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~ Abstract

In this paper, we will propose a nonlinear adaptive
controller and an adaptive backstepping controiler for linear
induction motor to’ achieve speed/position tracking. A
nonlinear transformation is proposed to facilitate controller
design. Besides, the very unique end effect of the linear
inductien motor is also considered and is well taken care of
in our controller design. We also consider friction dynamics
effect and employ observer-based compensation which cope
with friction force. Stability analysis based on Lyapunov
theory is also performed to guarantee that the controller
design here is stable. Also, the computer simulations and
experiments are done to demonstrate the performance of our
various controller design.
Keyword : Adaptive Backstepping control, Motion Control,

Linear Induction motor, Friction Compensato

Nomenclature -

V, (Vo) ap{d) axis input stator voltage ;,(;,)
R(R) Primary (sscondary) resistance L,(L,)
A, (A,) a{d-)as rotor flux v, Linearspeed of the primary

I Podﬁonhf&tﬁ'irm:y M,  Primary mass

B Visoous frictioncoefficient £, Electromagnetic foroe

P Mechanical load force L, Munsl inductance

K, Fore constn(=3AL, 7/ x1,} a,=PRIL,a,=LR /L, a,=R /L
D=14, 43,p=P%, p=L,/D.c =, 1D,a, 4RLY DBl BI1,

q{d-) axis input stator current

Primary (secondary) mductance

L INTRODUCTION

Nowadays, linear induction motors(LIM) are now widely
used in . many industrial applications including
transportation, conveyor systems, actuators, material
handling, pumping of liquid metal, and sliding door closers,
etc. with satisfactory performance. The most cbvious
advantage of linear mo tor is that it has no gears and requires
no mechanical rotary -to-linear converters. The linear electric
motors can be classified into the following: D.C. motors,
induction motors, synchronous motors and stepping motors,
etc. Among these, the LIM has many advantages such as
simple structure replacement of the gear between motor and
motion devices, reduction of mechanical losses and the size
of motion devices, silence, high starting thrust force, and
easy maintenance, repairing and replacement.

For high precision motion performance, the friction problem
is one of the significant limitations.

In the early works, Yamamura has first discovered a
particular phenomenon of the end effect on LIM [1]. A
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control method, decoupling the contro! of thrust and the
attractive force of a LIM using a space vector control
mverter, was presented in P], i.e. by selecting voltage
vectors of PWM inverters appropnately.

Although the parameters of the simplified equivalent
circuit model of an. LIM can be measured by conventional
methods (no-load and locked secondary tests), due to limited
length of the machine the realization of the no-load test is
almost impossible. Thus, the applicability of conventionatl
methods for calculating the parameters of the equivalent
medel is limited. In order to measure the parameters,
application of the finite element (FE) method for
determining the parameters of a two-axis model of a
three-phase linear induction motor has been proposed in [3].
Another method is proposed by removing the secondary [4].

To resolve the unique end effect problem, speed dependent
scaling factors are introduced to the magnetizing inductance
and series resistance in the d-axis equivalent circuit of the
rotary induction motor (RIM) [5] to correct the deviation
caused by the “end effect”. On the other hand, there is a .
thrust correction coefficient introduced by [6,7] to calculate
an actual thrust to compensate for the end effect. A related
method to deal with the problem is that an external force
corresponding to the end effect is introduced into the RIM
model to provide a more accurate modeling of an LIM under
consideration of end effect as shown in [ 8]. In another work
[9], extra compensating-winding was proposed to
compensate such problem.

Although the end effect is an important issue of the LIM
control, but there are still many wotks in the literature
without considering it, such as [10-16]. In this paper, we will
take this as an important issue which can not be ignored. By
the way, for the sake of the contact area of bearing in LIM is
much larger than that of rotary induction motor (RIM), hence
the friction term cannot be neglected. When accounting for
the high speed applications, especially for the affects of the
“end effect” and the friction mentioned above, we cannot
over-emphasize the importance of “friction”.

On the other hand, for high precision motion performance,
the friction problem is one of the significant limitations.
Because friction can lead to tracking errors, limit cycles, and
undesired stickslip motion[19,22}. To modeling a suitable
friction mode] to predict and compensate for the friction, C.
Canudas de Wit has propose a LuGre model[19]. In that
model includes the Stribeck effect, hysteresis, spring-like
characteristics for stiction, and varying break-away force.
Furthermore, the adaptive scheme addressed in [20,21] is
extended to hand!e non-uniform parametric variations of the
friction force. In this paper, a nonlinear adaptive controller



with adaptive friction compensation is proposed and the
tracking performance is achieved.

1I. PROBLEM FORMULATION

We consider the following assumptions to simplify the
analysis:
(A.1) Three phases are balanced;
(A.2) The magnetic circuit is unsaturated;
(A.3) It is without end effect (we will relax this assumption
later in controller design), then the dynamics of the entire
system can be rearranged into the following more compact
form

i =-ai +a,A - Bpv4, +tc¥
i =iy Bpv, A v ak +cV,

A, =aid,

—a,A, +pv.Ay
A:d =ai; —a,k _P'Vr’lq
K (A -Af )-F -F, (n

In this paper, we try to design the speed and position
controller for the linear induction motor. All the parameters
are assumed known except the payload. However, some
knowledge about the payload structure is available, which is
expressed in terms of and we use a second-order differential
eguation as

F =My, +by+b,v, +b,vi. 2
Furthermore, the friction force F_ in (1) is modeled by the
LuGre friction model [19] with friction force variation:

a_ - iv|
ar n(v)l ®
F = (:ol+§1 +£_,’2v {4)

where [ is the friction state that physically stands for the
average deflection of the bristles between two contact surface.
The friction force parameters £, £,, £, can be physically
explained as the stiffness of bristles, damping coefficient, and
viscous coefficient, respectively. In our design, we assume
that these three parameters are unknown paositive constants. A
parameterization of r(v, ) that has been proposed to describe

the stribeck effect [19], i.e.,

&)
n(vr) =Fc +(F; _F;)e (5)
where F , F, and v, are the Coulomb friction value,
stiction force value, and the Stribeck velocity, respectively.

III. OBSERVER AND NONLINEAR ADAPTIVE
CONTROLLER D ESIGN

3.1 Analysis of mechanical load and end effect

The fundamental difference between a rotary induction
motor and a LIM is the finite length of the magnetic and
electric circuit of the LIM along the direction of the traveling
field. The open magnetic circuit causes an initiation of the
so-called longitudinal end effects [5].
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For a LIM, the end effect with the load force plus friction
effect can be represented as a function of the speed v, , which
canbe norrnally simplified into the form

F+F _Zw +My A+ E i+l :’ |)1)+g2v,
vr

=M+l +iy, v + M +bg +hy, Hi VG THE Y, ‘;’1% !
Y,

=M, +hr+by+ b L C.-EJ)-!
LA

where F, is denoted as the mechanical payload accounting
for end effect and can be expressed in a compact form as
F, =0y’ with the unknown

parameters @=[ML b, b, bz], and a known function

constant

vector Vf:[ia’ vioy! v] . The joint mass

M =M,_+M, istherefore also unknown, which leads to the

total mechanical load with motor itself as F ="V, , where
T_

O =[M § b b].

To proceed further, we introduce some additional
assumptions as shown below:

(A49) X, = +4] >0,

(A.5) The desired speed should be a bounded smooth
Sfunction with known first and second order time derivatives,
then further simplify the dynamics shown in (1) by
introducing a nonlinear coordinate transformation given as
follows[23, 17]: ]
' x =il +i;

x, = l: +4]

X, =iqlq +i,4,

x, =i A, —i, A

X =¥, ‘
Remarks: The transformation is trying to make the
secondary flux norm, the electric force and the rotor speed as
individual variables x, , x, and x,,
certainly the nonlinear transformation is not unique. Initially,
we adopt the stator voltage  inputs  as

cVy = V v, 7— 23,173, with such

transforrnatmn, then the dynamical equations shown in (1)
can thus be transformed into the following dynamic model:
X, =-2ax +2a,x, +iay

Ny

respectively, and

X ==2a,x + 2a,x,
¥ =ay% +ayx, —(q +a)x+ prx,
%, =—px5x3—[3px5x2 —(a +a )x, +\/ZV

Mx; = K x, - Zb x5 €0I+Clnlti;l) (6)

To control the system ( 6), we develop the position controller



to achieve the goal p_— p, as introduced in the following

section.
3.2 Two Nonlinear Observer Design for Friction effect

In this paper, we consider dynamic friction effect and
present it by a LuGre model. But we know the friction state
! is not measurable. In order to handle different
nonlinearities of [ present in the system dynamics, we
employ two nonlinear observers to estimate the
immeasurable state [ and replace [ with its estimates io

and fl [20,21], of which the dynamics are respectively given
by
dl =y — |xs] 5

I+

a7 oax)’ o

di ___Ixl;

a5 (x) 7 7

where 77, , 1, are compensation terms that are yet to be

determined in later design. The corresponding observation
errors can be computed as

£=_ |x5|i'

& a0
d_fl__{X[

dr n(x) *h

where 170 =I—I‘(J and fl = 1—11 are estimation errors,
3.3 Adaptive Position Controller with Friction
Compensation Design
Now, we introduce another state
X =P, &)
to facilitate investigation of the development of a position
controller. Then, define the tracking errors as follows:
e,=p, —pa 2o, -
Normally, while the position tracking error is driven to zero,
the speed is also regulated to zero. Thus, we naturally define
a joint error signal § as follows:
§=¢, +ae, =e; +aeg,
where a is a positive scalar gain, and note the case with
a = 0 will be degenerated back speed tracking problem. We
can obtain the error dynamics equation as:

MS=Kx,- Zb,xs — M3, —ae) -4, 14, '(’l)

=K, x, be - M, —ae,) =, (&, +1)+§,

n=0

.Based on this equation, we will propose a position tracking

controller and the following theorem summarizes the design
procedure and the resulting control effect.

In order to show the boundedness of all the parameter

estimates and the tracking errots e,,e, , we choose a

15‘)(!+l)

Lyapunov like function V, as shown below:

v, =%{MS2+e‘,2 +B2+ B + B2+ A+ + &7+ [+ 2] (10)

According to the suggested parameter adaptive laws as,
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namely,

by=-S , B=-Sy , h=-S¢ . M=-S(,-ae) ,

3 - 2 |x5 { 7
£y ==8I,, 8, =-8—>=1
4} 0 1 n(xs)
and the friction observer compensation terms are defined by:
EA
= —S = -_S
770 . h i’l(Xs)

if one designs the auxiliary signalx,, as

=_f[”20b "+ M (v, —ae )+ £l —gl’l(ﬁs‘)'—plS],

then the time derivative of the function ¥¢ becomes
V,=-pS" e, +a)%,~ By~ iy, +fgV—%, +K.S]
5| 72
-, na,;é g]"&)l 1D

Now, design the actual input

1 .
V= T[(al ta )x, + Bpxx;+ pxx,+x, - pe,~ K, S],
o)

then it apparently leads to the result that

y R sl 2 2

V, = P1 Pzeq Coris (s ] -¢ n(xs)[ =0
where p,p, >0, § .0, are posntlve constants and the
friction characteristic function n(x,) is chosen to be a

positive function, which readily implies boundedness of all
parameter estimates as well as of both signals x, andx; .
Since V', i (11) is nonpositive, we conclude that all the error
signals in V, and, in particular, x; and x,, are bounded,
which in tumn implies that x, and hence &, (from system
(6)) are both bounded. So that the estimation errors
iO,I:e L_ and all parametric error g—o,{le L. - Because
Lo, &, are unknown positive constants and l:,:l—l; s

I =I—lﬁl , the parameter estimates fo,fle L, . From the
friction dynamics in (3) and the bounded speed x,, the
bounded friction state [ is concluded, which further implies
the observer states ln, I1 are bounded. We thus conclude that
all the internal signals are kept bounded. Now, since [, is

bounded, then guarantees all signals x,, i=1,..5., are then

guaranteed to be bounded.

By the power formula, P, =a, x, x;, =3 ¥,/ , which can
be shown bounded from the above. We now show that J,
will be bounded via argument of contradiction. Say, J,
eventually grows unbounded, then V, and, hence, V will
diminish eventually. However, if I does grow unbound,
then it implies that ¥ will tend to px,x, /[, eventually.
However, from the dynamics of x, in $), we have x, and
x, grow at the same rate, which readily says that ¥ will also

grow unbounded. This obviously leads to a contradiction



and therefore /, is bounded.
Furthermore, we can show that %, , is bounded, and hence

é,and S are also bounded, which implies the convergence
of ¢, and § due to Barbalat’s Lemma. Therefore, the
control scheme with the properly designed input ¥ will drive
the output p_to the desired p, asymptotically. o
3.4 Consideration of Uncertainty Inductance

From the previous LIM dynamics, the parameters
a,,a, B, ¢ and K, depend on the inductance, but as we
know the mutual inductance is hard to identify due to its
intricate structure and undesirable end effect. In particular,

RL+RL /L R ,

a,+a 4—(———’ L Y+—LZa,,ta,t+a,
L,,, L
c:c0+0'

where & and © are uncertainty terms of (g +a,} and

variance ¢, respectively. We rewrite the dynamic equations (3)
as followings:

% =—2a, +2a,x, +2% X% )

X
X, =—2a.3, +2a.x,
X =ayx +a,%— (g +a, +o0x,+ pxx
X, =—pxx, - Bpxx, — (@, + a,, +o)x, +(c, +0')JJ€V

2
M b =X, _Zb_ﬂx"._i[..._g_lﬁi_!_l

K,7 K, K, n(x,)

S
i

=1, (12)

and design the control input

To facilitate subsequent 1nvestlgat10n, we define several
variables as follows:

G=a-a,f=f-§ ,
st oMo G G
Ky K, ! K,

where & is the estimate of «, ,é is the estimate of .

In order to show the boundedness of all the parameter
estimators and the tracking errors ¢, §, we choose a

Lyapunov like function ¥, as shown below:

V——{HSZ+e4 +d) vd?+d] +FF+ B+ E+ [+ 4@ +f4(13)

whose time derivative can be evaluated as follows .
If we employ friction observer (7) and design the parameter
adaptlve Iaws as

dy==S.d,=—St, d,=-SC, H =-S(v, +ae;)

A o xl;
a:-—q,x,, ﬁ=_e4P)S-"a’§o=_Slo’§1=_ =1
n(x,)

and the friction observer compensation terms are defined by:

Lx |
n(x;)

along with the proper design of X, as

n():_S; '71=_

2. _ . X!~
Xea =[Z.)dnx§' +H(‘.’d'aes)+ folo "En ’[(;I)ll_pls]’
= ]

then the time derivative of the Lyapunov function ¥,

becomes
V,=-pS* +eg & S ey +O)x,l]- & SL 72 - g Lz

After we substitute the properly designed input V as:

1
V= {-g(x,5) —-nsgnle,)}
Cc\/x_z

where sgn() is the sign function, then the time derivative V',
can be simplified as

=-pS - Eh-g BT (—q’:—")e4[nsg:a( e

)Iax Sl

¥ 1 is chosen to satlsfy 7 Zlg(x,Sj +k for some
k>0, then we have
b
S—Plsz— ,,(_,;,J El ,;(;s)l _plleﬂl

for some p,>0, which again implies boundedness of all

)g(X;S)} '

_H Eﬂ (%) IO él n(x,) )[T? (

internal signals and convergence of the position tracking
€Trot.

IV. ADAPTIVE BACKSTEPPING CONTROLLER
DESIGN

In the previous section, we have proposed an adaptive
controller for the LIMs, which will require acceleration
signals of the motor. Although this signal can be obtained
through numerical differencing and digital filtering, it is
more susceptible to noise. In order to avoid such problem,
we thus propose the following nonlinear backstepping
position centroller without need ofacceleration signal in this
section,

Theorem 1. Consider a linear induction motor whose

dynamics are governed by sysiem (3) under the assumptions
(A.4). Given a friction observer (7) third -time differentiable
smooth  desived  position  wajectory  p, with

P Byy By, and P, being all bounded, then the following
control input can achieve the control objective p_ — p, (i.e.

xs=p,.. will followp, asymptotically) with the control

input
A VLAY
N FER TR JAT+AL e
and



1 -
V= \[x:[gz(x)+ezwz -K,z, - p2,},

with adaptation law
© =0 =Tz, éz =é2 =Tz,

: .o x. | =
& =z ‘51 =g i(;sl) L

and the friction observer compensation levins are defined by:
L

n(x )

where T\ ,T, >0, and 2y =5, z, =x, -,

h=-2,H=

2= = x| =
o =P MS +1—G)TW ‘“iMes +5010 _él | > | ll
Kf Kf n(x;)
Jor some p  p, >0.and

g:(x) = pxyx; +Bxx @ +a —ax, _pl(fo4 +KJg)

W, =(p, +S W + T = (o, +- LW+ W
Kf Kf ' Kf
with the parameter vector®' as well as the known function
vector W 'satisfying ©'W =T W'
Proof:
Step 1. Choose a different stabilizing function¢, as follows

a, = —p,MS+T;—-C:)TW ——E—Me5+gﬂ -£ EA, I (4
f I nixs)
where © denotes the on-line parameter estimate. And,
redefine the new error variables z = §, z, = x, —a, . '
Evaluate the time denvatlve of the Lyapunov function
candidate

1
V-—ile+§-l~_u®’®+ §°+ §+ Io+—12,(15)

along the solution tra_]ectones to obtain

=K M +K i 1T 6o il rbén i 517,

)
7 I\al
G+ +Em, a)ﬂﬁo;ﬁlo sl (19
Devise the adaptat]on Iaw as
P i A A |x5| .
Q=0=-T,zW ., =-z,,, 6,=— {
ZW & ==z, §,=-7 n(x;) "
o=z, 1 SE T amn
¢ o n(x;) '

for some proper positive adaptation gain T, then (16) can be
slightly simplified as:

V4 = _leszlz +K,zz, =& ,,I(';,I) (}2 = ,,I(t;i) 112 (18)
Step 2. The time derivative of Z, is now expressed as
1, =%, —t, = —g,(x)=OTW, + .V (19)
where the function are as previously defined. Thus, we need
to select a2 Lyapunov function candidate and design ¥V to
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render its time derivative nonpositive. We want to apply the
augmented Lyapunov function candidate as:
1
Vz =V;+3212, (20)
whose time derivative is found to be
Vy=—pK M2 +K 22, +2,[-g (x)- O +fx,V]

0 nt:l)lz é-’:' n(xs)llz’ (21

The control law ¥ should be able to cancel the indefinite

term in (21). On the other hand, to deal with the unknown
parameters @, , we will try to employ the current estimates

. 1 . -
B, e, V= T[gil xXD)+OW -K,z -p,z,} (22)
X

From this resulting derivative

V, =—pK, Mz +2,8, - p,23 =&, ,,l(x;l) élnt(l;,l mLi? (23)
in order to cancel the last term in (19), we modify the
Lyapunov function as below:

v, =V +%z§+1©§@1 : (24)

and the time derivative of ¥, hence is

Vo =-PR M+ W, +—-8) -6 BB -5 57 29)
. z

Now, the term with (:)3 can be eliminated completely with
the update law
0, =8, =T,z }F, (26)
for some positive adaptation gain Fz ,which thus yields
p d
Vi=-pK; ‘MZIZ -pz; =& ,,I::J) I -¢& ,:1,)[2 (27)
which guarantees boundedness of all parameter estimates

B 6 andz, z,,and z € I*ML” . To show boundedness

of the rest of states, we can rearrange the dynamical
equations from system (6) as shown below{]7]

[ 2x,
iy

il [2a 0 2 Jx JE
X=[x]=| 0 -2a, 24 xiH 0
X

@ @ -(g+a)|lxn] |F2%

=AX +u

swhere A can be shown to be Hurwitz. After reviewing
definitions of x, and ¥, repectively, we found that the first

entry of # will be bounded because x, grows no slower than
x, if x, does grow unbounded (due to the second equation of
(6)). As aresult, u is apparently bounded, and hence X will be

bounded. This then proves the boundedness of all the states.
We note that 2 is also bounded, and hence by Barbalat’s

lemma we can conclude z, € L_ so that
llill'?zl—)O,i.e., P, p,ast oo, o

V. EXPERIMENTAL R ESULTS

In order to compare controller without friction



compensation with controller with friction, and will see that
second controller has better performance. When accounting
for the high speed applications the friction effect is more
important. In first class, the controller can’t compensate for
friction effect. In the other hand, the controller with
compensator that observed states and the position tracking
errors do converges . All these position tracking errors will
approach to zero when time goes to infinity. All the results
are shown in Fig 5.1 to Fig 5.10.

Case I: Desired Position 5sin(4) without Friction
Compensator

ty Fig 5. ty
Case II' Desired Position 3sin(4t) with Friction
Compensator

et

Fig 5.9 Frictional Observer Parameters Fig 5.10 Friction Force

VI. CONCLUSION

In this paper, we have proposed an adaptive backstepping
controlier for the linear induction motor with fifth/sixth order
nonlinear dynamic model which is control by the primary
voltage source. To cope with the uncertainty part of the linear
induction motor, i.e, friction, end effect, payload, and
inductance, we design our controller based on an appropriate
nonlinear transformation. Due to inaccessibility to the flux in
general Stability analysis based on Lyapunov theory is
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performed to guarantee the controller design is stable. Finally,
both the simulation and experimental results confirm the
effectiveness of our control design.
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