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Arbitrarily Shaped Rectilinear Module Placement
Using the Transitive Closure Graph Representation
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Abstract—In this paper, we deal with arbitrarily shaped
rectilinear module placement using the transitive closure graph
(TCG) representation. The geometric meanings of modules are
transparent to TCG as well as its induced operations, which
makes TCG an ideal representation for floorplanning/placement
with arbitrary rectilinear modules. We first partition a rectilinear
module into a set of submodules and then derive necessary and
sufficient conditions of feasible TCG for the submodules. Unlike
most previous works that process each submodule individually and
thus need to perform post processing to fix deformed rectilinear
modules, our algorithm treats a set of submodules as a whole
and thus not only can guarantee the feasibility of each perturbed
solution but also can eliminate the need for the postprocessing on
deformed modules, implying better solution quality and running
time. Experimental results show that our TCG-based algorithm
is capable of handling very complex instances; further, it is very
efficient and results in better area utilization than previous work.

Index Terms—Floorplanning, placement, transitive closure
graph.

I. INTRODUCTION

A S technology advances, design complexity is increasing
at a dramatic pace. To handle the design complexity, hi-

erarchical designs and IP modules are widely used for design
convergence. These trends make floorplanning/placement more
important than ever. Traditional placement is to determine the
locations for a set of rectangular modules such that no module
overlaps and some predefined cost metric (e.g., area, wirelength,
and/or routability) is optimized. However, to fully optimize sil-
icon area and/or wirelength, nonrectangular modules are also
used. Therefore, how to deal with the placement of arbitrarily
shaped rectilinear modules becomes an important issue in the
floorplan design.

A. Previous Work

Placement/floorplanning with rectilinear modules has been
extensively studied in the literature [2], [5]–[7], [10], [16], [20],
[21]. In [10], Lee represented an arbitrarily shaped rectilinear
module with a set of four linear profiles which describe the con-
tours of a module viewed from four sides. He minimized chip
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size by performing a bounded two-dimensional (2-D) contour
searching algorithm on the profile of a design. Due to the high
complexity for computing the profiles, the approach is limited
to the placement problem with a small number of modules.

Unlike the work in [10], most previous work partitioned a
rectilinear module into a set of rectangular submodules and op-
erated on the submodules under some constraints induced from
the original rectilinear module. There are a few existing par-
tition based approaches using well-known representations: for
example, bounded-sliceline grid (BSG) [5], [7], [16], sequence
pair [2], [6], [21], -tree [20], -tree [18], and corner block
list (CBL) [13].

Murataet al. in [14] used two sequences of module names,
namely sequence pair, to represent the geometric relations of
modules for nonslicing floorplan design. Xuet al. in [21] ex-
plored the conditions of feasible sequence pair for L-shaped
modules. After all rectangular modules and submodules were
packed, a post processing was performed to adjust misplaced
submodules to fix the shapes of rectilinear modules. However,
they can only deal with “mound-shaped” rectilinear modules.
Kang and Dai in [6] derived three necessary and sufficient con-
ditions for recovering the shapes of convex rectilinear modules.
Similarly, they also needed a post processing to retrieve the orig-
inal shapes of rectilinear modules after packing. Recently, Fu-
jiyoshi and Murata in [2] presented an approach to represent
rectilinear modules using sequence pair. They also derived a
necessary and sufficient condition for feasible sequence pair for
rectilinear modules. In particular, they augmented a constraint
graph by adding constraint edges to examine the feasibility of a
sequence pair and packed modules, without resorting to a post
processing for fixing misplaced submodules. However, the con-
straint graphs are no longer acyclic after the augmentation, re-
sulting in a longer running time for packing ( time, where

is the number of modules).
Nakatakeet al. in [15] proposed the BSG representation,

which is composed of a set of horizontal and vertical line seg-
ments. The rectangular region enclosed by four line segments is
called a room; floorplanning can be done by assigning modules
into rooms. Kang and Dai in [5] proposed a BSG-based method
to pack L-shaped, T-shaped, and soft modules by using a
stochastic approach that combines simulated annealing and a
genetic algorithm. Nakatakeet al. in [16] handled pre-placed
and rectilinear modules using BSG. To handle a rectilinear
module, they placed its submodules one by one until all
submodules were packed at the right relative positions. Then,
the placed submodules were treated as pre-placed modules.
Kang and Dai in [7] used BSG and sequence pair to solve the
topology constrained module packing for a specific class of
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rectilinear modules, namedordered convex rectilinear mod-
ules, and extended the method to handle arbitrary rectilinear
modules.

Guoet al. in [3] first proposed the -tree representation for
a left and bottom compacted placement. In a horizontal-tree,
a node denotes a module and an edge denotes the horizontal
adjacency relation of two modules. Each-tree is encoded by
a pair of strings, denoting the DFS traversal order of the tree.
Panget al. recently in [18] used the -tree representation to
handle rectilinear modules. The packing scheme has relatively
lower time complexity, but the overall approach is less flexible
and more restricted. For each rectilinear module, they need to
partition it into a set of L-shaped submodules and all modules
must be compacted.

Changet al. in [1] presented a binary tree-based representa-
tion for a left and bottom compacted placement, called-tree,
and showed its superior properties for operations. In a-tree,
a node denotes a module, the left child of a node represents the
lowest adjacent module on the right, and the right child repre-
sents the first module above and with the samecoordinate.
Wu et al. in [20] handled rectilinear modules using the-tree
representation. A rectilinear module can easily be represented
using -tree by vertically partitioning the module into a set
of rectangular submodules. However, they need to repartition a
rectilinear module whenever the rectilinear module is rotated.
Besides, they need a postprocessing to adjust submodules to
maintain the shapes of rectilinear modules.

Recently, Honget al. in [4] proposed the CBL representa-
tion for nonslicing floorplans. CBL is composed of three tuples
that denote the packing order of modules, the orientations of
modules, and the number of modules that each module covers,
respectively. Maet al. in [13] used CBL to deal with the place-
ment abutment constraint and extended the method to deal with
L- and T-shaped modules.

B. Our Contribution

In this paper, we deal with arbitrarily shaped rectilinear
module placement using the transitive closure graph (TCG)
representation. We first partition a rectilinear module into a
set of submodules and then derive necessary and sufficient
conditions of feasible TCG for the submodules. The geometric
relationship of modules/submodules is transparent to TCG
and its induced operations, implying that any violation of the
topology of a rectilinear module during perturbation can easily
be detected. Unlike most previous methods that process each
submodule individually and thus need post processing to fix
deformed rectilinear modules, our algorithm treats a set of
submodules as a whole and thus not only can guarantee the
feasibility of each perturbed solution, but also can eliminate the
need of the post processing on deformed modules, implying
better solution quality and running time. In particular, our
packing scheme takes only time, compared to
time for the sequence pair based method for arbitrarily shaped
modules presented in [2]. All these properties make TCG an
ideal representation for dealing with the floorplan/placement
design with rectilinear modules. Experimental results show that
our TCG-based algorithm is capable of handling very complex
instances; further, it is very efficient and results in better area

Fig. 1. A concave rectilinear module consisting of four zonesz , z , z , z ,
wherez = fb ; b g, z = fb g, z = fb g, andz = fb g.

utilization (average dead space 5.00 ) than the previous
work [21] (average dead space7.65 ).

The remainder of this paper is organized as follows. Section II
formulates the floorplan/placement design problem with rec-
tilinear modules. Section III reviews the TCG representation.
Section IV presents the feasible TCG and packing algorithm
for convex and some concave rectilinear modules. Section V
introduces the perturbation algorithm for rectilinear modules.
Section VI extends TCG to deal with general rectilinear mod-
ules. Experimental results are reported in Section VII, and con-
cluding remarks are given in Section VIII.

II. PRELIMINARIES

Rectilinear modules can be classified into two types:convex
rectilinear modulesandconcave rectilinear modules. A recti-
linear module is said to beconvexif, for any two points in the
module, they have a shortest Manhattan path inside the module;
the module is said to beconcave, otherwise. Besides, a module
is said to besliceableif there exists a horizontal or a vertical
slicing on the module and the slicing does not result in two sep-
arate submodules; otherwise, it isnonsliceable.

Theorem 1: All convex modules must be sliceable.
Proof: If there exists a nonsliceable convex module, we

can slice the module along vertical or horizontal boundaries and
get two separate submodules. The shortest Manhattan path be-
tween two arbitrary points, one in each submodule, must be out-
side the module, contradicting to the definition for the convex
rectilinear module.

Corollary 1: All nonsliceable modules are concave modules.
Proof: Given a nonsliceable module, there exist two sep-

arate submodules after slicing the module along horizontal or
vertical boundaries. The shortest Manhattan path for two ar-
bitrary points in the separate submodules must be outside the
module. Therefore, the nonsliceable module must be a concave
one.

In the nonsliceable module shown in Fig. 1, there exist two
separate submodulesand resulting from slicing the module
along the vertical boundaries. The shortest Manhattan path for
two arbitrary points in and is outside the module, and thus
it is a concave module.

A rectilinear module can further be partitioned into a set
of zones by serially slicing the module verti-
cally (horizontally), and each zone consists of a set of rect-
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Fig. 2. (a) A placement in a chip. (b) TCG. (c) Augmented TCG (AugmentedC and AugmentedC ).

angular submodules ordered from bottom to
top (from left to right). Fig. 1 shows a nonsliceable rectilinear
module with four zones , , , and by serially slicing
along vertical boundaries, where , ,

, and . The number labeled beside each
boundary of the module gives the length of the boundary.

Let , , , and
denote respective width, height, area, and the co-

ordinate of the bottom-left corner of the module(submodule
). A placement is an assignment of , ,

for each such that no two modules overlap and the shape of
each rectilinear module is maintained. The goal of placement
with rectilinear modules is to optimize a predefined cost metric
such as the resulting area (i.e., the minimum bounding rectangle
of ) and/or wirelength (i.e., the summation of half bounding
box of interconnections) induced by a placement.

III. REVIEW OF TCG

We first review the TCG representation presented in [11].
TCG describes the geometric relations among modules based
on two graphs, namely ahorizontal transitive closure graph

and avertical transitive closure graph , in which a node
represents a module and an edge in de-
notes that module is left to (below) module . TCG has the
following threefeasibility properties[11].

1) and are acyclic.
2) Each pair of nodes must be connected by exactly one edge

either in or in .
3) The transitive closure of is equal to

itself. The transitive closure of a directed acyclic graph
is defined as the graph , where

: there is a path from node to node in .
Fig. 2(a) shows a placement with five modules, , , , and

whose widths and heights are (2, 1), (2, 2), (2.5, 2), (1.5, 2), and
(3.5, 1.5), respectively. Fig. 2(b) shows the
corresponding to the placement of Fig. 2(a). The value associ-
ated with a node in gives the width (height) of the
corresponding module, and the edge in de-
notes the horizontal (vertical) relation ofand . Since there
exists an edge in , module is left to . Similarly,

is below since there exists an edge in .
Given a TCG, a placement can be obtained in time by

performing a well-knownlongest path algorithm[9] on TCG,
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Fig. 3. (a)–(h) Eight situations of the submodules for the rectilinear moduleb . (i) The components inC andC corresponding to the rectilinear modules shown
in (a)–(d). (j) The components inC andC corresponding to the rectilinear modules shown in (e)–(h).

where is the number of modules. To facilitate the implemen-
tation of the longest path algorithm, the two closure graphs can
be augmented as follows. For each closure graph, we introduce
two special nodes, the sourceand the sink , both with zero
weights, and construct edges from to each node with in-de-
gree equal to zero as well as from each node with out-degree
equal to zero to . (Note that the TCG augmentation is per-
formed only for packing.) Fig. 2(c) shows the augmented TCG
for the TCG shown in Fig. 2(b).

Let denote the weight of the longest path
from to in the augmented .
can be determined by performing the single source longest path
algorithm on the augmented in time, where
is number of modules. The coordinate (, ) of a module is
given by ( , ). Further, the coordinates of all mod-
ules are determined in the topological order in . Since
the respective width and height of the placement for the given
TCG are and , the area of the placement is given
by . Since each module has a unique coordinate
after packing, there exists a unique placement corresponding to
any TCG.

IV. TCG FORSLICEABLE RECTILINEAR MODULES

In this section, we first introduce necessary and sufficient
conditions of feasible TCG for sliceable rectilinear modules. We

then present the TCG packing algorithm for sliceable rectilinear
modules. (We will present the TCG properties for nonsliceable
rectilinear modules in Section VI.)

A. Feasible TCG

We have shown in Section III that there always exists a
unique feasible placement corresponding to a TCG for rectan-
gular modules. For rectilinear modules, we must also maintain
their original shapes during placement. To identify feasible
TCG for rectilinear modules, we introduce the concept of
transitive reduction edgesof TCG. An edge is said to
be areduction edgeif there does not exist another path from
to , except the edge itself; otherwise, it is aclosure
edge. For example, the edges , , , and

in of Fig. 2(b) are reduction edges while ,
, , and are closure ones. (Note it is

clear later that both reduction and closure edges are essential
for maintaining a feasible TCG for perturbation. We shall also
note that a key contribution of TCG lies in the firstgeneral
graph representation with the feasibility guarantee during
perturbations.)

For sliceable rectilinear modules, each zone contains exactly
one submodule. Therefore, given a sliceable rectilinear module

with rectangular submodules , , by slicing
from left to right (or from bottom to top) along vertical (hor-
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Fig. 4. (a) A feasible TCG for a rectilinear moduleb and its corresponding placement. (b) A TCG that violates the inseparability constraint and its corresponding
placement. (c) Expanding submoduleb to abut withb .

izontal) boundaries, we can construct a set of reduction edges
, , and corresponding closure edges

in since , .
(See Fig. 3(i) and (j) for an illustration.) To maintain the shape
of a rectilinear module, we must treat the set of reduction and
closure edges as a whole, and keep the edges ,

, as the reduction ones during processing (i.e., a re-
duction edge is not allowed to be changed into a closure one).

Therefore, the TCG for rectilinear modules must satisfy the fol-
lowing constraint.

• Inseparability Constraint: For vertical (horizontal)
slicing, the set of reduction and closure edges for a
rectilinear module must be all in (i.e., there
exists no edge between nodess in ). Further,
every edge , , remains as a
reduction one.
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Fig. 5. (a) A TCG. (b) The rectilinear moduleb consists of three submodulesb , b , andb . (c) An incorrect packing resulting from the original packing
procedure. (d) A correct packing. (Note that this packing is suboptimal; we will show in Section V how to perturb the TCG to obtain an optimal packing.)

Fig. 3(a)–(h) show eight possible situations of rectilinear
module after rotation and flip. As shown in Fig. 3(a)–(d)
[(e)–(h)], , and are submodules of , obtained
by slicing along its vertical (horizontal) boundaries. For the
situations shown in Fig. 3(a)–(d) [(e)–(h)], the corresponding
TCG is illustrated in Fig. 3(i) [(j)].

The inseparability constraint will be violated if any reduction
edge becomes a closure edge (i.e., there exists an-
other path from to ). Fig. 4(a)
shows a feasible TCG for the rectilinear modulewith the sub-
modules and its corresponding placement. In con-
trast, the TCG shown in Fig. 4(b) violates the inseparability con-
straint, in which the edge in becomes a closure one
since there exists another path from to . In
this case, the rectilinear moduleis divided into two since the
submodules and are interleaved with another module,
resulting in an illegal placement.

For the TCG shown in Fig. 4(c), there exist two paths
and from to in and

. will be divided into two pieces because and
are inserted between and simultaneously, and is

larger than . As in [18] and [22], this can be resolved by
expanding to connect with because it does not cause
problems for some practical applications but waste some silicon
areas.

B. Packing

To maintain the shape of a rectilinear module without re-
sorting to post processing, we must also modify the packing al-
gorithm for rectangular modules described in Section III. Fig. 5
illustrates the difference between the packings for a rectangular
and a rectilinear modules. Fig. 5(a) shows a given TCG with four
rectilinear modules, , , , and , where is a nonrectan-
gular module whose shape is illustrated in Fig. 5(b). Fig. 5(c)
and (d) shows an incorrect packing resulting from the original
packing algorithm and a correct packing, respectively.

To make a packing for a rectilinear module correct, the
coordinate of its submodule must be determined not only

by the longest path from the source of the induced TCG,
but also by the relative positions to the other submodules
of the same module. Let denote the relative differ-
ence of the positions between the submodulesand ;

for hori-
zontal (vertical) slicing. For the example shown in Fig. 5(b),

, , , ,
, and . Suppose we have packed

at . To keep the relative positions between submodules,
must equal 3 (1) since

. Therefore, Fig. 5(d) gives a correct
packing while Fig. 5(c) does not. As mentioned in Section III,
all modules should be packed in the topological order in

. To process a nonrectangular module, further, the ances-
tors of the nodes associated with its submodules should have
all been processed, and the descendants of those nodes should
not be processed until the coordinates of all the submodules
have been determined. For example, according to the
of Fig. 5(a), we should determine thecoordinates of modules

and before processing the nonrectangular module, and
module should not be processed until all s, ,
are determined. In contrast, if we determine thecoordinates
in the order , , , , , and , we may need to
adjust if the submodule cannot be packed at .

To obtain the packing order of submodules, we modify the
augmented and before applying the topological sort al-
gorithm to find the ordering. Let thefan-in (fan-out) of a node

, denoted by , be the nodes s with edges
. Given a rectilinear module with submod-

ules , , by slicing along its vertical (horizontal)
boundaries, we introduce additional edges into the augmented

to make , , ex-
cept the edges emanating from. [See Fig. 6(b).] After deter-
mining a topological order for the nodes in the new augmented

, we remove the added edges and then compute the
coordinates of the modules in the topological order. We as-

sociate each node a -value, , to book-keep the coor-
dinate of the module/submoduleduring the computation on the
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Fig. 6. An example computation ofY coordinates. (a) The augmentedC for the C shown in Fig. 5(a). (b) The new augmentedC after adding
the edges(n ; n ) and (n ; n ) to makeF (n ) = F (n ) = F (n ). A possible topological order in the new augmentedC is given as
hn ; n ; n ; n ; n ; n ; n ; n i. (c) The c-values of the initial configuration. (d) Thec-values after relaxing the nodesn , n , and n . (e) Before
relaxingn , we need to computec , c , and c . c = maxfc + r(b ; b ); c + r(b ; b ); c g = 1. (f) c = c + r(b ; b ) = 3 and
c = c + r(b ; b ) = 2. (g) The final configuration after relaxingn ; n ; n ; n , andn .

augmented . The coordinates of the modules/submod- ules are computed as follows. For each nodein the augmented
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graph, we make for the source and for any
other node . We then relax the-value of a node in the
augmented as follows. For each node ,
we make .
However, when any node of a submodule in a rectilinear
module is encountered, the location of the submodule is given
by . Then, the
-values of other submodules s, and , are

given by according to the relative positions
between submodules and before relaxing .

Fig. 6(a) shows the augmented for the shown in
Fig. 5(a). We first add the edges and to
the augmented to make .
[See Fig. 6(b).] (Note that we do not add edges
and since they source from .) After obtaining
a topological order, say ,
of the new augmented , we remove the added edges and
start to compute the coordinates for all nodes based on the
topological order. [See Fig. 6(c)–(g).] Fig. 6(c) shows the initial
configuration, in which all nodes have the-value 1 except
that . Fig. 6(d) illustrates the configuration after relaxing
the nodes , , and . We then start to process . Since

corresponds to a submodule of the rectilinear module
first encountered and there exists no edge among nodes,

, and , we shall first determine [see Fig. 6(e)] and
then compute and [see Fig. 6(f)] before relaxing
to maintain the relative positions of the rectilinear module

. Here,
, ,

and . We then relax the node
, resulting in
. The relaxation process continues for the nodes, ,

, and finally , resulting in the final configuration shown
in Fig. 6(g), in which all coordinates have been determined.

Theorem 2: Given a feasible TCG for a sliceable rectilinear
module, the packing scheme proposed above gives a feasible
placement in time, where is the number of rectan-
gular modules and submodules.

Proof: It was shown in [11] that TCG gives a feasible
placement for rectangular modules if we apply a longest algo-
rithm on TCG to compute the coordinates of the modules
based on their topological ordering in . Here, we need
to guarantee that all submodules in each rectilinear module will
abut and the relative positions between submodules are main-
tained after packing. Before applying the topological sorting al-
gorithm, we modify the TCG to make ,

, for each rectilinear module with submod-
ules , , by adding edges into the augmented

. We claim that 1) the resulting graph is directed acyclic
after adding the additional edges; and 2) a topological order ob-
tained from the new graph is also one in the original graph.

Let and denote two nodes in the resulting graph,
which are associated with two submodules of the rectilinear
module . If there exist no edge between and , we add
an additional edge to the graph, where is the prede-
cessor of . Assume that the resulting graph is cyclic. There
must exist a path from to in the original
graph. This implies that there exists a path .

Since there exists a path from to in the original transitive
closure graph, there must exist an edge betweento , con-
tradicting the assumption that there exists no edge between
and . Since we only add edges (without deleting any edge)
in the original graph and the new graph is still directed acyclic,
it is clear that a topological order obtained from the new graph
is also one in the original graph.

Now, we show that the relative positions between submod-
ules of each rectilinear module can be maintained. Without loss
of generality, given a rectilinear modulewith submodules ,

, obtained by slicing along its vertical boundaries,
we show that the vertical relative positions betweens will be
kept. By our procedure, thecoordinates of nodes s, prede-
cessors of s, have been determined before the coordinate of

is computed. The coordinates ( s) of s are known by
relaxing s. We can compute the coordinates of a submodule

from submodules s, , if s are placed at
s, and choose the maximum value as the coordinate of.

After the location of is determined, the coordinates of s,
and , can be computed by their relative po-

sitions to the submodule . Therefore, the vertical relative po-
sitions among s are maintained. Similar claims hold for the
rectilinear module sliced along horizontal boundaries.

Since a (simple) graph can have at most edges, the
time complexity of adding additional edges is also . Be-
sides, it takes time to compute a longest path on an
(acyclic) constraint graph. Therefore, the time complexity of our
packing scheme is time.

It should be noted that the SP-based packing scheme pre-
sented in [2] needs time.

V. ALGORITHM

Our algorithm is based on simulated annealing [8]. Given an
initial solution represented by a TCG, we perturb the TCG to
obtain a new TCG. The perturbation continues to search for
a “good” configuration until a predefined termination condi-
tion is satisfied. To ensure the correctness of rectilinear module
packing, the new TCG for each rectilinear module must satisfy
the TCG feasibility conditions described in Section III and the
inseparability constraint presented in Section IV-A. To identify
a feasible TCG for perturbation, we need to identify reduction
edges.

A. Reduction Edge Identification

Since TCG is formed by directed acyclic transitive closure
graphs, given an arbitrary node in one transitive closure
graph, there exists at least one reduction edge , where

. For nodes , the edge
cannot be a reduction edge if . Hence, we remove
those nodes in that are fan-outs of others. The edges
between and the remaining nodes in are reduction
edges. For the of Fig. 5(a), . Since

and belong to , edges and
are closure edges while is a reduction one. The time
complexity for finding such a reduction edge is , where

is the number of rectangular modules and submodules [11].
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B. Solution Perturbation

We apply the following eight operations to perturb a TCG.

• Rotation:Rotate a rectangular module.
• Swap:Swap two nodes associated with rectangular mod-

ules in both and .
• Reverse:Reverse areduction edgein or .
• Move:Move areduction edgefrom one transitive closure

graph ( or ) to the other.
• Transpositional Move:Move a reduction edgefrom one

transitive closure graph ( or ) to the other and then
transpose the two nodes associated with the edge. It is
clear later that this operation is different from performing
Move and then Reverse.

• Perpendicular Flip:Flip a rectilinear module about the
axis perpendicular to the cut lines for obtaining its sub-
modules.

• Parallel Flip: Flip a rectilinear module about the axis par-
allel to its cut lines.

• Twirl: Rotate a rectilinear module.

Note that Rotation, Swap, Reverse, and Move are first intro-
duced in [11], which can be performed in respective , ,

, and times, where is the number of modules
and submodules. Further, the resulting graph after performing
any of these operations on a TCG is still a TCG.

Rotation, Swap, Perpendicular Flip, and Parallel Flip will
not change the topology of TCG, and thus the inseparability
constraint will not be violated, either. However, Reverse, Move,
Transpositional Move, and Twirl will, and we may need to
update TCG after performing Reverse, Move, Transpositional
Move, and Twirl. Further, in order to guarantee that the insep-
arability constraint will not be violated, we need feasibility
detection during the operation. We first detail the operations in
the following.

1) Rotation: To rotate arectangular module , we only
need to exchange the weights of the corresponding nodein

and .
Lemma 1: The inseparability constraint of a TCG will not be

violated for the Rotation operation.
Proof: Since the configuration of a TCG remains the same

for the Rotation operation, the inseparability constraint will not
be violated.

2) Swap: To swap nodes and of two rectangular mod-
ules and , we only need to exchange the nodesand in
both and .

Lemma 2: The inseparability constraint of a TCG will not be
violated for the Swap operation.

Proof: Since we only exchange the nodes of rectangular
modules and the topology of the TCG remains the same after
the Swap operation, the inseparability constraint will not be
violated.

3) Reverse:The Reverse operation reverses the direction of
a reductionedge in a transitive closure graph, where

and are not associated with two submodules of the same
rectilinear module. For two modules and ,

if there exists a reduction edge in ; after
reversing the edge , we have the new geometric relation

.

To reverse a reduction edge in a transitive closure
graph, we first delete the edge from the graph, and then add the
edge to the graph. For each node
and in the new graph, we shall check
whether the edge exists in the new graph. If the graph
contains the edge, we do nothing; otherwise, we need to add the
edge to the graph and delete the corresponding edge or

in the other transitive closure graph, if any, to maintain
the properties of the TCG.

4) Move: The Move operation moves areduction edge
in a transitive closure graph to the other, where

and are not associated with two submodules of the same
rectilinear module. Move switches the geometric relation of
the two modules and between a horizontal relation and a
vertical one. For two modules and , if
there exists a reduction edge in ; after moving
the edge to , we have the new geometric
relation .

To move a reduction edge from a transitive closure
graph to the other in a TCG, we first delete from
and then add to . Similar to the Reverse operation, for
each node and , we
shall check whether the edge exists in . If contains
the edge, we do nothing; otherwise, we need to add the edge to

and delete the corresponding edge or in ,
if any, to maintain the properties of the TCG.

5) Transpositional Move:The Transpositional Move opera-
tion removes areductionedge from a transitive closure
graph, and adds an edge to the other, where and
are not associated with two submodules of the same rectilinear
module. Transpositional Move switches the geometric relation
of the two modules and between a horizontal relation and a
vertical one and changes the ordering of the two modulesand

in their geometric relation. For two modulesand ,
if there exists a reduction edge in ;

after transpositionally moving the edge to , we
have the new geometric relation .

To transpositionally move a reduction edge from a
transitive closure graph to the other in a TCG, we first
delete from and add to . Similar to the
Move operation, for each node and

, we shall check whether the edge exists
in . If contains the edge, we do nothing; otherwise, we
need to add the edge to and delete the corresponding edge

or in , if any, to maintain the properties of
the TCG. We have the following theorem.

Theorem 3: TCG is closed under the Transpositional Move
operation, and such an operation takes time, where
is the number of modules and submodules.

Proof: We first show that the resulting graphs and
of a TCG satisfy the three properties of TCG after performing
the Transpositional Move operation.

Without loss of generality, we focus on the case for trans-
positionally moving a reduction edge from to .
For Property 1, suppose that the resultingis not acyclic after
we delete a reduction edge from and add an edge

to . There must exist a path from to in the orig-
inal . This implies that the edge is also in the original
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since is a transitive closure graph. This is a contradiction
since cannot both exist in the original TCG (Property 2).
Therefore, the new must be acyclic. The new must also
be acyclic since we do not add any edge into the original. For
Property 2, each pair of nodes must be connected by exactly one
edge either in the new or in the new after the operation
because the corresponding edge will be deleted fromafter
the edge is added to . For Property 3, suppose that the
new is not a transitive closure of itself. Then, there exists a
path in the new , but the does not
contain the closure edge . During the operation, for each
node and in , we
add the edges s to the new and delete them from .
Therefore, at least one of the edges and does
not exist in the original ; otherwise, we would have added
the closure edge into the new during the Transpo-
sitional Move operation. This implies that the original is not
a transitive closure graph, contradicting to our assumption. It is
clear that the deleted edges of are closure edges of the new

, which cannot be the closure edges in. Therefore, the new
is still a transitive closure graph of itself.

The time complexity is dominated by checking whether the
edges s ( and

) exist in the new graph and by inserting and deleting the
corresponding edges. Since there are at most s and

s, the operation takes time in total.
6) Perpendicular Flip: The Perpendicular Flip operation

flips a rectilinear module about the axis perpendicular to the
cut lines for obtaining its submodules by changing the differ-
ence of relative positions from to

for horizontal (vertical) cut lines, where
and . Fig. 7(b) shows the resulting ,

, and placement after perpendicularly flipping the rectilinear
module . , , ,

, , and in Fig. 7(b)
while

in Fig. 7(a).
Since Perpendicular Flip changes only the relative positions

of each pair of submodules, the topology of TCG remains the
same after the operation. We have the following theorem and
lemma.

Theorem 4: TCG is closed under the Perpendicular Flip op-
eration, and such an operation takes time, where is the
number of submodules in the rectilinear module.

Proof: Since the Perpendicular Flip operation only ex-
changes the differences of relative positions among submodules
in a rectilinear module without changing the configuration of
TCG, the resulting graphs are still a TCG.

It takes time to exchange the value for the relative po-
sition between two submodules; therefore, we need time
to update these values for each pair of submodules if there are
submodules in a rectilinear module.

Lemma 3: The inseparability constraint of a TCG will not be
violated for Perpendicular Flip operation.

Proof: Since the configuration of TCG remains the same
after the Perpendicular Flip operation, the inseparability con-
straint will not be violated.

7) Parallel Flip: The Parallel Flip operation flips a recti-
linear module about the axis parallel to the cut lines for ob-
taining its submodules by swapping the nodesand ,

, in both and . Given a rectilinear
module consisting of submodules , , formed
by vertical (horizontal) cuts (i.e., ,
there exist reduction edges and their corresponding
closure edges in , where . After
swapping the nodes and , , in both
of and , we have the new reduction edges
and their corresponding closure edges in , implying

, where .
Fig. 7(c) shows the resulting , , and placement after

parallel flipping the rectilinear module of Fig. 7(b). Notice
that after swapping the nodes and in both and
of Fig. 7(b), we introduce the new edges , ,
and in of Fig. 7(c), implying and .

Parallel Flip needs to perform the Swap operation
times, where is the number of submodules in a rectilinear
module, and each Swap operation guarantees to perturb into
a unique feasible TCG in time. We have the following
theorem and lemma.

Theorem 5: TCG is closed under the Parallel Flip operation,
and such an operation takes time, where is the number
of submodules in the rectilinear module.

Proof: Since the Parallel Flip operation only reverses the
sequence of the nodes , , of a rectilinear module

in both and without changing the topology of TCG,
the resulting graphs are still a TCG.

The Parallel Flip operation has to perform the Swap operation
for each pair of the symmetric nodes and in both

and , , and a Swap operation takes
time [11]. There are pairs of nodes; there fore, the time
complexity is .

Lemma 4: The inseparability constraint of a TCG will not be
violated in Parallel Flip operation.

Proof: The Parallel Flip operation only reverses the se-
quence of nodes , , of a rectilinear module
without changing the topology of a TCG, the inseparability con-
straint will not be violated.

8) Twirl: The Twirl operation rotates a rectilinear module
by exchanging the weights of the corresponding nodes,

, in and , and transpositionally moving the re-
duction edges , , from a transitive
closure graph to the other. Given a rectilinear modulecon-
sisting of submodules obtained by vertical (horizontal) cuts
(i.e., ); after exchanging the weights
and transpositionally moving the reduction edges, we rotate the
rectangular submodules , , and make

, .
Fig. 7(d) shows the resulting , , and placement after

twirling the of Fig. 7(c). To transpositionally move the re-
duction edge from to , we first remove the
reduction edge from , and add to .
Since and

in , for each node and , we
shall check whether the edge exists. Since the edge

is already added during the transpositional move, we
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Fig. 7. Examples of perturbations. (a) The initial TCG (C andC ) and its corresponding placement. (b) The resulting TCG and placement after perpendicularly
flipping the rectilinear moduleb shown in (a). (c) The resulting TCG and placement after parallel flipping the rectilinear moduleb shown in (b). (d) The resulting
TCG and placement after twirling the rectilinear moduleb by�90 shown in (c).
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do nothing. Similarly, to transpositionally move the reduction
edge from the new to the new , we remove the
reduction edge from the new and add
to the new . Since and

in the new and is already
added, we only need to add the edge . Finally, we ex-
change the weights of each node, , in and
of Fig. 7(c). Fig. 7(d) illustrates the resulting TCG.

The Twirl operation needs to perform Rotation and Trans-
positional Move and times, and each Rotation and
Transpositional Move operation guarantees to perturb into a fea-
sible TCG in respective and times, where is the
number of submodules in a rectilinear module andis the
number of rectangular modules and submodules. We have the
following theorem.

Theorem 6: TCG is closed under the Twirl operation, and
such an operation takes time, where is the number
of submodules in a rectilinear module and is the number of
rectangular modules and submodules.

Proof: By Lin and Chang [11] and Theorem 3, TCG is
close under the Rotation and Transpositional Move operations.
The resulting graphs are still a TCG after performing the
Rotation and Transpositional Move operationsand
times, respectively, where is the number of sumbodules in
the rectilinear module . The time complexities of Rotation
and Transpositional Move operations are and ,
respectively. Therefore, the time complexity of the Twirl
operation is .

C. Feasibility Detection

To maintain the shapes of rectilinear modules, TCG must sat-
isfy the inseparability constraint for each rectilinear module.
Among the eight operations, only Reverse, Move, Transposi-
tional Move, and Twirl could violate the constraints, which can
easily be detected during perturbation. When we move an edge

or reverse/transpositionally move , the insepa-
rability constraint will be violated if and

, where since
would become a closure edge. Since Twirl consists of Rotate and
Transpositional Move operations, the inseparability constraint
will not be violated if the inseparability constraint is satisfied for
each Transpositional Move operation. By doing the feasibility
detection during the Reverse, Move, or Transpositional Move
operation, we can guarantee that the resulting TCG is still a TCG
for rectilinear modules. We thus have the following theorem.

Theorem 7: The inseparability constraint of a TCG is not
violated for the Reverse, Move, Transpositional Move, or Twirl
operation with the feasibility detection.

Proof: The inseparability constraint will be violated if
a reduction edge is converted into a closure one.
Without loss of generality, we focus on the case for reversing
a reduction edge in . During the operation, we
should check the existence of each edge in , where
nodes and . If such
edge does not exist, we would add the edge toand delete
the corresponding edge or in . Each newly
added edge in must be a closure edge; therefore, if nodes

Fig. 8. Examples of perturbations (continued from Fig. 7). (a) The resulting
TCG and placement after moving the reduction edge(n ; n ) from theC of
Fig. 7(d) toC . (b) The resulting TCG and placement after transpositionally
moving the reduction edge(n ; n ) from theC shown in (e) toC .

and for a reduction edge , the
edge will become a closure edge (see the example of Fig. 4(b)).
Similar claims hold for the Move and Transpositional Move
operations.

The Twirl operation performs the Transpositional Move op-
eration times on each edge , ,
for a rectilinear module with submodules. Therefore, if we can
guarantee that the inseparability constraint of TCG will not be
violated for each Transpositional Move operation, the insepara-
bility constraint of the resulting TCG will not be violated. Be-
sides, we also have to show that the inseparability constraint of

will be maintained during the Twirl operation. Without loss
of generality, we transpositionally move the reduction edges

s, , from to in twirling a rec-
tilinear module . We first delete the edge from
and add the edge to . Similarly, the edge
is deleted from and a new edge is added to .
Since and ,
the edge will be added to after transpositionally
moving the edge . remains a reduction edge
since all newly added edges that start from or an ancestor of

cannot make a closure one. By performing such
operation times, the reduction edges s and the
corresponding closure edges will be added toand there ex-
ists no edge among nodes and in . Therefore, the
inseparability constraint of a TCG is not violated for the Twirl
operation with the feasibility detection.

Fig. 8(a) shows the resulting , , and placement after
moving the edge from shown in Fig. 7(d) to .
Since and

in , we shall check the edge for the insepa-
rability constraint. The inseparability constraint will not be vi-
olated because and are not adjacent submodules of the
same rectilinear module. Fig. 8(b) shows the resulting, ,
and placement after transpositionally moving the edge
from the of Fig. 8(a) to . Since
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Fig. 9. Floorplanning design algorithm for rectilinear modules using TCG.

and in , we shall check
for the constraint. Since and are not adjacent

submodules, the inseparability constraint will not be violated.

D. Floorplan Design Algorithm

In this subsection, we describe our rectilinear module place-
ment algorithm (see Fig. 9 for the pseudocode). Our algorithm
is based on the simulated annealing method [8]. We first ini-
tialize a TCG as the current state as well as the best state
(Best). We set the initial temperature , where

is the initial probability of accepting uphill moves and the
value is very close to 1. Then, we set , where and

are the number of modules and a user defined value, respec-
tively. is gradually cooled down until the value is lower than
a predefined value, or the rejection rate is larger than 0.95. Let
uphill denote the number of bad moves. In each temperature,
the following process is repeated untiluphill is larger than
or the procedure runs more than times. We first randomly
pick one operation from the eight operations proposed in Sec-
tion V-B. As mentioned in Section V-C, if the selected operation
is Reverse, Move, Transpositional Move, or Twirl and the insep-
arability constraint of TCG is violated during the operation, we
give up the operation and reselect a new one; otherwise, a new

Fig. 10. (a) A nonsliceable rectilinear module. (b) The components inC and
C for the rectilinear module of (a).

state can be obtained by applying the operation to the cur-
rent state . If the new state gives a better cost than (i.e.,

) or is smaller
than a random valueRandom, the new state is selected as
the current state ; otherwise, the current state remains un-
changed.

VI. TCG FORNONSLICEABLE RECTILINEAR MODULES

Due to the limitation of space, we briefly give the idea on
how to deal with nonsliceable rectilinear modules. For a non-
sliceable rectilinear module, each zone may contain more than
one submodule. Therefore, to maintain the shape of a rectilinear
module, we need to keep the relative positions of the submod-
ules in a zone as well as between zones. Given a nonsliceable
rectilinear module with zones by slicing from left to right
(or from bottom to top) along vertical (horizontal) boundaries,
for each pair of submodules and in different zones with

left to (below) , we introduce an edge in
. Also, for each pair of submodules and in a zone

with below (left to) , we introduce an edge in
. Similar to the inseparability constraint for sliceable

rectilinear modules, for two submodules and in adjacent
zones, we must guarantee that the corresponding edge
is a reduction edge during perturbation to maintain the shape of
a rectilinear module. Let denote the spacing between
two submodules and in the direction if

. For example, since and
their spacing in the direction is 2. To prevent submodules from
being deformed by other modules, for every pair of submodules

and that do not abut or are not in adjacent zones, we need
to impose the following constraint:

• Dimension Constraint:
if there exists another path

from to in addition to the
edge .

As the example shown in Fig. 10, for each pair of submod-
ules in different zones, we introduce an edge in(see the
of Fig. 10(b)). Also, for the submodules and in the same
zone , we introduce an edge in . To maintain
the shape of the rectilinear module, we must guarantee that the
edges , , , and are re-
duction edges during perturbation. If any of the four edges be-
comes a closure edge, the submodules will no longer be in ad-
jacent zones in the resulting placement. (See Fig. 4(b) for an
example.) Besides, for submodules and that do not abut
or are not in adjacent zones, if there exists an additional path
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from to in , the summation of
, , cannot be larger than to avoid submodules
and from being deformed by modules, , and .

According to the earlier discussions, all operations introduced
in Section V-B can be applied with minor modifications by con-
sidering the inseparability and dimension constraints.

VII. EXPERIMENTAL RESULTS

Based on the simulated annealing method [8], we imple-
mented the TCG-based rectilinear module placement algorithm
using the TCG representation in the C++ programming lan-
guage on a 433 MHz SUN Sparc Ultra-60 workstation with
1 GB memory. The experiments consist of two parts: area
optimization and wirelength optimization.1 For area optimiza-
tion, we first compared our method with that presented in [21]
based on the same circuits generated by Xuet al. To generate
L- and T-shaped rectilinear modules for experimentation,
they combined two (three) rectangular modules in the MCNC
benchmark ami49 to form an L-shaped (T-shaped) module.
(Note that all previous works on rectilinear modules generated
circuits by themselves without making comparisons with
others. Therefore, most of the data are not available to us.) The
parameters used for simulated annealing are as follows: initial
temperature , termination temperature , and the
probabilities for operations , , , , , , ,
and are 0.125, 0.15, 0.15, 0.15, 0.15, 0.075, 0.075, and
0.125, respectively.

Columns 2, 3, and 4 in Table I list the respective numbers
of rectangular, L-shaped, and T-shaped modules. ami49_L
consists of seven rectangular modules and 21 L-shaped mod-
ules, and ami49_LT consists of six rectangular modules, 20
L-shaped modules, and one T-shaped module.2 As shown
in the table, our method achieved significantly better area
utilization for ami49_L and ami49_LT, compared to Xuet al.
[21]. Further, our method is also very efficient (see Column
10 for the runtimes). Figs. 11 and 12 show the placements for
ami49_L and ami49_LT. In addition to the two circuits used
in Xu et al. [21], we also construct three circuits based on
ami49. Their configurations are listed in rows 3, 4, and 5 of
Table I. The experimental results show that our TCG-based
algorithm consistently obtains good results; the dead spaces are
all smaller than 6%. Fig. 13 shows the placement for ami49_1.

In addition to L-shaped and T-shaped modules, we also gen-
erated two cases with arbitrarily shaped modules, such as-,

-, -, stair-shaped, etc., to show the flexibility of our method.
Our test cases were generated by cutting a rectangle into a set of
modules. Fig. 14(a) and (b) [see also Fig. 15(a) and (b)] shows
the optimum placement and the resulting placement generated
by our methods, respectively. There are six (22) rectangular, two
(1) L-shaped, and nine (6) arbitrarily shaped modules in Fig. 14

1Although our experiments only “demonstrate” the optimization of the cost
metric defined by area or wirelength, the TCG-based approach readily applies
to other considerations.

2In addition to the two modified ami49 benchmark circuits, Xu et al. [21] also
experimented on a small randomly generated test case with 2 rectangular and
4 L-shaped modules. Unlike the two modified ami49 benchmark circuits that
can be re-generated (since their module IDs are given in the paper), however,
we are unable to re-construct the small randomly generated test case. Therefore,
we focus on the comparison with the two modified ami49 benchmark circuits.

Fig. 11. Resulting placement of ami49_L (area= 37.24 mm).

Fig. 12. Resulting placement of ami49_LT (area= 37.37 mm ).

Fig. 13. Resulting placement of ami49_1 (area= 37.40 mm).

(see Fig. 15). The dead space is 9.375% (6.944%) and runtime
is 1224 (1409) s.

For timing optimization, we estimated the wirelength of a net
by half the perimeter of the minimum bounding box enclosing
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TABLE I
AREA AND RUNTIME COMPARISONSBETWEENXU et al. [21] (ON SUN SPARC ULTRA I WITH 233 MHZ) AND TCG (ON SUN SPARCULTRA 60 WITH 433 MHZ).

(NOTE THAT [21] DOES NOTREPORTRUNTIMES FORAMI49_L AND AMI49_LT. THE RUNTIME FOR AMI49_L IS TAKEN FROM ITS JOURNAL VERSION[22],
BUT [22] DOES NOTREPORT THERESULT FORAMI49_LT.) THE OPTIMAL AREA OF AMI49 IS 35.445 mm

Fig. 14. (a) The optimal placement (area= 64). (b) The resulting placement
of (a) (area= 70).

Fig. 15. (a) The optimal placement (area= 144). (b) The resulting placement
of (a) (area= 154).

the net. The wirelength of a placement is given by the summa-
tion of the wirelengths of all nets. Table II shows the experi-
mental results of TCG in optimizing wirelength. (Note that our
work is the first to report the results on wirelength optimization
for rectilinear modules. So there is no comparative report here.)
The resulting placement for ami49_2 with wirelength optimiza-
tion is shown in Fig. 16.

VIII. C ONCLUDING REMARKS

We have presented a TCG-based algorithm to deal with
rectilinear module packing for nonslicing floorplans. We
have derived necessary and sufficient conditions of TCG
for rectilinear modules. Our algorithm not only can avoid
infeasible packing during perturbation but also can eliminate
the need of the post processing on deformed modules. All
these properties make TCG an ideal representation for dealing
with the floorplan/placement design with rectilinear modules.

Fig. 16. Resulting placement of ami49_2 (wire= 740 mm ).

TABLE II
WIRELENGTH AND RUNTIME OF TCG (ON SUN SPARC ULTRA60 WITH

433 MHZ). (NOTE THAT WE ARE THE FIRST WORK THAT RUNS

WIRELENGTH WITH RECTILINEAR MODULES)

Experimental results have shown that our method is very
efficient and effective.
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