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A new mean-risk hedge ratio based on the concept of generalized semi-
variance (GSV) is proposed. The proposed mean-GSV (M-GSV) hedge
ratio is consistent with the GSV-based risk–return model developed by
Fishburn (1977), Bawa (1975, 1978), and Harlow and Rao (1989). The
M-GSV hedge ratio can also be considered an extension of the GSV-
minimizing hedge ratio considered by De Jong, De Roon, and Veld (1997)
and Lien and Tse (1998, 2000). The M-GSV hedge ratio is estimated for
Standard & Poor’s (S&P) 500 futures and compared to six other widely
used hedge ratios. Because all the hedge ratios considered are known to
converge to the minimum-variance (Johnson) hedge ratio under joint
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normality and martingale conditions, tests for normality and martingale
conditions are carried out. The empirical results indicate that the joint
normality and martingale hypotheses do not hold for the S&P 500 futures.
The M-GSV hedge ratio varies less than the GSV hedge ratio for low and
relevant levels of risk aversion. Furthermore, the M-GSV hedge ratio con-
verges to a value different from the values of the other hedge ratios for
higher values of risk aversion. © 2001 John Wiley & Sons, Inc. Jrl Fut
Mark 21: 581–598, 2001

INTRODUCTION

There is a considerable body of literature on the determination of opti-
mal hedge ratios based on different criteria. Essentially, this literature
suggests that hedge ratios can be classified as either risk-minimizing or
utility-maximizing. The risk-minimizing hedge ratios are obtained by a
specific risk measure being minimized. Various risk measures are cur-
rently being used, such as variance (see Ederington, 1979; Johnson,
1960; Myers & Thompson, 1989), the mean-Gini coefficient (see
Cheung, Kwan, & Yip, 1990; Kolb & Okunev, 1992; Lien & Luo, 1993;
Shalit, 1995), and generalized semivariance (GSV), also known as the
lower partial moment (see De Jong, De Roon, & Veld, 1997; Lien & Tse,
1998, 2000).

The mean-risk hedge ratios, however, are obtained by the maximiza-
tion of the utility function or a specific function of expected return and
risk (see Cecchetti, Cumby, & Figlewski, 1988; Howard & D’Antonio,
1984; Hsin, Kuo, & Lee, 1994; Kolb & Okunev, 1993). As with the risk-
minimizing hedge ratio, variance and the mean-Gini coefficient have
been used as risk measures in the derivation of the mean-risk hedge
ratio. However, the GSV has not been used to represent the risk in the
context of the mean-risk hedge ratio.

In this article, we suggest the use of GSV to represent risk in the
derivation of the mean-risk hedge ratio. This hedge ratio is called
the mean-GSV (M-GSV) hedge ratio. The M-GSV hedge ratio can be
considered an extension of the risk-minimizing hedge ratio (called the
GSV hedge ratio here) considered by De Jong et al. (1997) and Lien and
Tse (1998, 2000). Two important features make the GSV a suitable
alternative to other measures of risk. First, the GSV, because of its
emphasis on return below target return, is consistent with the risk
perceived by managers (see Crum, Laughhunn, & Payne, 1981; Lien &
Tse, 2000). Second, the GSV is consistent with the concept of stochastic
dominance (see Bawa, 1975, 1978; Fishburn, 1977).
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Even though the concept of GSV is consistent with the concept
of stochastic dominance, the GSV hedge ratio considered by De Jong
et al. (1997) and Lien and Tse (1998, 2000) may not be consistent with
stochastic dominance. For the GSV hedge ratio to be consistent with
stochastic dominance, it should be independent of the target return.
Because the GSV hedge ratios are usually different for different target
returns, the independence condition is not satisfied. Therefore, the
GSV hedge ratio is not consistent with the concept of stochastic
dominance. As an alternative to the GSV hedge ratio, we propose the
M-GSV hedge ratio, which is consistent with the risk–return model
developed by Fishburn (1977) and Bawa (1975, 1978) and used by
Harlow and Rao (1989) in the context of asset pricing.

This article differs from the existing literature, especially De Jong
et al. (1997) and Lien and Tse (1998, 2000), in many respects. First,
as mentioned previously, we propose a GSV-based mean-risk hedge
ratio that is consistent with the risk–return model developed by
Fishburn (1977) and Bawa (1975, 1978). Because the GSV hedge ratio
considered by De Jong et al. and Lien and Tse (1998, 2000) ignores the
expected return on the hedged portfolio, the M-GSV hedge ratio can be
considered an extension of the GSV hedge ratio. Second, we clarify an
issue regarding the consistency of the GSV hedge ratio with respect to
stochastic dominance. We show that the GSV hedge ratio, consid-
ered by De Jong et al. and Lien and Tse (1998, 2000), is not consistent
with stochastic dominance. Third, we derive a condition under which the
M-GSV hedge ratio will be the same as the minimum-variance (MV)
hedge ratio. This condition is different from the normality and martingale
conditions required for the convergence of the GSV hedge ratio to the MV
hedge ratio. Fourth, we empirically compare the M-GSV hedge ratio
with the mean-Gini coefficient hedge ratio, the Sharpe ratio-based hedge
ratio, the mean-variance hedge ratio, and the MV hedge ratio. Fifth, we
perform the normality and zero expected return (martingale) tests. It is
well known that if the spot and futures returns are jointly normal and if
the futures price follows a pure martingale process, all the hedge ratios
considered will converge to the MV hedge ratio. Therefore, these tests are
important from an empirical point of view. Finally, we estimate the semi-
variance-based hedge ratio for the Standard & Poor’s (S&P) 500 futures,
which is different from the currency futures used by De Jong et al. and the
Nikkei 225 futures analyzed by Lien and Tse (1998, 2000).1
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1Even though both the Nikkei 225 and S&P 500 futures are stock index futures, the Nikkei 225 is a
price-weighted index, whereas the S&P 500 is a value-weighted stock index. Therefore, we expect
them to behave differently.



The article is divided into five sections. The second section is devot-
ed to a literature review. In the third section, the proposed M-GSV hedge
ratio is discussed. The optimal hedge ratio is empirically estimated with
the S&P 500 futures and is compared with many different hedge ratios in
the fourth section. The last section provides a summary and concluding
comments.

EXISTING HEDGE RATIOS

In this section, we briefly review different hedge ratios that have been
proposed. To facilitate a systematic discussion of these hedge ratios, we
divide them into two broad categories: (a) risk-minimizing hedge ratios
and (b) mean-risk hedge ratios. A list of the hedge ratios is presented in
Table I for easy reference.

Risk-Minimizing Hedge Ratio

The basic concept of hedging is to combine spots and futures positions
to form a hedged portfolio that will eliminate (or reduce) fluctuations in
the value of the hedged portfolio. Specifically, consider a hedged portfo-
lio consisting of one unit of spot position and h units of futures position.
Let St and Ft denote the spot and futures prices, respectively. Then, the
profit on the so-called hedged portfolio, Rh, is given by

Rh � Rs � hRf (1)
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TABLE I

List of Different Hedge Ratios

Risk-Minimizing Hedge Ratio

Notation Risk Measure Objective Function

MV Variance Minimize (variance) risk
MEG Mean-extended-Gini coefficient (MEG) Minimize (MEG) risk
GSV Generalized semivariance (GSV) Minimize (GSV) risk

Mean-Risk Hedge Ratio

Sharpe Standard deviation Maximize Sharpe ratio
HKL Variance Maximize risk–return function
M-MEG Mean-extended-Gini-coefficient Maximize risk–return function
M-GSV Generalized semivariance (GSV) Maximize risk–return function



where Rs � St�1 � St and Rf � Ft�1 � Ft are one-period profits on spot
and futures, respectively.2 The standard risk-minimizing hedge ratio,
which is known as the MV hedge ratio, is obtained by minimization of
the variance of Rh (see Ederington, 1979; Johnson, 1960). Another risk-
minimizing hedge ratio, which is called the mean-extended-Gini (MEG)
hedge ratio, is obtained by minimization of the MEG coefficient, �v(Rh),
defined as follows (see Cheung et al., 1990; Kolb & Okunev, 1992; Lien &
Luo, 1993; Lien & Shaffer, 1999; Gregory-Allen & Shalit, 1995):

�v(Rh) � �vCov(Rh,(1 � G(Rh))
v�1) (2)

where G is the cumulative probability distribution function and v is the
risk-aversion parameter. Note that 0 � v � 1 implies risk seekers, v � 1
means risk-neutral, and v � 1 means risk-averse investors. This MEG
hedge ratio can be shown to be consistent with second-order stochastic
dominance (see Shalit & Yitzhaki, 1984, 1989; Yitzhaki, 1982, 1983).
Furthermore, Shalit (1995) showed that if the prices are jointly normally
distributed, the MEG hedge ratio will be the same as the MV hedge ratio.
Yet another risk-minimizing hedge ratio is obtained by minimization of
the following GSV (see De Jong et al., 1997; Lien & Tse, 1998, 2000):3

(3)

where G(Rh) is the probability distribution function of the return on the
hedge portfolio Rh. This hedge ratio is called the GSV hedge ratio. The
parameters d and a (which are both real numbers) represent the target
return and risk aversion, respectively. Here, the risk is defined in such a
way that the investors consider possibilities of the returns below the tar-
get return (d) as risky but not the returns above the target return. It can
be shown (see Fishburn, 1977) that a � 1 represents a risk-seeking
investor and a � 1 represents a risk-averse investor.

The GSV is consistent with the risk perceived by managers (see
Crum et al., 1981; Lien & Tse, 2000). Furthermore, as shown by

Vd,a(Rh) � �
d

��

 

(d � Rh)a  dG(Rh),  a 7 0
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2Sometimes, the return on the hedged portfolio is considered, in which case Rs � (St�1 � St)�St,
Rf � (Ft�1 � Ft)�Ft, and the hedge ratio is given by hFt�St.
3De Jong et al. (1997) and Lien and Tse (1998, 2000) computed the optimal hedge ratios by mini-
mizing the GSV given by Equation 3 for various values of a. If the values of a are restricted to posi-
tive integers, GSV is also known as the lower partial moment. Because we allow a to be any positive
real number, we prefer to call it the GSV instead of lower partial moments. Although both Fishburn
(1977) and Bawa (1978) discussed the relationships among GSV, stochastic dominance, and expect-
ed utility, Bawa restricted the value of a to positive integers, whereas Fishburn allowed a to be any
positive real value.



Fishburn (1977) and Bawa (1975, 1978), the GSV is consistent with the
concepts of stochastic dominance. Specifically, Vd,a(Rh) is consistent
with the first-order (FSD), second-order (SSD), and third-order stochas-
tic dominance (TSD) relations for a� 0, a� 1, and a� 2, respectively.4

Lien and Tse (1998) showed that if the futures and spot returns are
jointly normally distributed and if the futures price follows a pure mar-
tingale process, the GSV hedge ratio will be equal to the MV hedge ratio.

Mean-Risk Hedge Ratio

All hedge ratios, discussed under the risk-minimizing hedge ratios,
ignore the expected return aspect of the hedged portfolio. Next, we con-
sider the class of hedge ratios that incorporate both risk and expected
return in the derivation of the hedge ratios. These hedge ratios are called
mean-risk hedge ratios. One example of a mean-risk hedge ratio is the
Sharpe ratio-based hedge ratio considered by Howard and D’Antonio
(1984). This hedge ratio, which is called the Sharpe hedge ratio, is
obtained by maximization of the following risk–return function:

(4)

where i is the risk-free rate. The Sharpe hedge ratio does not explicitly
incorporate the risk-aversion parameter. A mean-risk hedge ratio that
explicitly incorporates the risk-aversion parameter was considered by
Hsin et al. (1994); the hedge ratio is obtained by maximization of the fol-
lowing risk–return function:

(5)

where is equal to Var(Rh) and A represents the risk-aversion parame-
ter. This hedge ratio is called the HKL hedge ratio. Both the Sharpe and
HKL hedge ratios will be the same as the MV hedge ratio if the futures
price follows a pure martingale process.

However, another type of mean-risk hedge ratio is obtained by maxi-
mization of the following risk–return function (see Kolb & Okunev, 1993):

U(Rh) � E(Rh) � �v(Rh) (6)

s2
h

V(E(Rh), sh; A) � E(Rh) � 0.5Ash
2

u �
E(Rh)� i
sh
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come to the discussion of the proposed M-GSV hedge ratio.



This risk–return function uses the MEG coefficient as the measure of
risk. This hedge ratio is called the M-MEG hedge ratio. It can be shown
that the M-MEG hedge ratio is consistent with SSD (see Shalit &
Yitzhaki, 1984, 1989; Yitzhaki, 1982, 1983). It is clear that if the futures
price follows a pure martingale process, the M-MEG hedge ratio will be
the same as the MEG hedge ratio. From Shalit (1995), it is clear that in
addition to the martingale property, if futures and spot prices are jointly
normally distributed, the M-MEG hedge ratio will be the same as the
MV hedge ratio.

Kolb and Okunev (1992) found that for low levels of the risk-
aversion parameter (v � 2–5), the MEG hedge ratio is close to the MV
hedge ratio, whereas for higher levels of the risk-aversion parameter, the
MEG hedge ratio is quite different from the MV hedge ratio. However,
Kolb and Okunev (1993) found that for higher levels of the risk-aversion
parameter, the M-MEG hedge ratio converges to the MV hedge ratio.

M-GSV HEDGE RATIO

In this article, we extend the GSV hedge ratio considered by De Jong
et al. (1997) and Lien and Tse (1998, 2000) to the M-GSV hedge ratio,
where the optimal hedge ratio is obtained by maximization of the follow-
ing risk–return function:

U(Rh) � E[Rh] � Vd,a(Rh) (7)

The M-GSV hedge ratio is similar to the GSV hedge ratio (Equation 3),
except that the GSV hedge ratio ignores the expected return on the
hedged portfolio. In this model, we do not use the risk-aversion parame-
ter to multiply the GSV as done in the HKL model (see Equation 5). This
is because the risk-aversion parameter is implicitly included in the defi-
nition of Vd,a(Rh), where a represents the risk aversion.

At this point, we explain the reason for extending the GSV hedge
ratio to the M-GSV hedge ratio. This has to do with the fact that for the
GSV hedge ratio to stochastically dominate all other hedge ratios, the
GSV hedge ratio should be independent of the target return d (see Bawa,
1975, 1978; Fishburn, 1977). It can be shown that, in general, the GSV
hedge ratio is not independent of the target return.5 Therefore, a better
way of using the GSV as a measure of risk is to base the hedge ratio on
the mean-semivariance rule or the risk–return model developed by
Fishburn (1977) and Bawa (1975, 1978), who provided the theoretical
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justifications for such a mean-semivariance rule. This is accomplished by
the proposed M-GSV hedge ratio, which is consistent with the
risk–return model developed by Fishburn (1977) and Bawa (1975, 1978).

The GSV hedge ratio will be the same as the M-GSV hedge ratio if
the futures price follows a pure martingale process. Furthermore, as
shown by Lien and Tse (1998), if the futures price follows a pure
martingale process and if the futures and spot returns are jointly normal,
the MV hedge ratio will be the same as the GSV hedge ratio. Because the
M-GSV and GSV hedge ratios are the same under the martingale
property, M-GSV, GSV, and MV hedge ratios will be the same if joint
normality holds in addition to the martingale property. Another condi-
tion, which does not require the normality assumption, is given in the
following proposition:

Suppose that the futures price follows a pure martingale process (i.e.,
the return on the futures is equal to zero). Furthermore, suppose that the
return on the hedged portfolio is symmetrically distributed around
the target return d. Then, the M-GSV, GSV, and MV hedge ratios will
be the same for a � 2.

As for the estimation of the M-GSV hedge ratio, there are different
methods that can be used (see Ahmadi, Sharp, & Walther, 1986; Lien &
Tse, 1998, 2000). We choose the empirical distribution-based technique
because of its simplicity and desirable small-sample property. For exam-
ple, the estimate of GSV based on the empirical distribution is unbiased
(see Ahmadi et al., 1986).

EMPIRICAL ANALYSIS

We estimate the M-GSV hedge ratio and compare it with five other
hedge ratios (see Table I) with the weekly S&P 500 futures data from
April 21, 1982 to December 27, 1991 (490 weeks of data). Data were
obtained from Datastream.

Before estimating any of the hedge ratios, we must determine
whether the futures and spot price changes are normally distributed and
whether the futures price follows a pure martingale process. The nor-
mality and pure martingale tests on the S&P 500 futures are given in
Table II. It is clear that the expected futures price change is positive and
is more than eight times its standard error. This clearly indicates that the
futures price does not follow a pure martingale process. With respect to
normality, we computed two different statistics. The Jarque–Bera test
statistics (see Jarque & Bera, 1987) are highly significant (even at the

588 Chen et al.



0.5% level) for both spot and futures price changes. The same conclu-
sion is true for the D’Agostino D statistic (D’Agostino, 1971). Therefore,
it is clear that neither normality nor the pure martingale hypothesis hold
for S&P 500 spot and futures prices. This means that for the S&P 500
futures, Sharpe, HKL, GSV, M-GSV, MEG, and M-MEG ratios are
expected to be different from the standard MV hedge ratio. Because one
of the objectives of the article is to compare the M-GSV hedge ratio with
other hedge ratios, we first discuss the estimation of the MV, Sharpe,
and HKL hedge ratios. The MV hedge ratio is equal to �0.8523. As for
the Sharpe hedge ratio, in our case it does not exist. This has to do with
the fact that the Sharpe ratio given by Equation 4 continuously increas-
es with the hedge ratio. Therefore, there is no finite optimal solution.
Actually, if we use the formula given by Howard and D’Antonio (1984,
their Equation 6), we get the hedge ratio corresponding to the minimum,
instead of the maximum, Sharpe ratio. This is because the second-order
condition is not satisfied. For our sample, the dependence of the Sharpe
ratio on the hedge ratio is shown in Figure 1. From the figure, it can be
seen that the Sharpe ratio does not have the maximum, and the zero
slope point corresponds to the minimum Sharpe ratio instead of the
maximum one. Such behavior makes the Sharpe ratio-based hedge ratio
less reliable. This is also supported by the fact that De Jong et al. (1997)
found the hedge ratio fluctuated widely (e.g., from �41.41 to 88.48 for
Japanese yen).
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TABLE II

Summary Statistics of the Spot and Futures Price Change

Statistics Spot Price Change Futures Price Change

Sample mean 0.5934 0.5928
Standard error of mean (SE) 0.0727 0.0730
Skewness �3.546 �5.023
Standardized kurtosis 41.200 68.356
Jarque–Bera test 35,683.09 97,456.85
D’Agostino D statistic �32.908 �41.879
Number of observations 490 490

Note: The standard error of the sample mean is computed with the following formula, which corrects for the serial auto-
correlation:

where denotes the lag j autocovariance. The Jarque–Bera test statistic is based on Jarque and Bera (1987) and is
asymptotically chi-square-distributed with 2 degrees of freedom. The critical values at 5 and 1% are 5.991 and 9.210,
respectively. The D’Agostino D statistic is based on D’Agostino (1971) and is asymptotically distributed as a normal N(0,1).
The critical values at 5 and 1% are 1.960 and 2.576, respectively.

g( j )

SE � B
1
T

 a

j�T�1

j��(T�1)
c1 �

0  j 0
T
dg( j)



Next, we estimate different mean-risk (HKL) hedge ratios based on
the Hsin–Kuo–Lee model (Equation 5) for different values of the risk-
aversion parameter (A). The optimal HKL hedge ratios are shown in
Figure 2. It is clear from the diagram that the optimal HKL hedge ratio
smoothly converges to the MV hedge ratio for values of A greater
than 3.0. This is expected because for high values of the risk-aversion
parameter, the expected return becomes less important and the resulting
hedge ratio will be the same as the risk-minimizing hedge ratio.
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FIGURE 1
Sharpe ratio as a function of the hedge ratio (Howard–D’Antonio model).

FIGURE 2
Optimal mean-risk hedge ratio based on the Hsin–Kuo–Lee model for

different values of risk aversion (A).



Now we turn to the estimation of the MEG- and GSV-based hedge
ratios. Before the GSV-based hedge ratios can be estimated, we need to
decide on the two parameters: the target return d and the risk-aversion
parameter a. In the empirical analysis, two different target returns d are
used. First, the target return d is set to the sample average of the S&P
500 spot price changes (which is equal to 0.5933 per week). This
choice is consistent with the empirical result obtained by Harlow and
Rao (1989). They inferred that the target return is related to the market
mean return. Alternatively, the target return d is set to zero (this is
the value used by De Jong et al., 1997). Once the value of d is fixed, the
optimal hedge ratios are calculated for a range of values of the risk-
aversion parameter a (1.25–60). Because the MEG-based hedge ratios
also depend on the risk-aversion parameter (v), these hedge ratios are
also estimated for the same range of values for the risk-aversion param-
eter v. However, even if we use the same range for a and v, a value of a
does not correspond to the same value of v; that is, v � 1 is not equiva-
lent to a � 1.6

The estimates of the MEG and GSV hedge ratios are presented in
Table III and plotted in Figure 3. The GSV hedge ratio is higher than the
MEG hedge ratio. Both the GSV and MEG hedge ratios seem to converge
to fixed but different values as the risk-aversion parameter becomes
large. The MEG hedge ratio seems to converge to a ratio that is close to
the MV hedge ratio. However, the GSV hedge ratio seems to converge to
a higher value. We discuss this issue of convergence more when we dis-
cuss the M-MEG and M-GSV hedge ratios next.

The remaining two hedge ratios, M-GSV and M-MEG hedge
ratios, are presented in Table IV for different values of the risk-aversion
parameters a and v. Figure 4 plots the two hedge ratios as well as the MV
hedge ratio (�0.8523). As before, two different values of the target
return [d � 0 and d � E(Rs)] are used. First, we compare the estimates
of M-GSV and GSV hedge ratios. As discussed earlier, for the GSV-based
models the relevant range of a is a � 2 (see Footnote 6). For this range,
the M-GSV hedge ratio varies less [�0.8562 to �0.8652 for d � E(Rs)]
than the GSV hedge ratio, which varies from �0.8699 to �0.8967.
Furthermore, the M-GSV leads to less hedging than the GSV. This
is reasonable because the sample mean of the futures price changes is
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6Because some of the most widely used assumptions regarding utility functions are either risk aver-
sion or risk aversion with decreasing absolute risk aversion, the most relevant range of values for a is
a � 2. This range also covers the FSD, SSD, and TSD relations. However, we estimated the hedge
ratios for values of a greater than 2 to see if there was any indication of the hedge ratios converging
to a fixed value and to see if there was any association between the higher values of a and higher
values of v for the MEG hedge ratio.



positive (0.5928; see Table II). Therefore, a more negative hedge
ratio means a lower expected profit on the hedged portfolio. Because the
M-GSV incorporates both expected profit and risk, the M-GSV hedge
ratio should lead to less hedging (i.e., a less negative hedge ratio) than
the GSV hedge ratio.

Another interesting observation is that both the M-GSV and M-
MEG hedge ratios are found to converge to fixed but different values as
the risk-aversion parameter becomes large. The M-MEG hedge ratio
seems to converge to a value that is close to the MV hedge ratio.
However, the M-GSV hedge ratio seems to converge to a higher value;
that is, the M-MEG hedge ratio will lead to overhedging compared to
the M-GSV hedge ratio. The convergence of the M-MEG and M-GSV
hedge ratios needs to be discussed further. Our result, which indicates
the convergence of the M-MEG hedge ratio to the MV hedge ratio, is
not universal. As mentioned before, Kolb and Okunev (1992) found the
MEG hedge ratios to converge to values different than those of the MV
hedge ratios for five different commodities (including the S&P 500
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TABLE III

Risk-Minimizing Generalized-Semivariance (GSV) and Mean-Extended-Gini
Coefficient (MEG) Hedge Ratios for Different Values of Risk-Aversion Parameters

GSV Hedge Ratio MEG Hedge Ratio

a d � E(Rs) d � 0 v Hedge Ratio

1.25 �0.8967 �0.9013 1.25 �0.9045
1.50 �0.8913 �0.8879 1.50 �0.9171
1.75 �0.8816 �0.8739 1.75 �0.9206
2.00 �0.8699 �0.8603 2.00 �0.9222
2.25 �0.8567 �0.8452 2.25 �0.9227
2.50 �0.8424 �0.8292 2.50 �0.9227
2.75 �0.8271 �0.8126 2.75 �0.9224
3.00 �0.8107 �0.7951 3.00 �0.9218
4.00 �0.7484 �0.7377 4.00 �0.9186
5.00 �0.7210 �0.7158 5.00 �0.9138
6.00 �0.7083 �0.7051 6.00 �0.9089
7.00 �0.7011 �0.6989 7.00 �0.9047
8.00 �0.6966 �0.6949 8.00 �0.9005
9.00 �0.6934 �0.6921 9.00 �0.8968

10.00 �0.6911 �0.6900 10.00 �0.8933
20.00 �0.6822 �0.6818 20.00 �0.8713
30.00 �0.6797 �0.6794 30.00 �0.8570
40.00 �0.6784 �0.6782 40.00 �0.8510
50.00 �0.6777 �0.6775 50.00 �0.8476
60.00 �0.6772 �0.6771 60.00 �0.8476

Minimum-variance (Johnson) hedge ratio �0.8523
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FIGURE 3
Risk-minimizing GSV and MEG hedge ratios for different values of risk-aversion

parameters. The GSV hedge ratio is calculated with d � E(Rs). The values for the GSV
hedge ratio are taken from the second column of Table III. Similarly, the values for the

MEG coefficient hedge ratio are taken from the fifth column of Table III. The MV
hedge ratio is equal to �0.8523.

7They consider daily data for corn, copper, German mark, gold, and S&P 500 futures for 1989.

futures).7 However, Kolb and Okunev (1993) found that the M-MEG
hedge ratio converges close to the MV hedge ratio.

As for the convergence of the M-GSV hedge ratio, the finding that
the M-GSV hedge ratio converges to a value different from the MV
hedge ratio is not surprising. The M-GSV hedge ratio is expected to be
different from the MV hedge ratio because the M-GSV hedge ratio uses
the GSV to measure the risk, whereas the MV hedge ratio uses variance
as the measure of risk. So long as these two measures of risk are differ-
ent, the two hedge ratios are expected to be different. Because the GSV
considers below target return to be risky whereas variance considers both
above and below mean return to be risky, these two risk measures are
expected to be different unless the joint normality condition or the sym-
metric distribution condition (as given in the proposition) is satisfied.
From Table II, it is clear that none of these conditions is satisfied.
Therefore, we expect the M-GSV hedge ratio to converge to values dif-
ferent from the MV hedge ratio.



SUMMARY AND CONCLUSION

In this article, we extended the GSV-minimizing hedge ratio considered
by De Jong et al. (1997) and Lien and Tse (1998, 2000) to an M-GSV
hedge ratio. This article differs from the existing work, especially by
De Jong et al. and Lien and Tse (1998, 2000), in many respects. First, we
extended the risk-minimizing hedge ratio to a risk–return hedge ratio.
This makes the M-GSV hedge ratio consistent with the risk–return model
developed by Fishburn (1977) and Bawa (1975, 1978). Second, we clari-
fied an issue regarding the consistency of the GSV hedge ratio with
respect to stochastic dominance. We showed that the GSV hedge ratio,
considered by De Jong et al. and Lien and Tse (1998, 2000), is not con-
sistent with stochastic dominance. Third, we showed that under some cir-
cumstances the assumption of symmetrical distribution is sufficient to
have the M-GSV hedge ratio converge to the standard MV hedge ratio.
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TABLE IV

M-GSV Hedge Ratio and M-MEG Hedge Ratios for Different Values
of Risk-Aversion Parameters

M-GSV Hedge Ratio M-MEG Hedge Ratio

a d � E(Rs) d � 0 v Hedge Ratio

1.25 �0.8562 �0.8562 1.25 �0.7955
1.50 �0.8652 �0.8582 1.50 �0.8600
1.75 �0.8647 �0.8548 1.75 �0.8800
2.00 �0.8591 �0.8474 2.00 �0.8887
2.25 �0.8500 �0.8368 2.25 �0.8930
2.50 �0.8383 �0.8241 2.50 �0.8957
2.75 �0.8246 �0.8095 2.75 �0.8972
3.00 �0.8092 �0.7933 3.00 �0.8978
4.00 �0.7483 �0.7376 4.00 �0.8976
5.00 �0.7210 �0.7158 5.00 �0.8953
6.00 �0.7083 �0.7051 6.00 �0.8921
7.00 �0.7011 �0.6989 7.00 �0.8894
8.00 �0.6966 �0.6949 8.00 �0.8869
9.00 �0.6934 �0.6921 9.00 �0.8848

10.00 �0.6911 �0.6900 10.00 �0.8813
20.00 �0.6822 �0.6818 20.00 �0.8615
30.00 �0.6797 �0.6794 30.00 �0.8512
40.00 �0.6784 �0.6782 40.00 �0.8476
50.00 �0.6777 �0.6775 50.00 �0.8462
60.00 �0.6772 �0.6771 60.00 �0.8462

Minimum-variance (Johnson) hedge ratio �0.8523

Note: M-GSV � mean-generalized-semivariance; M-MEG � mean-extended-Gini.



Fourth, we compared the M-GSV hedge ratio to other hedge ratios, which
include the MEG coefficient (M-MEG) hedge ratio, the Sharpe ratio-
based hedge ratio, the standard mean-variance hedge ratio, and the MV
hedge ratio. Fifth, we estimated all seven hedge ratios for the S&P 500
futures, which is different from the currency futures used by De Jong
et al. and the Nikkei 225 futures analyzed by Lien and Tse (1998, 2000).
Finally, we performed two different types of normality tests (Jarque–Bera
and D’Agostino tests) as well as the martingale hypothesis tests to see if
different hedge ratios converge to the MV hedge ratio.

We found that the S&P 500 futures and spot prices are neither
jointly nor individually normally distributed. Furthermore, the martin-
gale hypothesis does not hold, indicating that the expected futures price
change is not zero. Therefore, we conclude that the various hedge ratios
considered are different from the standard MV hedge ratio.

We found that the M-GSV hedge ratio varies less than the GSV
hedge ratio for lower and relevant levels of risk aversion. The M-GSV
hedge ratio converges to a value higher than the MV hedge ratio for large
values of risk aversion. However, the M-MEG hedge ratio converges to a
value close to the MV hedge ratio for large values of the risk aversion.
This can be explained by the fact that the M-GSV hedge ratio uses GSV
as the risk measure, unlike the MV hedge ratio, which uses variance as
the risk measure.
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FIGURE 4
M-GSV hedge ratio and M-MEG hedge ratio for different values of risk-

aversion parameters. The M-GSV hedge ratio is calculated with d � E(Rs).
The values for the GSV hedge ratio are taken from the second column of

Table IV. Similarly, the values for the M-MEG hedge ratio are taken from the
fifth column of Table IV. The MV hedge ratio is equal to �0.8523.



APPENDIX

According to the analyses of Fishburn (1977) and Bawa (1975, 1978),
for the GSV hedge ratio to stochastically dominate all other hedge ratios,
the GSV hedge ratio should have the minimum GSV for all values of the
target return d. This condition will be satisfied if the GSV hedge ratio is
independent of the target return (d). It can be shown that the derivative
of the GSV hedge ratio h* with respect to d is given by the following (see
Lien & Tse, 1998, 2000):

(A1)

where f(Rs, Rf) is the joint density function.8 Therefore, for to be
equal to zero, we need the following condition to be satisfied:

(A2)

In general, this condition is not satisfied. Therefore, in a strict sense the
GSV hedge ratio will not be consistent with the concept of stochastic
dominance relations and the expected utility model.9
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