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Abstract: The paper deals with the minimax design of two-channel infinite impulse response
(IIR) QMF banks with arbitrary group delay, for which the IR analysis filters and the resulting
filter bank possess the frequency response optimal in the minimax (L) sense. Utilising a lattice
structure for the denominators of the IIR analysis filters, a design technique is presented based on
an approximation scheme and a weighted least-squares (WLS) algorithm, previously developed by
one of the authors for solving the resulting design problem that is basically a nonlinear
optimisation problem. During the design process, this technique finds the tap coefficients for
the numerator and the reflection coefficients for the denominator of the prototype IIR analysis
filter simultaneously. The stability of the designed prototype 1IR analysis filter is ensured by
incorporating an efficient stabilisation procedure to make all of the refiection coefficient values
fall between —1 and +1. Computer simulations show the effectiveness of the proposed design

technique.

1 Introduction

Quadrature mirror filter (QMF) banks have been widely
used in the areas of subband coding of speech signals [1],
communication systems [2], short-time spectral analysis
[3] and subband coding of image signals [4]. In these
applications, a QMF bank is used to decompose a signal
into subbands and the subband signals in the analysis
system are decimated by an integer which is equal to the
number of subbands. It is known that two-channel QMF
banks can be easily employed for constructing M-channel
QMF banks based on a tree structure. Hence, it is worth
exploiting the design problem of two-channel QMF banks.

In general, the overall system delay of a linear-phase
finite impulse response (LP-FIR) filter bank is totally
determined by the lengths of the FIR filters used, although
LP-FIR filter banks have been widely considered in the
literature [5-9]. Therefore the inherent long system delay
caused by using the two-channel LP-FIR filter banks,
designed by using the techniques of [5-9], may make the
overall tree-structure system impractical. However, the
overall system delay of a tree-structure filter bank can be
significantly reduced by imposing a low delay on the
splitting stages located deep inside the tree. .

Many techniques have been presented for designing two-
channel low-delay FIR filter banks [10, 11]. An FIR filter
bank with low delay and filter length N has a system delay
of k;, which is less than N — 1 [9]. The time-domain
technique of [10] can design an FIR filter bank with an
adjustable delay. Two techniques have been presented in
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[11] for designing two-channel low-delay FIR filter banks
optimally in the L, sense. Nevertheless, an IIR filter
requires a lower order than an FIR filter under the same
stopband energy. It is thus expected that QMF banks with
IR filters will require less computational complexity than
QMF banks with FIR filters under the same stopband
energy for the analysis and synthesis filters, for example,
the authors of [12, 13] have shown that IIR filters can have
computational advantages over FIR filters when used in a
QMF configuration for image compression.

Several design results for IR filter banks optimal in the
least-squares (L) sense have been reported in [14-19].
However, these IIR filter banks are designed based on the
linear-phase property imposed on the analysis and synth-
esis filters. Although designing a QMF bank with a
frequency-response error minimised in the L, sense is a
popular task, the peak reconstruction error of the resulting
QMF bank may not be as small as possible. Moreover, it is
known that designing filters with a minimax response
results in the advantage of a smaller error ripple over the
least-squares response at the same filter order. Neverthe-
less, there are practically no papers in the literature
concerning the minimax design of IIR QMF banks with
arbitrary group delay.

In this paper, we consider the optimal design of two-
channel [IR QMF banks with arbitrary group delay under
the minimax (L) error criteria. Utilising a lattice structure
for the denominators of the IIR analysis filters, a design
technique based on an approximation scheme and the Lim—
Lee—Chen—Yang (LLCY) WLS algorithm developed in
[20] is presented for efficiently solving the resulting
design problem that is basically a nonlinear optimisation
problem. During the design process, this technique finds
the tap coefficients for the numerator and the reflection
coefficients for the denominator of the prototype IIR
analysis filter Hy(z) simultaneously. It ensures the stability
of the designed prototype IIR analysis filters by incorpor-
ating an efficient stabilisation procedure to make the
magnitude of each reflection coefficient within —1 and
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+1. Although the IIR QMF bank designed by using the
proposed technique is not a perfect reconstruction filter
bank, simulation results show that it outperforms the
existing FIR QMF banks in several aspects, namely, peak
stopband ripple and the peak variation of group delay in
Hy(z), peak reconstruction error and the peak variation of
group delay in the resulting IIR QMF bank and the peak
variation of the filter-bank response.

2 Two-channel QMF banks with arbitrary group
delay

Consider the two-channel filter bank with a basic structure
shown in Fig. 1. Hy(z) and H,(z) designate the low-pass
and high-pass analysis filters, respectively, and Fy(z) and
Fi(z) designate the low-pass and high-pass synthesis
filters, respectively. It is easy to show that the input-
output relationship in the Z transform is given by

) = 5 H @R + B EFEXE)

1
+ 5 H(=2)Fo(2) + Hi (=R @K (=2) (1)

The first term of eqn. 1 represents a linear shift-invariant
system response, which is the desired signal translation
from x(n) to %(n), and the second term represents the
aliasing error due to the change of sampling rate in the
QMF bank. Setting the synthesis filters Fy(z) =2H(—z)
and F(z) = —2Hy(—z) eliminates the aliasing term. As the
mirror-image symmetry about the frequency w=m/2
exists between Hy(z) and H,(z), we have Hy(z) = H (—z).
Hence, eqn. 1 becomes

X@) = Hy@Hy(2) — H(-DHy(~-2X @) ()
Letting z=e’ into eqn. 2, we obtain
X(e) = [H(”) ~ H{“ X E) ()

Let 7(e’”) denote the frequency response of the QMF
bank. Eqn. 3 reveals that producing a reconstructed
signal X(n) that is a delayed replica of x(n) requires

T(e¥°) = H3(e!®) — H2(e'@t™) =7 forall o (4)

where g, is the system delay of the QMF bank. This
imposes constraints not only that Hy(z) should be an
ideal low-pass filter, but also that its behaviour for all w
should satisfy the condition given in eqn. 4. Therefore
Hy(z) is generally called the low-pass prototype filter for
the QMF bank.

3 Formulation of the design problem

Here, we consider the minimax design of the two-channel
QMF banks, as shown in Fig. 1. Let the low-pass prototype
filter be an IIR filter with order M/N (i.e. M zeros and N
poles) and transfer function Hy(z) =A(z)/Bx(z), where
the numerator A(z) is an Mth-order polynomial with tap
coefficient vector A =[ag, ay,...,ay]", BrMz) is an Nth-

Fig. 1 Bvo-channel QMF bank
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Fig. 2 Lattice structure for an Nth-order FIR lattice filter

order FIR lattice filter with reflection coefficient vector
K=Tky, ks, ..., ky]%. The superscript T denotes the trans-
pose operation. Fig. 2 shows the system structure for Ba(z)
which can be obtained from the following recursive
formula [21]:

By(z) = Qyl2) = 1
B”(Z) = Bn—l(z) + knz_lgn—-l(z)
0,(2) = kB, 1) +27' 0,1 (2) (%)

From eqn. 4, the overall design task is to find the optimal
tap and reflection coefficients {a,,, k,} for the stable low-
pass prototype filter Hy(z), such that the condition shown in
eqn. 4 must be satisfied. Let the reconstruction error for the
QMF bank be defined as

(e) = T(e}) — e ©

For achieving the minimax design, we define the overall
error function E to be minimised as following the weighted
sum of two terms:

/2 . .
E= j W ()| e 8 — T(e) | dew

=0

+o J Wa(@)| Ho(e¥) > de> )

where Wi(w) and W,(w) are two frequency response
weighting functions used for the minimisation of the
corresponding reconstruction error and the stopband
error of Hy(z), respectively, w, is the frequency of the
stopband edge and « is the relative weight between these
two error terms. We note from eqn. 7 that the overall error
function F is a function of the fourth degree in the tap and
reflection coefficients {a,,, k,}. Therefore minimising E
directly leads to a very highly nonlinear programming
problem in addition to the stability problem for Hy(2).
Moreover, to obtain the minimax design, #1(w) and W(w)
must be appropriately chosen.

4 Proposed design technique

Here, we consider the design problem shown in eqn. 7. The
proposed design technique is based on an iterative process
to find the optimal tap and reflection coefficients for eqn. 7.
Let Sy={w;=0, wy,...,...,0x=7/2} and S,=
{ogr1 =g, Ogy2,..., 0k p=7} be two dense grids
of frequency points linearly distributed over [0, ©/2] and
[ws, 7], respectively, for evaluating the related error func-
tions. Then eqn. 7 can be rewritten as

E = Z Wl(wi)|e*jgdf0i _ T(eja;i)lz
w; €8]
o 3 W) Hye ) ®)

w; €8,
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4.1 Determination of initial guess for Hp(z)

To initiate the design process, we propose the following
procedure for determining an appropriate initial guess
HY(z) for Hy(z). According to the principle of a two-
channel QMF bank, we define a desired frequency
response D(e'”) as

e Hea/2e, for w € [0, 7 — w,]

. 1 .
D(ejw) — _\/_ze‘,l(gd/z)w’ for w :g (9)
0, for w € [wy, 7]

An FIR filter G(z) with order 2N is first designed to
optimally approximate the frequency response D(e'®),
shown by eqn. 9, using conventional least-squares (L;)
error criteria. Let the resulting filter coefficients be given
by {hg, hy,...,hon}. Through the use of the balanced
model reduction algorithm presented in [22], we find an
IIR filter with order N/N from G(z). Assume that the IIR
filter has denominator C(z) with coefficients {co,
C15...,CN}, then, the initial lattice system B?\;(z) with
reflection coefficients {k%, A3,..., 4%} corresponding to
C(2) can be found, since there exists a one-to-one corre-
spondence between {cq, ¢|,...,cy} and {k(l), 5,. ..,k?v}
[23]. Finally, the best L, solution for the corresponding
initial numerator 4°(z) can be obtained by solving the
following optimisation problem:

) |
B(el)
for all € [0, @ — w,] U g Ulw,, ] (10)

Minimise | D(e?”) —

For evaluating the related error function given by expr. 10,
we again take a set of discrete frequency points linearly
distributed over S=[0,7—w,)Un/2U][w,, n]. Let
SdZ{Cl)[, W2,...,Wp=T — Wy, (,()p+1:7[/2, Wp.2=
Wgy...,Wap =7} be the dense grid of frequency
points, and U be a complex (2P+ 1) x (M + 1) matrix
with its (m, n)th element given by

e n(n — 1)

U(m,n) = B o)

A<m<2P+1,1<n<M+1

11

and d be a complex (2P+1)x 1 vector with its mth
element given by

d(m) = D(ein), 1 <m <2P+1 (12)

Then, the initial coefficient vector A° =[al, d?, ..., ab]" of
A%z) optimal in the L, sense for expr. 10 can be found by
minimising |UA° — d|>=(UA®° — d)*(UA® — d), where
the superscript H denotes the complex conjugate transpose.
Clearly, this leads to the optimal solution given by

A°=[Re(0))" Re(V) + (Im(U))" Im(1)] ™"
x [(Re(D))" Re(d) + (Im(V))” Im(d)]

where Re(X) and Im(X) represent the real and imaginary
parts of the matrix X, respectively. After finding the
appropriate initial guess Hy(z) =A4°(z)/BX(z), we present
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an iterative procedure step by step for computing A(z) and
Bn(z) during the design process.

4.2 lterative procedure

The required initial W;(w) and W,(w) are both set to the
identity matrices with appropriate sizes, respectively.

Step 1: At the Ith iteration, the gradient matrices
H,=[VT'(e)] for w;eS, and H,=[VH\(e™)] for
w; €85, are computed, where V represents the gradient
operator [d/dky, 0/0k,,...,3/0ky, 0/dag, 9/dai,...,
8/0ay). Accordingly, H, and Hj, are given by

H, =
[ 8T (eion) aT!(edory  aT!(ed1) aT! (el T
ok, o oky day o 0ay,
8T (e)2) aT!(ei®2)  aT!(eiw2) AT (el2)
ok, o oky da, o day,
AT (eiox) oT!(elox)  3T!(eix) aT!(elox)
L 3k1 o BkN Bal o i)aN _
= 3H(l)(ejw1(+1) aH([)(eij+l)
ok, o oky
dH ] (e1@x+2) QH} (ed¥x+2)
H, = ok, o oky
P H(l) (ej‘”K+P) BH(I, (e.imK+P)
L oky o ey
aHé(eijH) 3H(1)(ejwk+1) =
3a; e sy
3Hé(eij+z) 3H(I) (ejwk+2)
day o day,
aH(l)(e.in+P) 8Hé(ej‘”'(+1’)
day, o day

We have derived the following equations for computing
these two gradient matrices:

AT A(HY(e™)) — (Hi(X ™))
da o da

m m

1 adl(ei)
Bl (ei)  a,
1
Bé\/ (ej(ﬂ’i"'"))

= 2H(e)

— 2H} (i@t

8A1(Cj(wi+n))
X7
oa,

m
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for w;€S;; m=0,1,....M

T () AHU™)) — (Hye@+™))]
ok o ok

n n

A'(e*) 9Bl (e))
By (ei)® ok,

Al(el@it)
(Bjy(el@r+m)y?

= —2H}(e)

+ 2H} (¥ @)y

§ OBl (et
ok,
for w;eS;; n=1,2,...,N
BHy (@) 1 adl(ei™)
da,  Bi(el®) da,

for w;€8,; m=0,1,..

M

i

and
dH(el)  —Al(e)) 3Bl (e)
ok,  (BL(ei))? ok,
for w; €8, n=1,2,...,N. (13)

Step 2: Use a linearisation scheme to approximate
the frequency response error
E'= ¥ Wiw)le s — el ?
; €5)
+o 3 W) | Ho(@ ) 2
w, €S,
due to a perturbation in the coefficient vectors in the linear
subspace spanned by the gradient matrices H, and H,. That
is, the approximation error given by
Ey= ¥ Wi@)le s —T'(el) — VI
w; €S
+o Y W) H{E™) + VHi“w*  (14)
w; €S,
is computed, where the vector v=[AK, AA]l=
[Aky, Aky,..., Aky, Aag, Aay,...,Aay]" contains the
increments of the independent coefficients to be found.
Then solve the optimisation problem of eqn. 14 to obtain
the increment coefficient vector v. Let R, be a complex
vector with size K x 1 and the ith element given by
R\(i) = &% — T(e!*), for w; € S;, and R, be a complex
vector with size Px 1 and the ith element given by
Ry(i) = —H{(&¥”*%), for w;,x€S>. Then, it is easy to
show that the optimal solution v for eqn. 14 is given by
v = {[(Re(H,))" W, Re(H,) + (Im(H )) W, Im(H )]
+ o[(Re(H,,))" Wy Re(H,,) + (Im(H )" W, Im(H,)]} ™"
x {[(Re(H,))" W, Re(Ry) + (Im(H )" W, Im(R, )]
+ al(Re(H)))" W, Re(Ry) + (Im(H,,))T W, Im(R,)])
(15)
where W, =diag(W\(w)), Wi(wy), ..., Wi(wg) and

W, =diag(Wa(wi1), Wawki2), -, Wawk 4 p)). diag(-)
denotes a diagonal matrix.

Step 3: Perform a line search by using the Nelder-Meade

simplex algorithm of [24] to find the best step size ¢ with

0 <t < 1 to update the numerator and denominator of H}(z)

such that the following cost function reaches its minimum:
Y Wi(wpeTse — T (el 2

w; €85 :

o Y Wyw) Hy ™) * (16)

; €5,
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subject to the constraints of max|k/ +tAk;| < kpay, j=1,
2,...,N, where H f,“(e”") has tap and reflection coefficient
vectors given b?/ AT =[ah + tAay, d\ +tAa,y, ..., d+
thay)" and KV =[k{ + Ak, K4 tAk,, . . . kk+ tAky)T,
respectively, and 7'*'(e*) is the corresponding filter bank
response. Moreover, k.. is a preset maximal absolute
value and must be less than 1 for the reflection coefficients
in order to ensure the stability of the designed IIR QMF
bank.

Step 4: Compute the overall error function of eqn. 8
corresponding to H5 '(e’”) and T*'(e’), which is in
fact given by expr. 16 and denoted by £ s

Step 5: Compute the ratio |E! — E™1|/E’ If this ratio is
less than a preset positive number ¢, then go to step 6.
Otherwise, we continue this procedure and go to step 1.

Step 6: Let Max(V,) and Min(¥,) be the maximum and
minimum of |e78% — T 1(eJ®)| over all the extreme
frequencies for ;€ S, respectively, and Magio) and
Min(¥;) be the maximum and minimum of |Hg (e/)]
over all the extreme frequencies for w; € S,, respectively. If

all of the following stopping criteria:
Max(V,) — Min(V,) -

Max(V,)  — !
Max(¥,) — Min(V,)
s — S K2

Max(¥,)

are satisfied, then terminate the design process. Otherwise,
go to step 7.

Step 7: Adjust W and W, by using the LLCY algorithm of
[20].
Step 7.1: If the stopping criterion

— Min(V.

Max(V,) — Min(V,) <,
Max(V,)
is not satisfied, then construct the envelope function F,(w)
of |e7 8@ — TH(ed®)| for w €[0,n/2] Compute the
updating function v;(w) as follows:
K{F, (0))"?

> W@ F ()}

w; €5,

vi(w) =

and update Wij(w) by computing Wi(w)vi(w) and the
corresponding weighting matrix W1.

Step 7.2: If the stopping criterion
Max(¥,) — Min(V;)
Max(V,)

is not satisfied, then construct the envelope function Fy(w)
of | Hy ' (w)| for w € [wy, 7]. Compute the updating func-
tion vy(w) as follows:

15
V() P{Fy(w)}

T Y M) Fyo)

w; €8,

and update Wh(w) by computing Wo(w)v,(w) and the
corresponding weighting matrix W,. Then, set I=1+1
and go to step 1.

4.2.1 Remarks: There are two situations where the
gradient matrices H, and H, may degenerate.

Case 1: The columns of H, and Hj are not linearly
independent. Then, the optimal solution for eqn. 14 will
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not be unique. To find an appropriate optimal solution, we
construct matrices G, and G}, by clioosing the independent
columns from H, and H,,, and a veetor-u: by choosing the
components of v corresponding to the- independent
columns. Then use G, G}, and u to replace H,, H, and v
in eqn. 14. On the other hand, if only H, (or H;) has
columns not linearly independent, then, we construct a
matrix G, (or Gj) by replacing the elements of those
columns that are not linearly independent with zero
elements from H, (or Hy). Then use G, (or G}) to replace
H, (or H,) in eqn. 14 to obtain an appropriate optimal
solution.

Case 2: At the lth iteration, the ith reflection coefficient k;
may have the absolute value equal to %,,,.. To tackle this
difficulty, we construct a vector ¥ by eliminating Ak; of the
vector v and two matrices G, and G, by eliminating. the
columns of H, and H,, corresponding to Ak;, resp y.
Then, we use the G,, G}, and u to replace H,, Hj; an,d yin
eqn. 14.

5 Design example

In this Section, simulation results are presented for illus-
tration and comparison. These simulations were performed
on a personal computer with a Pentium CPU using
MATLAB programming language. For the design example,
the spacing for two adjacent frequency grid points in [0, 7]
is set to /299, i.e. the number of frequency grid points
taken in [0, 7] is 300. The value of ¢ used for terminating
the design process is set to 102, The performance for each
of the designed filter banks is evaluated in terms of the
peak stopband ripple (PSR) and the maximal variation of
the passband group delay in Hy(e'”), the peak reconstruc-
tion error (PRE) and the maximal variation of the group
delay in T(e'”) and the maximal variation of the filter-bank
response. They are defined as

PSR = —20 loglo(m max _ | Hy(e3:) {) (dB)

max. variation of passband GD(Hy(e'®))

= max IGD(HO(ej“’f)) —524' samples

w; €[0,w,]

PRE in |T(e!”)| = 120 log,, IT(e')| (dB)

16[0(/

max. variation of GD(T(e’*))

= GD(T(e!* 1
, max |GD(T(e™)) — g, samples

max. variation of filter bank response
T(e™)|

— l e_Jgdw
w; € [0 (1:/2)}

a7

where GD(x) denotes the group delay of x and w, the
passband edge frequency of Hy(e’®). For comparison, we
also utilise the technique of [9] for the design example with
the FIR QMF bank.

Design example: We use the design specifications: the
desired group delay g, for T(z) is 11, @, and w, are 0.4%
and 0.67, respectively, M=N=28, the order of Hy(z) for
the FIR QMF bank designed by using the technique of [9]
is 25. Hence, the numbers of independent coefficients for
the IIR QMF bank designed by using the proposed tech-
nique and the FIR QMF bank designed by using the
technique of [9] are 17 and 26, respectively. Table 1
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Table 1: Significant design results for the design
example
IR QMF FIR QMF
bank bank [9]
Filter order 8/8 25
No. of coefficients 17 26
PSR, dB 27.91 22.05
Max. variation of passband 0.1035 0.1679
group delay of Hy(e')
PRE in |Tle”)}, dB 0.0357 0.1359
Max. variation of group delay 0.1578 0.3513
of Tlel?)
No. of iterations 29 7
Max. variation of filter bank 410x 1073 159 x 1072
respense
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o
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ﬁ 0
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2
o
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2-20
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-40
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Fig. 3 Magnitude response and group delay variation of Hy(z) for the
designed IIR QMF bank

a Magnitude response
b Group delay response

Table 2: Tap and reflection coefficients for the design
example

a; ki

—1.2598426 x 1072
4.8936644 x 1072
—7.5870625 x 102
3.2289560 x 1072
4,0767693 x 1072
3.3775573 x 107"
3.5931872x 107"
2.8686857 x 107"
1.0147014 x 107"

9.1739807 x 1072
8.3686351 x 107"
—4.0153005 x 107"
4.7969762 x 107"
—4.5653815 x 10~
3.4155385 x 107"
—1.6809614 x 107"
4.0305107 x 1072

0 N O A WN 2O
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shows the significant design results with ¢ =0.01 and 2 for
the designed IIR QMF bank and the FIR QMF bank

- designed by using the technique of [9], respectively. More-
over, both x; and k; are set to 0.01. The resulting tap and
reflection coefficients for the designed IIR QMF bank are
listed in Table 2. Although the number of independent
coefficients used for the IR QMF bank is only about two
thirds of that used for the FIR QMF bank, we observe from
Table 1 that the IR QMF bank designed by using the
proposed technique significantly outperforms the FIR
QMF bank presented in {9]. Fig. 3 depicts the magnitude
response and group delay, respectively, of Hy(z), for the
designed TIR QMF bank. Fig. 4 shows the magnitude
response and the group delay deviation of 7{(z). Finally,
the corresponding variation of the designed filter bank
response is also depicted in Fig. 5.

o o o
(=] o Q
n e >

magnitude response of T(z), dB
s S
o (=]
~l‘> N (=]

-0.06 T T T v

o
N
4

o
=

5

group delay deviation of T(z), samples
o

S
N
(=1

01 02 03 04 05
normalised frequency
b
Fig. 4 Magnitude response and group delay variation of T(z)

a Magnitude response
b Group delay variation

8

74

magnitude of variation of filter bank response (x10%)

01 02 0.3 04 05
normalised frequency
a
Fig. 5 Magnitude of variation of the filter-bank response

o
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In fact, the above design is the example related to the
optimal design of two-channel IR QMF banks with low
group delay.

6 Conclusion

This paper has presented a technique for the minimax
design of two-channel IIR QMF banks with arbitrary
group delay. We employ a recursive filter with a lattice
denominator to be the low-pass analysis filter of the IIR
QMEF banks. At each iteration of the proposed technique,
the core design work includes appropriately adjusting the
tap and reflection coefficients for the low-pass analysis
filter to reduce the resulting peak error and keep the
designed low-pass analysis filter stable. For the first task,
a linearisation scheme and a WLS algorithm have been
utilised to solve the resulting highly nonlinear program-
ming problem. For the second task, the stability of the
designed recursive low-pass analysis filter is ensured by
incorporating an efficient stabilisation procedure to make
all of the reflection coefficient values fall between —1 and
+1. Simulation results have shown that the proposed
technique provides very satisfactory design results in the

case of low group delay.
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