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Abstract: The discrete cosine theorem (DCT)- 
based real-valued linear code is derived for the 
first time in the literature. A BCH-like subclass of 
DCT linear codes is also developed, for which fast 
decoding algorithms exist. It is shown that the 
DCT-based error control codes proposed in the 
paper can be viewed as a bridge to link the fields 
of source coding and channel coding. 

1 Introduction 

Discrete transforms are playing an increasingly import- 
ant role in many practical applications. The DCT 
(discrete cosine transform), since its basis set provides a 
good approximation to the eigenvectors of a class of Toe- 
plitz matrices [l], provides suboptimum methods in the 
applications of data compression by transform coding 
approach [2, 31, features extraction, which usually serves 
as a preprocessing stage in pattern recognition problems 
[l], etc. There are other branches for investigation of the 
discrete transform : for example, as indicated by Marshall 
[a], the use of error control coding for discrete signals. 

In this paper, the use of the DCT for defining a class 
of real-valued linear codes is presented. Additionally, it is 
worth mentioning that the terminology in this paper 
comes from communication theory; these codes, 
however, might have other applications, such as in an 
algorithm-based fault tolerance problem [SI. Also, we are 
going to explore the applications of the real number 
codes in future work. 

2 Preliminaries 

According to Marshall [4], and as shown in Fig. 1, the 
transmission of a discrete-time signal, i.e. a sequence of 
real numbers { x i } ,  by a real-valued (N, K) block coding 
procedure involves the following steps: 

(1) The signal {xi} is divided into blocks of K symbols 
which are then processed independently. Let the row 
vector 

x = cxo, XI, ..., Xk-11 

be a typical block and call it the information vector. 

N-tuple y, called a code vector, as shown by 
(2) The information vector x is encoded into an 

y = x - G  (1) 
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where G is a K x N matrix of rank K, called the gener- 
ator matrix. The set of all code vectors, say 9, is the row 
space of G, called the code space. Since G is a K x N 
matrix of rank K, 9 is a K-dimensional subspace of the 

encoder channel ~ndv;;~ L -  decoder I 

Fig. 1 Transmission of discrete signal 

vector space that consists of all N-tuples with real com- 
ponents. Thus, by the definition of linear code [7], 9 is a 
real-valued (N, K) linear code generated by G. 

(3) Let r be the received vector at the other end of the 
transmission channel and suppose that an unknown 
error e is introduced as 

r = y + e  (2) 

where we assume the channel noise to be random and 
additive. As is well known, for each K x N matrix G of 
rank K, there will be an (N - K) x N matrix H of rank 
N - K such that G is in the nullspace of p; i.e. matrices 
G and Hare  related by 

c * I f = o  (3) 

H is the so-called parity check matrix of 9. The syn- 
drome vector S of a received vector r is defined as 

(4) 

If e = 0, no error occurs, then 

S = r - H r = O  ( 5 )  

i.e. the syndrome vector of any code vector is 0. 
(4) After identifying the syndromes of the received 

vector r, the decoder must determine the optimal estim- 
ate of e, say e’. According to the maximum-likelihood 
decoding rule, the optimal estimate e’ is the error pattern, 
generated from the calculated syndromes, which has the 
fewest nonzero elements. Finally, the estimations y’ and 
x’ of the corresponding actual sequences are, respectively, 
obtained by 

y’ = r - e‘ 
1’ = y’ . G+ 

(6) 

(7) 
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where the matrix G+ is an N x K right inverse of G, such 
that 

G . G +  = IK (8) 

3 DCT linear codes 

As defined in Reference 1, the DCT of a data sequence 
x = [xo, xl,. . . , x k -  1] is 

N -  1 

X K =  z x . . T & )  K = 0 , 1 , 2  ,..., N - 1  (9) 
" = O  

where 

K = O  
1 

(10) 
K = 1,2, . . . , N - 1 

Tdn) = 

2N 

Theorem 1 (orthogonal property o f D C T ) :  

Writing the N equations of eqn. 9 in matrix form, one 
gets 

r xo 1 

The N x N matrix in eqn. 12 is the so-called N-point 
DCT matrix. 

Select any K rows of the N-point DCT matrix, say j o  , 
jl, . . . , jK_ as the rows of a K x N matrix G ;  i.e. 

Tj,CO) Tj,(l) " '  Tj,P - 1) 
Tj,(N - 1) 

qK-l(0) TjK-,(l) ... Tj,- ,(N - 1) 

Since G is a K x N matrix of rank K, G will generate an 
(N, K) linear code. 

Let the (N - K) x K matrix H consist of the remain- 
ing (N - K) rows, say jK , jK + . . . , jN - which are called 
parities, as its (N - K) rows. Then 

TjX(O) TjK(l)  ..' TjK(N - 1) 

qN-J0) TjN-,(l) ". TjN-,(N - 1) 

(15) 

By the orthogonal property of the rows of the DCT 
matrix (eqn. 1 l), it is easy to verify that 

G . H T = Q  

G * G ' = I ,  (16) 

Thus, by eqns. 3 and 8, one can see that matrix H i s  the 
parity check matrix of the code, and that matrix GT is the 
right inverse of generator matrix G. 
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Now we define a subclass of the above DCT linear codes 
and show how to decode it by using existing BCH decod- 
ing algorithms. It should be noticed that this BCH-like 
subclass of codes is defined directly from the class of the 
DCT linear codes, but not conventionally from a cyclic 
subclass of them. In fact, it can be shown that a signifi- 
cant cyclic subclass of the DCT linear codes does not 
exist at all. The arguments of this statement are given in 
Appendix 7.2. 

Suppose that the first d rows, i.e. 0, 1, ..., d - 1, are 
selected as parties; ie. 

BCH-like subclass of DCT linear codes 

Suppose further that the error pattern e = [ e o ,  e, ,  . . . , 
eN-l] occurs during a transmission. Then the syndrome 
vector defined by eqn. 4 will not be zero, and the entries 
of S will be 

N -  I 

By the definition of '&(.), and letting 

we will have 

1 
- . Si = A ,=o 2N 

(2r + 1)in 
e, . cos ~ 

N - l  

for i = 0, 1, 2, ..., d - 1 (18) 
Before going on, a lemma will be described. The proof of 
this lemma can be found in Reference 6, but the explicit 
expression to Ck," is not given there. Therefore the 
derivation of Ck, is also given in Appendix 7.1. 

Lemma I :  
k 

COS kw = Ck," . (COS w)" 
" = O  

where 

(0 k - n o d d  

k - n even 

Assume that actually U errors occur, or equivalently there 
are only U nonzero terms in the error pattern e = [eo, e, ,  
..., e N - J .  k t  rl,  r 2 ,  ..., rv be the locations of these 
nonzero terms. Then, by introducing Lemma 1, eqn. 18 
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will be 

1 (2r, + 1)ix 
- . Si = 1 e,, . cos ~ fi 1=1  2N 

(2r, + 1)ix " 
= 1 e,, 1 ci, I . [cos -1 2N 

" I  

(20) 
I = ,  n = O  

where Ci," is defined in Lemma 1 as eqn. 19. Let x ,  the 
error magnitude at  location rl , and X, , the error location 
number for rI , be defined as 

r; = e,, 
(2r1 + 1)x XI = cos ~ 2N 1 = 1, 2, ..., U 

Then eqn. 20 can be written using the above notation, 
and further in matrix form, 

" I  1 -.si= cI;lci,..x; fi 1x1 n = O  

=CY1 Y, " '  Y"] 
1 x, x: ' . '  

1 X" x: . t .  x: ci,i 

.[ 1 xz x: ". "'I[':] 
Thus the modified syndrome vector is 

0 ... 0 CZ.0 

0 Cz,z 0 ." 
0 0 c 3 * 3  " '  

c l , l  c 3 , 1  " '  

(21) 
Let the d x d upper triangular matrix in eqn. 21 be C, 
which is always invertible. Then 

r l  X, X: ... x;-q 

By viewing the PetersonGorenstein-Zierier algorithm 
described in Reference 7, we know that Xi, x ,  1 < i < U 
can be found by the algorith provided that 

errors. The diagram in a communication context is 
shown in Fig. 4. The generator matrix G consists of the 

r received word 

cwnpute syndromes 
S s  HTPC-1 

initialise 
4 Berlekamp algorithm 

A(x)=B(x)=l 

compute i th discrepancy 

uncorrectoble 
error 

Fig. 2 Berleknmp-Mawey algorithm 

I Forney algorithm 

&- I e end correction of error 

b i z i . 1  

Fig. 3 Forney algorithm 

v < l;] = t 
(23) 

or, in other words, the correction capacity of this code is 
t. By introducing the BerlekampMassey algorithm (Fig. 
2) and Forney algorithm (Fig. 3), one can have several 
fast decoding algorithms [7] for this subclass of DCT 
codes. 

Let us now construct a (16, 10) DCT code as an 
example which can correct all patterns of three or fewer 
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decoder 

Fig. 4 (16,lO) DCT code withfast decoding algorithm 
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last ten rows of the 16-point DCT matrix, and the parity 
check matrix H is formed by the other six rows. The 
matrix P is a diagonal matrix with the normalisation 
factorsfi, i = 0, I, .. ., 5 as its nonzero elements. The tri- 
angular matrix Cis as follows: 

0 - 1  0 1 0 
0 -3 0 

Thus, matrix f lPC- '  used for calculating syndromes 
will be 

1 .o 
1 .o 
1 .o 
1 .o 
1.0 
1 .o 
1 .o 
1 .o 
1 .o 
1 .o 
1 .o 
1 .o 
1 .o 
1 .o 
1 .o 
1 .o 

0.995 18460 
0.95694029 
0.88 I92 135 
0.77301055 
0.63439327 
0.471 39668 
0.29028457 
0.098017 16 

- 0.09801716 
- 0.29028457 
- 0.47 139668 
-0.63439327 
-0.77301055 
-0.88192135 
-0.95694029 
-0.99518460 

0.99039268 
0.9 1573477 
0.77778506 
0.59754509 
0.40245491 
0.22221494 
0.08426523 
0.00960732 
0.00960732 
0.08426523 
0.22221494 
0.40245476 
0.59754509 
0.77778506 
0.91573477 
0.99039268 

0.98562348 
0.87630355 
0.68594533 
0.46190876 
0.2553 1465 
0.10475 136 
0.0 2 44 60 7 9 
O.oOO94 1 7 3 

- 0.02446079 
-0.00094173 

-0.10475136 
- 0.2553 I465 
-0.46190876 
-0.68594533 
-0.87630355 
-0.98562348 

Some simulation results are given in Table 1. As one can 
see, the arbitrary error patterns with three or fewer 
nonzero terms can be estimated and thus corrected, 
though coupled with some small computational error. It 

Table 1 : Simulation results 

info vector: 
0.1000000.0.0000000.0.0000000.0.0000000.0.000~. 
O.OW0000.0.0000000,0.OMX)000.0.0000000.0.0000000 
error vector: (location, magnitude) 
(0.0.2oooOO) 
estimated error. (location, magnitude) 
(0.0.200000) 
estimation.: 
O.loooO00. -0.0000000. -0.0000000, -00000000, -0.0000000. 
-0.0000000, -00000000. -0.0000000. -0.0000000. -0.oooO000 

info vector 
0 200oooo. 0 0000000.0 0000000 0 0000000.0 0000000. 
0 0000000.0 0000000, 0 000oooO. 0 0000000.0 0000000 
error vector (location. magnitude) 
(2.0 8oooOO) (8.0 400000) 
estimated error: (location. magnitude) 
(2.0.799999) (8.0.40001 1 ) 
estimation : 
0.2oooO30, -0.OoooO28, -0 .~30 .0 .0000029 .0 .0000022 .  
-0.0000032, -0.oooO012.0.0000040.0.0000010. -0.0000037 

info vector: 
0.3000000. 0.0000000, 0.0000000. 0.0000000.0.0000000 
0.0000000. o.oooO000, O . M ) 0 0 0 .  00000000, 0.0000000 
error vector: (location, magnitude) 
(4.0.600000) (6.0.3OMMo) (13.0.170000) 

should be mentioned that if the error magnitude is not 
big enough, it will not be detected at all, as in the last 
case of the simulation. 

5 Conclusion 

We have defined a new class of real-valued linear codes 
and have shown that a subclass of them has a similar 
structure to the BCH code defined over finite field. The 
BCH bound on code capacity and conventional BCH 
decoding algorithms can be applied to this new subclass. 
However, there is no way to describe a nontrivial cyclic 
subclass of this linear code (a result shown in Appendix 

0.98087764 
0.83857018 
0.60494965 
0.35706016 
0. I6196999 
0.04937952 
0.00710065 
O.oooO9224 
O.oooO9224 
0.00710065 
0.04937952 
0.161 96984 
0.3570601 6 
0.60494965 
0.83857018 
0.98087764 

0.97615433 
0.80246162 
0.5335 1808 
0.27601 138 
0.10275258 
0.02327732 
0.002061 1 1 
0.00000909 

- 0.00000909 
- O.OO206111 
-0.02327732 
- 0.10275258 
-0.27601138 
- 0.5335 1808 
-0.80246162 
-0.97615427 

I 
7.2). This result violates the well-known concept that the 
BCH code should be a subclass of a cyclic code. It is a 
difference between codes over the two different fields, 
finite field and real field. 

estimated error: (location. magnitude) 
4.0599999) (6.0.300000) (1 3.0.1 7oooO) 
estimation: 
0.3000000.0.0000004. 0.0000002. -0.0000001. -0.OOOOOO3. 
-0.00oooO3.0.0000001.O.oooO001. 0.0000002.O.oooO000 

info vector 
0.4000000. 0.0000000.0.0000000.0.0000000. 0.0000000. 
o.ooooO00, 0 oooo00o. 0.0000000, 0.0000000.0.0000000 
error vector. (location, magnitude) 
(2.0.9000000) (4.0.000010) 
estimated error' (location. magnitude) 
(2.0 899929) 
estimation : 
0.3999773, -0.0000206. -0.0000153. -0.0000076. O.OoooO20, 
0.0000126.0.0000218.0oooO266, 0.oooO244.0.oooO146 

info vector: 
0.5000000. 0.0000000.0.0000000.0.oooO000. 0.0000000, 

error vector: (location. magnitude) 
(2.0.900000). (4.0.200000) (150.600000) 

estimated error' (location. magnitude) 
(2,0.899999) (4.0.200000) (15.0.600000) 
estimation : 
0 4999995, -0 0000006, -0.oooO004, -0.0000001.0.0000003. 
0.0000004.0.00oooO4.0.0000002.0.0000001.0.0000000 

00000000.0.0000000.0.0000000. 0.0000000.0.0000000 

I 
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7 Appendix 

7.1 Proof of eqn. 19 

cos K o  = Re [dK"] 

= Re [(cos o + j sin U)"] 

i = O  

For K even, say K = 2r, then 

COS K w =  1 c(-l)j 
j - 0  i = j  

2r 

r - n  

n = o  m = o  2n - 2m 
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For K odd, say K = 2r + 1, then 
r ,  

j = o  i = j  

2 r +  1 

n=o i = , - n  

x ( JCOS U)2"+ 

2r + 1 
2(r - n + m) 

2r + 1 

n = O  m = O  

By eqns. 24 and 25, Lemma 1 is proved. 

7.2 Trivial DCT linear code 
As defined in Reference 7, the cyclic subclass of a class of 
linear codes is the collection of those linear codes which 
have the cyclic shift property, and the codes in this sub- 
class are therefore called cyclic codes. 

Definition I (cyclic shgt property): For a linear code 9, if 

y = [ y 0 3 y 1 3 . . . > y N - l ] e F  
implies that the vector obtained by cyclically shifting y 
right by one digit is also a code vector; 

Y [ l ]  = CYN-1,  Y O ?  yl, I . . ?  yN-21 E 

then 9 is said to have the cyclic shift property, or, equiv- 
alently, C is a cyclic code. 

We will show here that there is only a trivial DCT 
linear code, namely the (N, N - 1) code that has row 0 as 
its parity vector, which possesses the cyclic shift property. 
This is shown by trying to find all the possible candidates 
for parity vectors that can be selected as rows of the 
parity check matrix so that the corresponding generator 
matrix defines a cyclic code. 

Let G and H be defined as in eqns. 13 and 14. By eqns. 
1 and 5, one knows that showing y = [yo, y,, ..., ~ N - 1 1  

is a code vector is equivalent to showing that there is an 
information vector x = [x,, x l ,  . . . , xN-  1] such that 

y = x . G  
K -  1 

= 1 x, . [T,"(O), Til), . . . > Tj.(N - I)] (26) 

and is also equivalent to showing that the syndrome 
vector ofy is zero; i.e. 

"=O 

s= [ S o ,  s,, ... ) SN - K - l ]  = y  ' HT = 0 

Si = 1 yn ' ?x+,(m) = 0 

or 
N- 1 

m = O  

for i = 0, 1, ..., N - K - 1 

Let p i  be the ith parity, i.e. pi = jK+i ,  then 
N -  1 

S i  = 1 y, . TJm) = 0 (27) 
l l l = O  
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Now we try to find a way of selecting parities such that 

s = [So,  s;, . . . , S N - & -  = yIl, HT = 0 (28) 
We reach the conclusion, on exploiting eqn. 28, that there 
is no way to select a significant set of panties such that 
eqn. 28 is true, and so prove that there is not a nontrivial 
cyclic subclass of the DCT linear codes. Let us now state 
some lemmas. 

Proof: For p = 0, 

Lemma 2:  

(2m + 1)pn 
2N Tp(m + 1) = TJm) . cos - pn - J(i) ’sin 

N 

prr 
N 

x sin- m,p € 2  

Proof: Ifp # 0-  

((2m + 1) + 1)pn 
2N 

Tp(m + 1) = J( i) . cos 

N 

=J($).cos (2m 2N + 1)pn ‘cos- pn 
N 

(2m + 1)prr . sin p’z 
2N N 

- sin 

= Tp(m) . cos - - 
N 

(2m + 1)px. . pn 
2N ‘ln- N x sin 

For p = 0, both sides of eqn. 29 equal &IN). Thus 
Lemma 2 holds for all m, p E 2. 

Lemma 3: 

Proof: For p # 0, 

J( 5) . cos P= p even 

- - [ -J($). cos E p odd 

TAO) peven 
-TAO) podd 

For p = 0, To(N) = To(0) = J(l/N). 

Lemma 4 ; 

N p = O  
2N 0 p z o  

N - l  1 cos 
m = O  

(2m + 1)pn = !(in pn/2N)-’  p odd 
2N p even 

N -  1 C sin 
m = O  

(2m + 1)0n 
2N 

N -  I 
= N  1 cos 

m = O  

N - 1  

m = O  2N 

For p # 0, 

(2m + 1)pn 
2N 

+ j sin 
(2m + 1)pn 

2N 

- - 1 &“ZN)(Zm+l) 

N - l  

2 cos 
m = O  

N - l  

m = O  

1 & z / Z N )  . (1 - e i O - / N ) N  

1 - &pn/N) 
- - 

p even -(= podd 

Similarly, we have 

(2m + 1)pn 
2N 

(2m + 1)pn 
2N 

N - l  

- j sin 1 cos 
m = O  

= 1 2 e - j ( ~ = / X - ”  p even 

Odd 1 - e - j ( p d N )  

1/2 (eqn. 30 + eqn. 31) 3 

= 0 for all p # 0 (2m + 1)pn 
2N 

N - I  

1 cos 
m = O  

1/2j(eqn. 30 - eqn. 31) - 
N- 1 (2m + 1)px 1 sin = o  
m = O  2N 

for p even 

Now we return to eqn 28;  we have 
N - 2  

By Lemma 2, eqn. 26 and eqn. 21, we can derive 

(2m + 2N l)p,n 1 
Since xo, xl, . . . , x K -  are K arbitrary real numbers, Si 
will be zero if and only if 

T,/N - 1) ‘ (TPi(O) - T,” 

is zero. 
(1) For pi = 0, we have TJO) - T J N )  = 0 (Lemma 3) 

and sin pin/N = 0 (eqn. 9). Therefore eqn. 32 is zero, 
which means that row 0 of the DCT matrix can be a 
candidate for panty of a cyclic code. 
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(2) For p i  # O ,  and p i  even, by Lemma 3, we can 
reduce eqn. 32 to 

(a) If j. = 0, then eqn. 32 can be further reduced to 

J 2  sin pi” 
N N ,,,=o 2N 

(2m + l ) p i n  -- 

and is zero by Lemma 4. 
(b) If j. # 0, and j ,  is even, then eqn. 32 will be 

--sin I 1 cos 
2 , p . n N - 1  (2m + 1)” .  (2m + l ) p i n  
N N ,,,=o 2N 2N 

. sin 

The summation of the product of cos and sin in the 
above equation can be transformed into two summa- 
tions of sin which are both zero by Lemma 4 since 
both j n  + p i  and j,, - p i  are even. Therefore, eqn. 32 is 
zero for this case. 

(c) If jn is odd, then, with similar reasoning, eqn. 32 
will not be zero since now j ,  + p i  and in - p i  are both 
odd. 

(3) For p i  odd, eqn. 32 is, by Lemma 3 again, 

27;;(N - 1 )  ‘ TJO) 

p . n  N - 1  (2m + l ) p , n  
- J( i) . sin + L o q n ( m )  sin 2N 

(a) If in = 0, then the first term in the above equa- 
tion is 

and the second term can be reduced to, by Lemma 4, 
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which is just equal to the first term. Thus eqn. 32 = 0. 

we can reduce eqn. 32 to 
(b) If j. # 0, and is even, then, with some effort, 

which will not be zero for all cases of j ,  and p i .  
(c) Ifj. is odd, then bothj, + p i  and j ,  - p i  are even. 

Since we have already shown that the second term is 
zero for this condition (see 2b), we can simply write 
eqn. 32 as 

2N 

which will not be zero for all cases of jn and p i .  

From the above verification, we can make the following 
conclusions : 

By (1): the (N, N - 1 )  DCT code containing only row 
0 as its parity is a cyclic code. 

By (2a) and (3a): the (N, 1 )  DCT code containing row 
1 ,  2, . . . , N - 1 as its parities is also a cyclic code. 

From (2c): we know that if a cyclic DCT code con- 
tains a nonzero even parity, then all odd rows must be 
included as parities. At the same time, from (3b): if a 
cyclic DCT code contains an odd parity, then all nonzero 
even rows must be included as parities. Therefore we 
cannot define any DCT cyclic codes, with the exception 
of the two trivial DCT cyclic codes. 
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