THAM 14.3

A Low-cost Media-Processor based Real-Time MPEG-4 Video Decoder

Jin-Hau Kuo, Ja-Ling Wu, Senior Member, IEEE, Jim Shiu*, and Kan-Li Huang

Communications and Multimedia Laboratory,
Department of Computer Science and Information Engineering,
National Taiwan University, Taipei, Taiwan,
*SetaBox Technology Corp. (STC), Taipei, Taiwan

ABSTRACT

In this paper, by implementing a realistic MPEG-4 core profile decoder over the TriMediaTM DSP chip [7], we investigate a serious of important issues related to the use of a media-processor to satisfy multimedia compression and processing requirement. The realistic MPEG-4 decoder optimized implementation by this DSP chip can support resolutions up to 4CIF (720 x 576) at 30 fps. The issues we investigated include the overview of characteristics of media-processor architecture [8-15], the speedup of the MPEG-4 decoder based on the TriMediaTM DSP chip, multimedia co-processor or hardware accelerator based approaches, Very Long Instruction Word (VLIW) and Single Instruction Multiple data (SIMD) programming technique and the media-processor based solution for set-top box applications.

INTRODUCTION

Along with the high-speed development of semi-conductor technology, improvements in microprocessor architecture and performance have enabled general-purpose computer chips to process digital video, audio and graphics in recent years. But as the concept of Information Appliance (IA) has emerged, the similar functionality has shifted from the general-purpose to the so-called media-processor one. The processor is targeted to mass-produced consumer electronics devices, such as digital televisions, set-top boxes, DTV and as much qualifies as an embedded processor. Meanwhile, the progress of video compression techniques is maturing after years of efforts on development of many standard and de-facto codecs. The well-known moving picture expert group (MPEG) has worked out the newest version of video codec, MPEG-4 [1], possessing very low bit-rate and, yet acceptable quality. Recently, much research [2-6] has focused on considering the media-processor for these multimedia compression and processing requirements, such as the MPEG-4 decoder using a media-processor. The compelling reasons for it are flexibility and low-cost. A media-processor-based terminal architecture has to provide a cost effective (based on commodity pricing) execution environment for video applications because silicon resources are limited. Therefore, there are many challenges in designing and

programming media-processors.

THE HIERARCHY ACCELERATION AND THE RELATED METHODOLOGIES

Two years prior to this work, we investigated several issues centered on the MPEG-1, 2 video decoder paired with the Intel MMX instruction set [16]. Relying on our previous findings, we first investigate the issue of speeding up the MPEG-4 decoder using the *TriMediaTM DSP chip*. The steps of acceleration can be considered as a hierarchy stage shown in Fig. 1. From top to bottom are the stages of Algorithm, Instruction Set and Assembly Level, respectively. As expected, based on previous research, the inverse discrete cosine transform (IDCT) and motion compensation (MC) are the two most processing-intensive tasks of MPEG-4 video decoder (As shown in the performance profile in Fig. 2). The performance profile is obtained by porting a pure C code and non-accelerated MPEG-4 decoder over the TriMediaTM DSP chip preliminary. After that, we demonstrated how to speed up MPEG-4 video decoder according to the VLIW architecture. First, we show how to use data and instruction parallelism by VLIW to enhance the inverse discrete cosine transform (IDCT), followed by then how to speed up the motion compensation (MC) module. Thirdly, we demonstrated how operations in the MPEG-4 video decoder are also enhanced by VLIW instruction set, as well as using the cache system of TriMediaTM DSP chip to exploit data locality. The methods for speed-up IDCT can summarize as (1) Fast algorithm [17] (2) Loop unrolling to unroll IDCT source code, we can schedule this module into VLIW architecture more compactly (3) In-place matrix transpose - just transposing matrix in place to avoid the matrix transpose in IDCT module. (4) TriMediaTM SIMD instruction. The approaches to optimize the MC module we used are as (1) Loop unrolling (2) TriMediaTM SIMD instruction. By using SIMD instructions, we can do multiple motion compensation at a time. But some overheads caused by the lacks of some frequently used SIMD instruction supports by the Intel MMX & SSE instruction set reduce the performance improvement (c.f. Fig. 3). These methods conform to the concept of the hierarchy stages of acceleration.

CONCLUSION

We compared the similarities and dissimilarities of the Intel and *TriMedia*TM *DSP chip*. The drawbacks and the further possible improvement of the DSP chip are also discussed. By cooperation with the *SetaBox Technology Corp. (STC)*, we also investigated *the media-processor in set-top box application*. This includes the current and potential market, as well as making practical solutions for *set-top box* application.

REFERENCES

- [1] ISO/IEC International Standard 14496, Information Technology - Generic Coding of Audio-Visual Objects -Part 1: System, Part 2: Visual, Part 3: Audio, Part 5: Reference software, Part 6: DMIF. 2000.
- [2] Le, T.M., Nita, A., Giernalczyk, E., Denny Wong, Tuan Ho, "A low-power and scalable MPEG-4 solution for wireless communications," in IEEE Int. Conf. Consumer Electronics, 2001
- [3] Fermo, A., Sicuranza, G.L., Pahor, V., "Hardware-oriented region based algorithm for low power motion estimation," in IEEE Proceedings of the 2nd International Symposium on Image and Signal Processing and Analysis, 2001
- [4] Ramkishor, K., Gunashree, V., "Real time implementation of MPEG-4 video decoder on ARM7TDMI," in IEEE Proceedings of International Symposium on Intelligent Multimedia, Video and Speech Processing, 2001
- [5] Burleson, W., Jain, P., Venkatraman, S., "Dynamically parameterized architectures for power-aware video coding: motion estimation and DCT," in IEEE Proceedings of the 2nd International Workshop on Digital and Computational Video, 2001
- [6] "Special Issue on Multimedia Implementation," Call For Papers in IEEE Transaction on Circuits and System for Video Technology, to appear on March, 2002
 [7] Philips TriMediaTM Software Development Environment
- [7] Philips TriMedia^{IM} Software Development Environment Version 2.1.
- [8] Pol, E.J.D., Aarts, B.J.M., van Eijndhoven, J.T.J., Struik, P., Sijstermans, F.W., Tromp, M.J.A., van de Waerdt, J.W., van der Wolf, P., "TriMedia CPU64 application development environment," in IEEE Int. Conf. On Computer Design,

- 1999
- [9] Van Eijndhoven, J.T.J., Sijstermans, F.W., Vissers, K.A., Pol, E.J.D., Tromp, M.I.A., Struik, P.; Bloks, R.H.J., van der Wolf, P., Pimentel, A.D., Vranken, H.P.E., "TriMedia CPU64 architecture," in IEEE Int. Conf. On Computer Design, 1999
- [10] Equator Technologies Inc. http://www.equator.com
- [11] Texas Instrument Technologies Inc. http://www.ti.com
- [12] Intel Architecture Optimization Reference Manual
- [13] Intel Architecture MMX New Instruction Technology
- [14] Intel Architecture SSE (Katmai) New Instruction Technology
- [15] MPEG Macroblock Parsing and Pel Reconstruction on an FPGA-augmented TriMedia Processor
- [16] Yi-Shin Tung, Chia-Chiang Ho, Ja-Ling Wu, "The MMX-based IDCT and MC Algorithms for Real-Time Pure Software MPEG Decoding," ICMCS'99, Florence Italy
- [17] Y. Arai, T.Agui, and M.Nakajima, "A Fast DCT-SQ Scheme for Images", Trans. Of the IEICE, E71(11):1095, Nov 1988.

Function	Executions	Total Cycle	s (%)	I\$ Cycles	D\$ Cycles	
_CopyBlockHorVer_generic	614979	437293858	10.04	13218996	82158627	×
_transferIDCT_add_generic		371578962	8.53	59893761	8	Ħ
_CopyMBlockHorVer_generic		358546332	8.23	5648682	49444804	×
_idctcol	4643884	331471600	7.61	32027377	4685131	#
_CopyMBlock_generic	187287	268481623	6.17	17816466	58786814	×
_CopyBlock_generic	459416	188896149	4.34	4119525	66620194	×
пенсру	483967	183496477	4.21	185861	128724488	
_macroblock_p_vop	499515	181505938	4.17	57867577	29312981	
blockInter	539881	159130587	3.65	53325557	2379240	
getMUdata	1213315	143874323	3.29	86986299	5427393	
_idct_generic	586477	186495177	2.45	11282312		#
_CopyBlockHor_generic	153838	99693578	2.29	10908446	19714491	×
_CopyMBlockHor_generic	44749	99418694	2.28	3198491	15221682	×
uld inter dct	1219352	97989264	2.25	37198212	1991	#
idetrow	4643819	96552869	2.22	13489885	8	#
_find_pmv	1213398	95485144	2.19	27141888	19140813	
setMU	666648	94849024	2.18	43882182	7298152	
_nextbits_bytealigned	1861767	94245985	2.16	29383969	8	
reconstruct	492475	90302893	2.87	43219392	14766861	
_recon_comp	1752651	78946298	1.81	4831733	28541300	
_CopyBlockUer_generic	123704	76469683	1.76	2116745	18810997	×

Figure 2: The preliminary performance profile of the non-accelerated MPEG-4 decoder over the *TriMediaTM DSP chip*: The columns marked by the symbol * and # are the DSP cycles: instruction cycles and data cycles, executed by the MC and IDCT, respectively.

Algorithm level					
fast algorithm for time-consumed modules, parpilel and pipelining computing					
Instruction set level					
using the compiler tools supported by the dedicated DSP, modifing the algorithms based on the dedicated instruction set supported by the DSP					
Assembly level					
making up for the drawbacks caused by the compiler, rewriting the time-consumed modules in assembly code					

Figure 1: The hierarchy stages of acceleration and the related methodologies

Data Type : 8 bits signed or unsigned integer Operation				
Operation (customer ops)	Yes	No	Purpose	
QUADAVG	4		Unsigned byte-wise quad average	
FUNSHIFTI	4		Funnel-shift 1-byte	
FUNSHIFT2	4		Funnel-shift 2-byte	
FUNSHIFT3	4		Funnel-shift 3-byte	
DSPUQUADADDUI	4		Quad clipped add of unsigned/signed bytes	
DUALICLIPI	1		Dual-16 clip signed to signed	
QUADD		4	Unsigned byte-wise quad add (not supported by TriMedia TM DSP chip)	
QUADAVGN		1	Unsigned byte-wise quad average without add one for rounding (not supported by TriMedia TM : DSP chip)	

Figure 3: The Used Customer Operations in MC