designed, we put an additional delay term
e������ into Eq. (1) and obtain the desired fre-
quency response as

H
�
(e��)"�

e������������� for 0(�(�,

e������������ for !�(�(0.
(2)

In the odd order case, Pei and Wang have obtained
an analytical expression of the impulse response
[12]. An e$cient hardware realization structure
based on the symmetry of the "lter coe$cients was
proposed. In this paper, we will make an extension
of this previous work. In Section 2, we formulate
the problem for the design of the maximally #at
FIR fractional Hilbert transformers. The analytical
impulse response of odd-order fractional Hilbert
transformer is developed and given in this section.
In Section 3, we solve the even-order maximally #at
FIR fractional Hilbert transformer. Analytical ex-
pressions of the impulse responses are obtained.
Several design examples are given in Section 4,
including a comparison between the odd-order "l-
ters and the even-order ones for edge detection
applications. Finally, we give a conclusion in Sec-
tion 5.

2. Design of odd-order FIR FHTs

The transfer function of a complex coe$cient
FIR digital "lter is characterized by

H(z)"
�
�
���

h(n)z��, (3)

where N is the "lter order, and the "lter coe$cients
h(n) generally complex-valued. The frequency re-
sponse of this FIR "lter is obtained by evaluating
H(z) along the unit circle and expressed by

H(e��)"
�
�
���

h(n)e����. (4)

We want to "nd h(n) such that H(e��) is approxi-
mated to the desired response H

�
(e��).

To design a FIR "lter in the maximally #at sense,
we equate the derivatives of the desired frequency
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response in Eq. (2) with the derivatives of H(e��) up
to a suitable Kth order, i.e.,

�
�
���

h(n)n�e����"�
N

2 �
�
e�������������

for 0(�(� (5)

and

�
�
���

h(n)n�e����"�
N

2 �
�
e������������

for !�(�(0 (6)

for k"0,1,2,K where K is determined by the
"lter order N. In fact, K"(N!1)/2.

For the maximally #at (MF) design, the next step
is to choose the frequencies at which the MF condi-
tions expressed by Eqs. (5) and (6) are satis"ed. We
choose the two MF frequencies of $�/2 to ap-
proximate the desired frequency response. Substi-
tuting Eqs. (5) and (6) with �"�/2 and !�/2,
respectively, these equations become

�
�
���

h(n)n�e������"�
N

2 �
�
e��(, (7)

�
�
���

h(n)n�e�����"�
N

2 �
�
e�(, (8)

where �"��/2#N�/4 for short.
In order to determine the largest allowable k in

the above equations, the number of these equations
is examined. For the kth derivative, two MF condi-
tions must be satis"ed since the MF frequencies are
speci"ed to be �/2 and !�/2. That is, there are two
equations constructed for each choice of k. To solve
the linear equations with N#1 unknowns ex-
pressed by Eqs. (7) and (8), k is equal to (N!1)/2 at
most. If the largest k, i.e., K, is equal to (N!1)/2,
there are N#1 linear equations in Eqs. (7) and (8),
the impulse response of the MF FHT can be solved
exactly.

To solve these equations analytically, they are
simpli"ed further. For each k, by adding Eqs. (7)
and (8) and by subtracting Eqs. (7) from Eq. (8), we
deduce

�
�
���

h(n)n� cos�
n�
2 �"�

N

2 �
�
cos�, (9)

�
�
���

h(n)n� sin�
n�

2 �"�
N

2 �
�
sin� (10)

for k"0,1,2, (N!1)/2. Since cos(n�/2)"0 and
sin(n�/2)"0 for odd n and even n, respectively, the
above equations are actually in the forms

�������
�
���

h(2n)(!1)�(2n)�"�
N

2 �
�
cos�, (11)

�������
�
���

h(2n#1)(!1)�(2n#1)�"�
N

2 �
�
sin� (12)

for k"0,1,2, (N!1)/2. Denote hI (2n)"
h(2n)(!1)�/cos� and hI (2n#1)"h(2n#1)(!1)�/
sin� for n"0,1,2, (N!1)/2. The matrix forms of
Eqs. (11) and (12) are expressed as

�
1 1 1 2 1

0 2 4 2 (N!1)

0 2� 4� 2 (N!1)�

� � � � �

0 2������� 4������� 2 (N!1)�������� �
hI (0)

hI (2)

hI (4)

�

hI (N!1)�
"�

1

N/2

(N/2)�

�

(N/2)��������
and

�
1 1 1 2 1

1 3 5 2 N

1 3� 5� 2 N�

� � � � �

1 3������� 5������� 2 N�������� �
hI (1)
hI (3)
hI (5)
�

hI (N)�
"�

1

N/2

(N/2)�

�

(N/2)�������� ,
respectively. Note that the coe$cient matrices of
the above equations are Vandermonde matrices [4].
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Fig. 1. Realization of the maximally #at fractional Hilbert
transformers of odd order where c"cos(��/2#N�/4),
s"sin(��/2#N�/4), and k"(!1)�������.N is an odd number.

Since both Eqs. (11) and (12) describe (N#1)/2
equations in (N#1)/2 unknowns, these two sets of
equations can be solved directly. Accordingly, the
coe$cients of the even numbered impulses and
those of the odd numbered ones are solved separ-
ately. Carrying out Cramer's rule [10] and using the
involved Vandermonde determinants, by some alge-
braic manipulations, the solutions are obtained
explicitly by

h(2n)"
k
	
cos�

(n!N/4)((N!1)/2!n)!n!
, (13)

h(2n#1)"
k


sin�

(n!(N!2)/4)((N!1)/2!n)!n!
, (14)

where

k
	
"

�������
�
���

�i!
N

4 �, (15)

k


"

�������
�
���

�i!
N!2

4 �. (16)

The impulse response exhibits "ne symmetry. Let
the normalized impulse responses be hK (2n)"h(2n)/
cos� and hK (2n#1)"h(2n#1)/sin�. Then the
transfer function expressed by Eq. (3) is represented
as

H(z)"cos�H
	
(z)#sin�z��H



(z), (17)

where

H
	
(z)"

�������
�
���

hK (2n)z���, (18)

H


(z)"

�������
�
���

hK (2n#1)z���. (19)

The "rst property of the impulse response is that
the factor k



is equal to k

	
without regard to their

signum. This fact is obtained by changing the mul-
tiplication order in Eq. (16) and explicitly expressed
as

k


"(!1)�������k

	
. (20)

By means of the above equality, we deduce that

hK (N!2n)"(!1)�������hK (2n) (21)

for n"0,1,2,(N!1)/2. Note that (N!2n)"
[( 2((N!1)/2!n)#1], i.e., hK (N!2n) is an odd
numbered coe$cient while hK (2n) is an even num-
bered one.

The key equation (21) implies the important
property of H



(z) being themirror-image polynomial

about H
	
(z), i.e.,

H


(z)"(!1)�������z������H

	
(z��). (22)

Based on this symmetry property, an e$cient real-
ization structure is designed. We begin with the fact
that any FIR "lter can be expressed as a sum of
a symmetric and an antisymmetric FIR "lter. Ac-
cordingly H

	
(z) is decomposed as

H
	
(z)"H

�
(z)#H

�
(z), (23)

where

H
�
(z)"�

�
[H

	
(z)#z������H

	
(z��)], (24)

H
�
(z)"�

�
[H

	
(z)!z������H

	
(z��)]. (25)

Note that H
�
(z) represents a symmetric FIR "lter

and H
�
(z) is an antisymmetric one. According to

the above equations and Eq. (22), we have

H


(z)"(!1)�������[H

�
(z)!H

�
(z)]. (26)

Substituting Eq. (17) with Eqs. (23) and (26), the
transfer function of proposedMF FHT is expressed
as a linear combination of H

�
(z) and H

�
(z)

H(z)"cos�[H
�
(z)#H

�
(z)]

# (!1)������� sin�z��[H
�
(z)!H

�
(z)].

(27)

This structure is shown in Fig. 1.

Example 1. In this example, we demonstrate the
symmetry of the impulse response discussed above
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by exhibiting the nineth-order "lter transfer func-
tion H(z) explicitly. According to Eqs. (13)}(16), the
impulse response of this nineth-order MF FHT
FIR "lter is

h(0)"
35 cos�

2048
, h(2)"

63 cos�

512
, h(4)"

945 cos�

1024
,

h(6)"!

105 cos�

512
, h(8)"!

45 cos�

2048
,

h(1)"!

45 sin�

2048
, h(3)"!

105 sin�

512
,

h(5)"
945 sin�

1024
, h(7)"

63 sin�

512
, h(9)"

35 sin�

2048
.

Since hK (2n)"h(2n)/cos� and hK (2n#1)"h(2n#1)/
sin�, H

	
(z) and H



(z) in Eq. (17) are calculated and

expressed by

H
	
(z)"

35

2048
#

63

512
z��#

945

1024
z�	!

105

512
z�


!

45

2048
z��

and

H


(z)"!

45

2048
!

105

512
z��#

945

1024
z�	

#

63

512
z�
#

35

2048
z��,

respectively. Note the time-reversed symmetry be-
tween H

	
(z) and H



(z). According to Eqs. (24) and

(25), H
	
(z) and H



(z) can be represented by

H
	
(z)"H

�
(z)#H

�
(z) and H



(z)"H

�
(z)!H

�
(z)

where

H
�
(z)"!

5

2048
!

21

512
z��#

945

1024
z�	

!

21

512
z�
!

5

2048
z��

and

H
�
(z)"

5

256
#

21

128
z��!

21

128
z�
!

5

256
z��.

H
�
(z) are a symmetric transfer function and H

�
(z)

are an antisymmetric transfer function.
In [3], the authors proposed e$cient algorithms

to design "xed-point FIR "lters. It can be shown
that the impulse responses of odd order MF FHTs
can be exactly expressed by "xed point binary
values except the two irrational factors of cos� and
sin� in Eq. (17). For example, H

	
(z) can be ex-

pressed as

H
	
(z)"(2�
#2���#2���)

#(2�	#2��#2�
#2�
#2��#2��)z��

# (2��#2��#2��#2��#2�
#2���)z�	

!(2��#2�	#2�
#2��)z�


! (2�
#2��#2��#2���)z��.

Since H


(z) is the time-reversed version of H

	
(z) and

H
�
(z) and H

�
(z) are combinations of H

	
(z) and

H


(z), they are able to be exactly expressed by "xed

point binary numbers and implemented by the add
and shift operations.

To evaluate the number of multiplications ex-
pressed by Eq. (27), note that the coe$cients of the
odd numbered impulse response are zeros in H

�
(z)

and H
�
(z). Since they are linear phase FIR "lters of

(N!1)th order, each of them has (N#1)/2 non-
zero coe$cients and only halves are necessary for
realization. We conclude that the number of multi-
plications for realizing the MF FHT shown in Fig.
1 is (N#5)/2. This number is twomore than that in
the common linear phase FIR "lter due to the
factors sin� and cos�.

3. Design of even-order FIR FHTs

In this section, we will solve the impulse re-
sponses of the even-order maximally #at FIR Hil-
bert transformers. For this case, the number of
equations expressed by Eqs. (7) and (8) is examined.
For the kth derivative, two MF conditions must be
satis"ed since the MF frequencies are speci"ed to
be �/2 and !�/2. That is, there are two equations
constructed for each choice of k. To solve the linear
equations with N#1 unknowns expressed by
Eqs. (7) and (8), k is equal to N/2 at most since N is
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an even number. Hence there are N linear equa-
tions constructed by the MF conditions. Because
the number of the unknown impulse response is
N#1, we must "nd another equation in order to
solve h(n). This additional equation is speci"ed at
the frequency of �"0 and expressed by H(e��)"
[H

�
(e����)#H

�
(e�����)]/2, i.e.,

�
�
���

h(n)"cos(��/2). (28)

We will simplify Eqs. (7), (8) and (28) to solve
them analytically. For each k, by adding and sub-
tracting Eqs. (7) and (8), respectively, we deduce

�
�
���

h(n)n� cos�
n�
2 �"�

N

2 �
�
cos�, (29)

�
�
���

h(n)n� sin�
n�

2 �"�
N

2 �
�
sin� (30)

for k"0,1,2,N/2!1. Since cos(n�/2)"0 and
sin(n�/2)"0 for odd n and even n in each, the
above equations are actually in the forms of

���
�
���

h(2n)(!1)�(2n)�"�
N

2 �
�
cos� (31)

and

�����
�
���

h(2n#1)(!1)�(2n#1)�"�
N

2 �
�
sin� (32)

for k"0,1,2,N/2!1. Note that Eqs. (29)}(32)
are similar to those of Eqs. (9)}(12) but the number
of unknowns and the number of equations are
di!erent. Eq. (31) gives N/2 linear equations with
(N/2#1) unknowns h(0), h(2),2, h(N) and Eq. (32)
gives N/2 equations with N/2 unknowns
h(1), h(3),2, h(N!1). Therefore, we may obtain
the impulse responses of odd index by solving Eq.
(32). The even-indexed impulse response is solved
from Eq. (31) as well as Eq. (28).

The solution to Eq. (32) are obtained by carrying
out Cramer's rule and explicitly expressed by

h(2n#1)"
sin�������

���
[i!(N!2)/4]

[n!(N!2)/4]n![(N!2)/2!n]!
(33)

for n"0,1,2,N/2!1. Since h(2n#1) is ob-
tained, we are able to obtain the N/2#1 even-
indexed impulse response h(2n) by solving Eq. (31)
together with Eq. (28). After some algebraic manip-
ulations, these equations are solved analytically.
Case 1: N"4p!2. In this case, the odd-indexed
"lter coe$cients expressed by Eq. (33) are reduced
to

h(2p!1)"cos(��/2),

h(2n#1)"0 for n"0,1,2, 2p!2, nOp!1.

(34)

Substituting Eq. (34) for Eqs. (31) and (28), the
even-indexed impulse response is explicitly solved
as

h(2n)"
sin(��/2)����

���
(i#1/2)�

(n!p#1/2)n!(2p!1!n)!

for n"0,1,2, 2p!1. (35)

Case 2: N"4p. If the "lter order N is a multiple
of 4, the odd-indexed "lter coe$cients in Eq. (33)
are simpli"ed and expressed as

h(2n#1)"
sin(��/2)����

���
(i#1/2)�

(n!p#1/2)n!(2p!1!n)!

for n"0,1,2,2p!1. (36)

Substituting Eq. (36) for Eqs. (31) and (28), the
even-indexed impulse response is explicitly solved
as

h(2p)"cos(��/2),

h(2n)"0 for n"0,1,2, 2p, nOp. (37)

There is an interesting relation between the MF
FHT of orders 4p!2 and 4p. Let h(n) be the "lter
coe$cients of order 4p!2 and h�(n) be those of
order 4p. According to Eq. (37), h�(0)"h�(4p)"0.
Comparing Eq. (34) with Eq. (37), it is obvious that
h(2n#1)"h�(2n)"0 and h(2n)"h�(2n#1).
These properties indicate that the MF FHT of
order 4p is equivalent to the MF FHT of order
4p!2 except an additional delay. In other word,
for the design of the even-order FIRMF FHTs, it is
su$cient to design the FHTs of order 4p!2.
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n 0 1 2 3 4 5 6 7 8 9 10 11 12

N"10 !3s� 0 !25s� 0 !150s� 256c� 150s� 0 25s� 0 3s�

N"12 0 !3s� 0 !25s� 0 !150s� 256c� 150s� 0 25s� 0 3s� 0

Fig. 2. Realization of the maximally #at fractional Hilbert transformers of even order. Note that s�"sin(��/2), c�"cos(��/2).

Table 1
A summary of the impulse responses of the maximally #at
fractional Hilbert transformers with transfer function
H(z)"��

���
h(n)z��

Order Impulse response

N" h(N/2)"cos(��/2)

4p!2 h(2n#1)"0, n"0,1,2,2p!2 and nOp!1

h(2n)"
sin(��/2)����

���
(i#1/2)�

(n!p#1/2)n!(2p!1!n)!
,

n"0,1,2,2p!1

N"4p h(N/2)"cos(��/2)

h(2n)"0, n"0,1,2,2p and nOp

h(2n#1)"
sin(��/2)����

���
(i#1/2)�

(n!p#1/2)n!(2p!1!n)!
,

n"0,1,2,2p!1

N" h(2n)"
cos(��/2#N�/4)��

���
(i!N/4)

(n!N/4)(q!n)!n!
,

2q#1
n"0,1,2, q

h(2n#1)"
sin(��/2#N�/4)��

���
(i!N/4#1/2)

(n!N/4#1/2)(q!n)!n!
,

n"0,1,2, q

Example 2. The impulse responses of the "lters of
10th and 12th orders are listed as follows.

It is obvious for the impulse responses that the 13
coe$cients of N"12 is the delayed version of
N"10. Note that c�"cos(��/2), s�"sin(��/2),
and all the coe$cients are multiplied by 256 to
obtain integers. Then the integral coe$cients of the
even order MF FHTs can be implemented by "xed
point operation without any multiplication.

Eq. (34) shows the symmetry of the coe$cients.
Since h(2n)"!h(N!2n) and the odd-indexed
coe$cients are equal to zero except the central
coe$cient h(N/2), the frequency response can be
written in the following way:

H(e��)"e�����[cos(��/2)#sin(��/2)HI (e��)]. (38)

On the other hand, the desired frequency response
H

�
(e��) given in Eq. (2) can be expressed as

H
�
(e��)"e�����[cos(��/2)$j sin(��/2)], (39)

where `#a is taken for �(0 and `!a for �'0.
Equating H(e��) with H

�
(e��), we conclude that

HI (e��)"�
!j for �'0,

j for �(0.
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Fig. 3. Frequency responses of 17th-order FIR MF FHT with various values of �"0.25, 0.5, 0.75, and 1.0: (a) magnitude responses,
(b) phase responses. The linear component of the phase response is removed.

That is, HI (e��) is just the Hilbert transformer. Based
on the above discussion, we conclude that the
fractional Hilbert transformer of even order

can be realized by adding an extra path and two
multipliers of cos(��/2) and sin(��/2) to the MF
Hilbert transformer [1]. This realization structure
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Fig. 4. Frequency responses of FIR MF FHT of various "lter orders 10, 14, 18, and 22 with �"0.5: (a) magnitude responses, (b) phase
responses.

of the fractional Hilbert transformer shown is in
Fig. 2. Table 1 gives a summary of the impulse
responses.

4. Design examples

In this section, we demonstrate some examples of
the proposed maximally #at fractional Hilbert
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Fig. 5. Frequency responses of 18th-order FIR MF FHT with various values of �"0.25, 0.5, 0.75, and 1.0: (a) magnitude responses,
(b) phase responses.

transformers for various parameters and orders.
The "lter is applied to a rectangle function. This
can be regarded as an example of the 1-D edge
detection.

Example 3. In this example, a set of maximally #at
fractional Hilbert transformers of 17th order are
designed. The fractional factors � are 0.25, 0.5, 0.75,
and 1 for each "lter. Figs. 3a and b show the
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Fig. 6. Frequency responses of FIR MF FHT of various orders with �"0.5: (a) magnitude responses, (b) phase responses.

magnitude and the phase responses, respectively.
The linear component of the phase responses is
removed in the following manner:

�I (�)"�(�)#
N�
2

,

where �I (�) and �(�) are the modi"ed phase re-
sponse and the actual phase response, respectively.
N is the "lter order and equal to 17 in this example.
There is a bump of the magnitude response around
�"0 for �"0.25. For �'0.5, bumps occur
around �"�.
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Fig. 7. Fractional Hilbert transform of a discrete rectangular function performed by discrete-time Fourier transform proposed in [13]
for various values of �. The results are normalized to obtain maximal output levels of 1.5.

Example 4. The "lters of di!erent orders are
designed with �"0.5 in this example. The
orders are 11, 13, 15, and 17. Fig. 4a shows
the magnitude responses and Fig. 4b shows the
normalized phase responses. The bandwidth
is increased if the "lter order is increased.
Note that the curves of magnitude divide into
two groups. The magnitude response of N"11 is

close to that of N"15. Similarity occurs for
N"13 and 17. However, all the phase responses
are similar.

Example 5. In this example, a set of maximally #at
fractional Hilbert transformers of 18th order are
designed. The fractional factors � are 0.25, 0.5, 0.75,
and 1 for each "lter. Figs. 5a and b show the
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Fig. 8. Fractional Hilbert transform of a discrete rectangular function performed by MF FIR "lter of 17th order for various values of �.
The results are normalized to obtain maximal output levels of 1.5.

magnitude and phase responses, respectively. There
is no bump on the magnitude response.

Example 6. The "lters of di!erent orders
are designed with �"0.5 in this example.
The orders are 10, 14, 18, and 22. Fig. 6a
shows the magnitude responses and Fig. 6b
shows the normalized phase responses. The
bandwidth is increased if the "lter order
is increased. Unlike the frequency responses

of the odd-orderMFFHTs, there is no obvious gap
for the magnitude curves.

Example 7. In this example, the proposed MF
FHTs are used to detect the edges for 1-D signals.
Both even- and odd-order "lters are used. This test
signal is a discrete rectangular function given by

x(n)"�
1 for 108)n)147,

0 for 0)n)107 or 148)n)255.
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Fig. 10. Choice of the threshold for the 2-D edge detection. x
�
is

the pixel value with the second largest pixel number. The thre-
shold is computed by (x

�
#x

���
)/2.

Fig. 9. Fractional Hilbert transform of a discrete rectangle function performed by MF FIR "lter of 18th order for various values of �.
The results are normalized to obtain maximal output levels of 1.5.

That is, the width of x(n) is equal to 40 points and
its length is 256 points. This signal is also used for
demonstration in [8,13]. Fig. 7 shows the magni-
tude responses of the fractional Hilbert transform
of the test signal where the transform is performed
based on the discrete-time Fourier transform pro-
posed in [13].

Fig. 8 shows the magnitude responses of the
"ltering outputs when the test signal is "ltered by
the MF FHT of the 17th order. In comparison
with the transform result shown in Fig. 7,
it is obvious that the outputs obtained by
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Fig. 11. Fractional Hilbert transform of a 2-D rectangle function. The test image is "ltered by the proposed MF FHT of 10th order for
various values of �

�
and �

	
.

the proposed FIR "lter decay faster than the
outputs of the test image. That is to say, the
"lter output may detect the edges more precisely. In
Fig. 9 the magnitude responses of the "ltering out-
puts are shown if the test signal is "ltered by the
MF FHT of the 18th order. The rising edges are

emphasized for 0(�(1, whereas the falling
edges are emphasized for 1(�(2. If �"1,
both types of the edges are equally emphasized.
Note that the overshoots occur at the edges for
�"0 in Fig. 8. This inconsistency is overcome if the
"lter order is even.
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Fig. 12. Fractional Hilbert transform of a digital image consisted of a circular region with a rectangle hole. The test image is "ltered by
the proposed MF FHT of 10th order for various values of �

�
and �

	
.

Example 8. In this example, we apply the proposed
FIR maximally #at Hilbert transformer to detect
the edges for the digital images. The 10th-order
"lter with di!erent � is used for "ltering. The edges
are detected at the (m, n) point if the following

condition is satis"ed

�h�� (m, n)��#�h�	 (m, n)��'t,

where h�� (m, n) and h�	 (m, n) are the outputs of the
FIR FHT with parameter �

�
and in the horizontal
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Fig. 13. Fractional Hilbert transform of the digital image `Lenaa. The original image is binary threshold and then "ltered by the
proposed MF FHT of 10th order for various combinations of �

�
and �

	
.

direction and �
	

in the vertical direction, re-
spectively. The computation of the threshold
t which is based on the histogram of �h�� (m, n)��
#�h�	 (m, n)��. Suppose x

�
is the pixel value

with the second largest pixel number, the threshold

is computed by

t"
x
�
#x

���
2

.

This choice of t is demonstrated by Fig. 10.
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hI (2n)"
(N/2!0)(N/2!2)�2�[N/2!(2n!2)][(2n#2)!N/2]�2�(N!1!N/2)

(2n!0)(2n!2)�2�[2n!(2n!2)][(2n#2)!2n]�2�(N!1!2n)

"

(!1)���������
���

(2i!N/2)

2�������(2n!N/2)((N!1)/2!n)!n!
"

(!1)���������
���

(i!N/4)

(n!N/4)((N!1)/2!n)!n!

Fig. 11 shows the results of a test image "ltered
by di!erent �

�
and �

	
. The foreground of the test

image is a rectangle. Like the conditions discussed
in Example 7, the rising edges in the horizontal
direction are detected for 0(�

�
(1. The falling

edges in the horizontal direction are emphasized for
1(�

�
(2. Both edges are detected if �

�
"1. The

edges in the vertical can be selectively detected
while suitable �

	
are chosen.

Fig. 12 shows the detected edges in another
digital image. The test image is a circular region
with a rectangular hole. Both the rising edges and
the falling edges are precisely located.

For edge detection of a natural images, we
choose the image `Lenaa for demonstration. Fig. 13
shows the original image together with the "ltered
images. The original image is a binary threshold by
the moment-preserving thresholding [17] and nor-
malized between 0 and 1 before "ltering by the
proposed MF FHT of the 10th order. For di!erent
choice of �

�
and �

	
, di!erent edges are detected.

5. Conclusions

In this paper, the design of the maximally #at
FIR fractional Hilbert transformers is proposed.
The impulse responses are solved analytically for
both even- and odd-order "lter. Although the im-
pulse responses of the MF FHTs cannot be ex-
pressed in "xed-point binary number exactly, the
MF FHT can be implemented e$ciently where
the coe$cients are simple rational numbers and
can be expressed in sum of power-of-two based on
the discussions and examples in Sections 3 and 4.
Therefore, the "lter coe$cients can be implemented
by add and shift operations after suitable scaling.
Two multiplications are needed at most. Although
the impulse responses of the (4p!2)th and 4pth
order are derived separately, the analytical results
indicate that these two cases are actually identical.

The 4pth-order FIR maximally #at fractional
Hilbert transformers are delayed versions of the
(4p!2)th-order ones. Based on Eqs. (38) and (39),
the even-order MF FIR FHTs can be synthesized
by classical Hilbert transformers.

E$cient hardware realization structures are ob-
tained for the maximally #at fractional Hilbert
transformers. The structures of the odd-order "lters
are derived based on symmetric properties of the
coe$cients. This structure reduces half of the multi-
pliers necessary for implementation. The even-or-
der fractional Hilbert transformers are realized by
putting one extra path and two multipliers on the
classical Hilbert transformers.

Appendix

Derivation of Eqs. (13), (14) and (33): According to
the equivalent matrix form of Eq. (13), the solution
can be expressed by

hI (2n)"detA
�
/detA, n"0,1,2, (N!1)/2

based on Cramer's rule [10] where

A"�
1 1 1 2 1

0 2 4 2 (N!1)

0 2� 4� 2 (N!1)�

� � � � �

0 2������� 4������� 2 (N!1)��������
and A

�
are formed by replacing the nth column of

A with the column vector of

(1,N/2, (N/2)�,2, (N/2)�������)�.

Since both of detA and detA
�
are Vandermonde

determinants [17], it is well known that
detA"�

�
�

(z
�
!z

�
) and detA

�
"�

�
�

(z�
�
!z�

�
),

where z
�
"2i for i"0,1,2, (N!1)/2, z�

�
"2i for

i"0,1,2, n!1, n#1,2, (N!1)/2, and z�
�
"

N/2. Therefore, we obtain
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and

h(2n)"hI (2n)(!1)� cos�

"

k
	
cos�

(n!N/4)((N!1)/2!n)!n!
,

where k
	
is expressed in Eq. (15).

Based on the similar formulation and manipula-
tion, Eqs. (14) and (33) are obtained.
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