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Arbitrarily Shaped Rectilinear Module Placement
Using the Transitive Closure Graph Representation

Jai-Ming Lin, Hsin-Lung Chen, and Yao-Wen Chamdember, IEEE

Abstract—in this paper, we deal with arbitrarily shaped size by performing a bounded two-dimensional (2-D) contour
rectilinear module placement using the transitive closure graph searching algorithm on the profile of a design. Due to the high
(TCG) representation. The geometric meanings of modules are complexity for computing the profiles, the approach is limited

transparent to TCG as well as its induced operations, which to the pl ¢ bl ith I b f modul
makes TCG an ideal representation for floorplanning/placement 0 e placement probiem with a smail nUMber oF modules.

with arbitrary rectilinear modules. We first partition a rectilinear Unlike the work in [10], most previous work partitioned a
module into a set of submodules and then derive necessary andrectilinear module into a set of rectangular submodules and op-
sufficient conditions of feasible TCG for the submodules. Unlike erated on the submodules under some constraints induced from
most previous works that process each submodule individually and the original rectilinear module. There are a few existing par-

thus need to perform post processing to fix deformed rectilinear . . . . )
modules, our algorithm treats a set of submodules as a whole tition based approaches using well-known representations: for

and thus not only can guarantee the feasibility of each perturbed €xample, bounded-sliceline grid (BSG) [5], [7], [16], sequence
solution but also can eliminate the need for the postprocessing on pair [2], [6], [21], B*-tree [20],O-tree [18], and corner block
deformed modules, implying better solution quality and running |ist (CBL) [13].

time. Experimental results show that our TCG-based algorithm Murataet al. in [14] used two sequences of module names
is capable of handling very complex instances; further, it is very ’ !

efficient and results in better area utilization than previous work. N@mely sequence pair, to represent the geometric relations of
modules for nonslicing floorplan design. »at al. in [21] ex-

plored the conditions of feasible sequence pair for L-shaped
modules. After all rectangular modules and submodules were
packed, a post processing was performed to adjust misplaced
. INTRODUCTION submodules to fix the shapes of rectilinear modules. However,

S technology advances, design complexity is increasiffgey can only deal with “mound-shaped” rectilinear modules.

at a dramatic pace. To handle the design Comp|exity, mlang and Dai in [6] derived three necessary and sufficient con-
erarchical designs and IP modules are widely used for des@'ﬁons for recovering the shapes of convex rectilinear modules.
convergence. These trends make floorplanning/placement mat@&ilarly, they also needed a post processing to retrieve the orig-
important than ever. Traditional placement is to determine tHeal shapes of rectilinear modules after packing. Recently, Fu-
locations for a set of rectangular modules such that no modiikoshi and Murata in [2] presented an approach to represent
overlaps and some predefined cost metric (e.g., area, wireleng@¢tilinear modules using sequence pair. They also derived a
and/or routability) is optimized. However, to fully optimize sil-necessary and sufficient condition for feasible sequence pair for
icon area and/or wirelength, nonrectangular modules are af§étilinear modules. In particular, they augmented a constraint
used. Therefore, how to deal with the placement of arbitrari§faph by adding constraint edges to examine the feasibility of a
shaped rectilinear modules becomes an important issue in $ggluence pair and packed modules, without resorting to a post

Index Terms—Floorplanning, placement, transitive closure
graph.

floorplan design. processing for fixing misplaced submodules. However, the con-
straint graphs are no longer acyclic after the augmentation, re-
A. Previous Work sulting in a longer running time for packin@(m?) time, where

Placement/floorplanning with rectilinear modules has beéf IS the number of modules). _
extensively studied in the literature [2], [5][7], [10], [16], [20], Nakatakeet al.in [15] proposed the BSG representation,
[21]. In [10], Lee represented an arbitrarily shaped rectiline¥fhich is composed of a set of horizontal and vertical line seg-
module with a set of four linear profiles which describe the coffents. The rectangular region enclosed by four line segments is
tours of a module viewed from four sides. He minimized chip2lled a room; floorplanning can be done by assigning modules

into rooms. Kang and Dai in [5] proposed a BSG-based method

. . _ to pack L-shaped, T-shaped, and soft modules by using a
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rectilinear modules, namedrdered convex rectilinear mod- 1 2.5 2
ules and extended the method to handle arbitrary rectilinear 2 2
modules. 25 b, 2
Guoet al.in [3] first proposed the)-tree representation for :
a left and bottom compacted placement. In a horizabDtalee, ol b b
a node denotes a module and an edge denotes the horizontal 3 b4 5
adjacency relation of two modules. EaGhtree is encoded by 1.5 6.5
a pair of strings, denoting the DFS traversal order of the tree. ) bz
Panget al. recently in [18] used th&-tree representation to
handle rectilinear modules. The packing scheme has relatively 21 2 23 24

lower time complexity, but the overall approach is less flexible

and more restricted. For each rectilinear mOdUle, they need:t@. 1. A concave rectilinear module consisting of four zongs:», 23, z4,
partition it into a set of L-shaped submodules and all modulegerez: = {b:, b2}, 22 = {bs}, 25 = {ba}, andzs = {bs}.

must be compacted.

' Changet al.in [1] presented a binary tree-based representgg;i ation (average dead spaee 5.00%) than the previous
tion for a left gnd bottc_)m compagted placemept, calisetree, ok [21] (average dead spaee7.65%).

and showed its superior properties f‘?f operations. fit dree, The remainder of this paper is organized as follows. Section I
a node denotes a module, the left child of a node represents gh ates the floorplan/placement design problem with rec-
lowest adjacent module on the right, and the right child reprgnear modules. Section Iil reviews the TCG representation.
sents the first module above and with the sameoordinate. gection v presents the feasible TCG and packing algorithm
Wu etal.in [20] handled rectilinear modules using thé-tree ¢, conyex and some concave rectilinear modules. Section V
representation. A rectilinear module can easily be represenfgd,qces the perturbation algorithm for rectilinear modules.

using B*-tree by vertically partitioning the module into a seetign v extends TCG to deal with general rectilinear mod-
of rectangular submodules. However, they need to repartitiop s gyperimental results are reported in Section VI, and con-
rectilinear module whenever the rectilinear module is rotateaudmg remarks are given in Section VIII

Besides, they need a postprocessing to adjust submodules to
maintain the shapes of rectilinear modules.
Recently, Honget al. in [4] proposed the CBL representa-

tion for nonslicing floorplans. CBL is composed of three tuples Rectilinear modules can be classified into two typesivex
that denote the packing order of modules, the orientations rettilinear modulesand concave rectilinear moduleg recti-
modules, and the number of modules that each module covégear module is said to beonvexif, for any two points in the
respectively. Mat al.in [13] used CBL to deal with the place- module, they have a shortest Manhattan path inside the module;
ment abutment constraint and extended the method to deal wi{B module is said to beoncave otherwise. Besides, a module
L- and T-shaped modules. is said to besliceableif there exists a horizontal or a vertical
o slicing on the module and the slicing does not result in two sep-
B. Our Contribution arate submodules; otherwise, ifriensliceable
In this paper, we deal with arbitrarily shaped rectilinear Theorem 1: All convex modules must be sliceable.
module placement using the transitive closure graph (TCG) Proof: If there exists a nonsliceable convex module, we
representation. We first partition a rectilinear module into @an slice the module along vertical or horizontal boundaries and
set of submodules and then derive necessary and sufficigat two separate submodules. The shortest Manhattan path be-
conditions of feasible TCG for the submodules. The geomettiween two arbitrary points, one in each submodule, must be out-
relationship of modules/submodules is transparent to TCBle the module, contradicting to the definition for the convex
and its induced operations, implying that any violation of theectilinear module. [ |
topology of a rectilinear module during perturbation can easily Corollary 1: All nonsliceable modules are concave modules.
be detected. Unlike most previous methods that process each Proof: Given a nonsliceable module, there exist two sep-
submodule individually and thus need post processing to fxate submodules after slicing the module along horizontal or
deformed rectilinear modules, our algorithm treats a set wértical boundaries. The shortest Manhattan path for two ar-
submodules as a whole and thus not only can guarantee lfiteary points in the separate submodules must be outside the
feasibility of each perturbed solution, but also can eliminate tieodule. Therefore, the nonsliceable module must be a concave
need of the post processing on deformed modules, implyinge. [ |
better solution quality and running time. In particular, our In the nonsliceable module shown in Fig. 1, there exist two
packing scheme takes onty(m?) time, compared t@)(m?) separate submodulgésandb, resulting from slicing the module
time for the sequence pair based method for arbitrarily shap&dng the vertical boundaries. The shortest Manhattan path for
modules presented in [2]. All these properties make TCG &mo arbitrary points irb; andb, is outside the module, and thus
ideal representation for dealing with the floorplan/placemeiitis a concave module.
design with rectilinear modules. Experimental results show thatA rectilinear moduleh can further be partitioned into a set
our TCG-based algorithm is capable of handling very compl@f zones{zy, zs, .. ., zp} by serially slicing the module verti-

’ )

instances; further, it is very efficient and results in better areally (horizontally), and each zong consists of a set of rect-

Il. PRELIMINARIES
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Fig. 2. (a) A placement in a chip. (b) TCG. (c) Augmented TCG (Augmettednd Augmented”, ).

angular submodule®;, , b,,, ..., b;, } ordered from bottom to and avertical transitive closure grapld’,, in which a noden;

top (from left to right). Fig. 1 shows a nonsliceable rectilineatepresents a modulg and an edgén;,n;) in C;, (C,) de-
module with four zonesg;, z2, 23, andz, by serially slicing notes that modulé; is left to (below) modulé;. TCG has the
along vertical boundaries, whesg = {b1,b2}, 2o = {bs}, following threefeasibility propertieg11].

z3 = {bs}, andzy = {bs}. The number labeled beside each 1) ¢, andC, are acyclic.

boundary of the module gives the length of the boundary. 2) Each pair of nodes must be connected by exactly one edge
Let W; (W;,), Hi (H;,), Ai (Ai), and (X;,Y;) either inC), or in C,.

((Xi;,Y;,)) denote respective width, height, area, and the co- 3) The transitive closure of}, (C,) is equal toC;, (C.)

ordinate of the bottom-left corner of the modélg(submodule itself. The transitive closure of a directed acyclic graph

b;,). Aplacement is an assignment ¢fX;, Y;),i = 1,...,m, G is defined as the grapt’ = (V,E’), whereE' =

for eachb; such that no two modules overlap and the shape of {(n;,n;): there is a path from node; to noden; in G}.
each rectilinear module is maintained. The goal of placementrig. 2(a) shows a placement with five modude$, ¢, d, ande

with rectilinear modules is to optimize a predefined cost metrighose widths and heights are (2, 1), (2, 2), (2.5, 2), (1.5, 2), and
such as the resulting area (i.e., the minimum bounding rectangdes, 1.5), respectively. Fig. 2(b) shows th€G = (Cj,, C,)

of P) and/or wirelength (i.e., the summation of half boundingorresponding to the placement of Fig. 2(a). The value associ-
box of interconnections) induced by a placement. ated with a node irC;, (C,) gives the width (height) of the
corresponding module, and the edgg, n;) in C;, (C,) de-
notes the horizontal (vertical) relation Bfandb;. Since there
exists an edgén,, ny) in C,, moduleb,, is left toby,. Similarly,

We first review the TCG representation presented in [11], is belowb, since there exists an edge,,n..) in C,,.
TCG describes the geometric relations among modules base@iven a TCG, a placement can be obtaine®@{m:?) time by
on two graphs, namelylzorizontal transitive closure grapfi;, performing a well-knowrongest path algorithnf9] on TCG,

Ill. REVIEW OF TCG
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Fig. 3. (a)—(h) Eight situations of the submodules for the rectilinear mdgu(@ The components ii’;, andC', corresponding to the rectilinear modules shown
in (a)—(d). (j) The components i1}, andC', corresponding to the rectilinear modules shown in (e)—(h).

wherem is the number of modules. To facilitate the implemenrthen present the TCG packing algorithm for sliceable rectilinear
tation of the longest path algorithm, the two closure graphs carodules. (We will present the TCG properties for nonsliceable
be augmented as follows. For each closure graph, we introdueetilinear modules in Section VI.)

two special nodes, the sourgg and the sink:;, both with zero

weights, and construct edges fram to each node with in-de- A. Feasible TCG

gree equal to zero as well as from each node with out-degre
equal to zero tay,. (Note that the TCG augmentation is per-
formed only for packing.) Fig. 2(c) shows the augmented TC
for the TCG shown in Fig. 2(b).

SVe have shown in Section Il that there always exists a
nigue feasible placement corresponding to a TCG for rectan-

lar modules. For rectilinear modules, we must also maintain
. their original shapes during placement. To identify feasible
Let Ly(n;) (Luv(ni)) denote the weight of the longest pathrc for rectilinear modules, we introduce the concept of

from n, to n; in the augmented’y, (Cy). Lu(n:) (Lo(n:))  yansitive reduction edgesf TCG. An edge(n;, n;) is said to
can be determined by performing the single source longest PBINareduction edgéf there does not exist another path fram

. : o\ o
_algonthm on the augmented, (C?) in O(m?) time, where_n to nj, except the edgén;, n;) itself; otherwise, it is alosure
is number of modules. The coordinaf€;( ;) of a module; is

) . edge For example, the edgés.,, n.), (np, ne), (ne, nq), and
given by @’L(ni)f L“(m))' Further, the coordinates of all mod-(nch n.) in C, of Fig. 2(b) are reduction edges while,, n,),
ules are det'ermlr'1ed in the tqpologmal ordefin (C,). Smce' nasne), (ny,nq), and (ny,n,) are closure ones. (Note it is
the respective width and height of the placement for the giv fbar later that both reduction and closure edges are essential

TCG areLy(n:) and.L“(nt)’ the area of the placgment IS QIV€TYo, maintaining a feasible TCG for perturbation. We shall also
by Ly, (n¢) Ly (n,). Since each module has a unique coordinalg. o 4 key contribution of TCG lies in the firgeneral
after packing, there exists a unigque placement correspondln%ngh representation with the feasibility guarantee during
any TCG. perturbations.)

For sliceable rectilinear modules, each zone contains exactly
one submodule. Therefore, given a sliceable rectilinear module

In this section, we first introduce necessary and sufficiebf with p rectangular submodulés,, i = 1,...,p, by slicing
conditions of feasible TCG for sliceable rectilinear modules. Wg from left to right (or from bottom to top) along vertical (hor-

IV. TCG FORSLICEABLE RECTILINEAR MODULES
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Y
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Fig. 4. (a) Afeasible TCG for a rectilinear modileand its corresponding placement. (b) A TCG that violates the inseparability constraint and its corresponding
placement. (c) Expanding submoduilg to abut withb,, .

izontal) boundaries, we can construct a set of reduction edgdserefore, the TCG for rectilinear modules must satisfy the fol-
(ne;,m0,,,),7 =1,...,p—1, and corresponding closure edgesowing constraint.

in Cy, (C.) sinceby, by, (by, Ly, ), j=1,....p—1. « Inseparability Constraint For vertical (horizontal)
(See Fig. 3(i) and (j) for an illustration.) To maintain the shape  slicing, the set of reduction and closure edges for a
of a rectilinear module, we must treat the set of reduction and  rectilinear module must be all i), (Cy) (i.e., there
closure edges as a whole, and keep the edggsns, ., ), j = exists no edge between nodess inC, (Cy)). Further,
1,...,p— 1, as the reduction ones during processing (i.e., are- every edgeny,,my,,,), 5 = 1,...,p — 1, remains as a
duction edge is not allowed to be changed into a closure one). reduction one.
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(©

Fig. 5. (a) ATCG. (b) The rectilinear modute consists of three submodulés, , b,,, andb,, . (c) An incorrect packing resulting from the original packing
procedure. (d) A correct packing. (Note that this packing is suboptimal; we will show in Section V how to perturb the TCG to obtain an optimal packing.)

Fig. 3(a)—(h) show eight possible situations of rectilinedry the longest path from the source of the induced TCG,
module b, after rotation and flip. As shown in Fig. 3(a)—(d)but also by the relative positions to the other submodules
[(e)—(n)], by,, by, and by, are submodules ob,, obtained of the same module. Let(b;,b;) denote the relative differ-
by slicing along its vertical (horizontal) boundaries. For thence of the positions between the submodulgsand by, ;
situations shown in Fig. 3(a)—(d) [(e)-(h)], the correspondingb;,b;) = X, — Xy, (r(b;,b;) = Y3, — Y3,) for hori-
TCG is illustrated in Fig. 3(i) [()]. zontal (vertical) slicing. For the example shown in Fig. 5(b),

The inseparability constraint will be violated if any reductiom (b1, b2) = 2, 7(b1,b3) = 1, (b2, b1) = =2, r(b2,b3) = —1,
edge(ns,,ny,,, ) becomes a closure edge (i.e., there exists anhs, b1) = —1, andr(bs, bo) = 1. Suppose we have packid
other path(ny, , ny, ..., ny,np,, ) fromn,, tony, ). Fig. 4(a) atY;, = 2. To keep the relative positions between submodules,
shows a feasible TCG for the rectilinear modbyjevith the sub-  Y;, (Y3, ) must equal 3 (1) sinc®,, + r(bs,b2) =2+ 1 =3
modulesby, , by, , by, and its corresponding placement. In con¢Y;, + r(bs,b;) = 1). Therefore, Fig. 5(d) gives a correct
trast, the TCG shown in Fig. 4(b) violates the inseparability copacking while Fig. 5(c) does not. As mentioned in Section lll,
straint, in which the edg@,, , ns, ) in C,, becomes a closure oneall modules should be packed in the topological orde€in
since there exists another pdth,, , nq4, ns,) fromn;, tons,. In - (C,). To process a nonrectangular module, further, the ances-
this case, the rectilinear modulgis divided into two since the tors of the nodes associated with its submodules should have
submodule$,, andb,, are interleaved with another modulg  all been processed, and the descendants of those nodes should
resulting in an illegal placement. not be processed until the coordinates of all the submodules

For the TCG shown in Fig. 4(c), there exist two pathbave been determined. For example, according t@thd C,,)
(Nbgs Nay Mp, ) AN (M, My, Mp, ) from my, to my, in C,, and  of Fig. 5(a), we should determine thecoordinates of modules
H, > H,,. by will be divided into two pieces becausg and b, andb. before processing the nonrectangular mody)end
by, are inserted betweedn, andb,, simultaneously, andl; is moduleb; should not be processed until &Y,s,i = 1,...,3,
larger thanH,,. As in [18] and [22], this can be resolved byare determined. In contrast, if we determine ¥heoordinates
expandingb,, to connect withb,, because it does not causen the orderY;,, Yy, Y,, Y., Y;,, andY,,, we may need to
problems for some practical applications but waste some silicadjustY; if the submodulé,, cannot be packed a4, .

areas. To obtain the packing order of submodules, we modify the
. augmented”;, andC,, before applying the topological sort al-
B. Packing gorithm to find the ordering. Let thian-in (fan-ou) of a node

To maintain the shape of a rectilinear module without res;, denoted by, (n;) (Fout(n:)), be the nodes ;s with edges
sorting to post processing, we must also modify the packing &k;,n;) ((ni,n;)). Given arectilinear modullg, with submod-
gorithm for rectangular modules described in Section Ill. Fig.®esb, i = 1, ..., p, by slicingb, along its vertical (horizontal)
illustrates the difference between the packings for a rectangutenundaries, we introduce additional edges into the augmented
and arectilinear modules. Fig. 5(a) shows a given TCG with foah, (C,) to makeFi,(ny;) = Fin(ns,,,),j =1,...,p—1,€x-
rectilinear modules,, by, b., andb,, whereb, is a nonrectan- cept the edges emanating from. [See Fig. 6(b).] After deter-
gular module whose shape is illustrated in Fig. 5(b). Fig. 5(@)ining a topological order for the nodes in the new augmented
and (d) shows an incorrect packing resulting from the origindl, (C,), we remove the added edges and then comput&'the
packing algorithm and a correct packing, respectively. (Y") coordinates of the modules in the topological order. We as-

To make a packing for a rectilinear module correct, thgociate each node ac-valuec;, to book-keep th& (Y') coor-
coordinate of its submodule must be determined not ontiinate of the module/submodulduring the computation on the
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Topological ordering:

<Ns,nfc,na, by, N Ny, Nps 1y >

.
b= 142=3

Cp = 1+1=2
¢q = max {2, 143.5}
=45

®

Fig. 6. An example computation &f coordinates. (a) The augmentéd, for the C', shown in Fig. 5(a). (b) The new augmentéd after adding
the edgeg(n.,ny, ) and (na,n,, ) to makeFin(ns,) = Fin(ns,) = Fin(ns,). A possible topological order in the new augmentéd is given as
(Res ey May Moy s Nay My, Mg, 1) (C) The c-values of the initial configuration. (d) The-values after relaxing the nodes., n., andn.. (e) Before
relaxing n,,, we need to computey, , cp,, andcy,. ¢, = max{cy, + r(b2,b1),co5 + r(bs,b1), e, } = 1. (f) @, = @, + r(bs,b2) = 3 and
= ¢, + r(b1,bs) = 2.(g) The final configuration after relaxings , , na, ns,, 755, andn,.

Cb3

augmented’;, (C,). The coordinates of the modules/submod- ules are computed as follows. For eaghindtle augmented
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graph, we make, = 0 for the sourcen, andc; = —1 forany Since there exists a path fram, ton,,, in the original transitive
other noden;. We then relax the-value of a node:; in the closure graph, there must exist an edge betwggto n,, ,, con-
augmented;, (C,) as follows. For each node; € F,.:(n;), tradicting the assumption that there exists no edge betwgen
we makec; = max{c;,c; + Wi} (¢; = max{c;,c; + H;}). andny,. Since we only add edges (without deleting any edge)
However, when any node,, of a submoduléy, in arectilinear in the original graph and the new graph is still directed acyclic,
moduleb,, is encountered, the location of the submodule is givenis clear that a topological order obtained from the new graph
by ¢y, = max{cy,, max;—1, ., jzi{ce, +7(b;,b;)}}. Then, the is also one in the original graph.
c-values of other submodulés;s,j = 1,...,p andj # i, are Now, we show that the relative positions between submod-
given byc,, = ¢, +7(bi, b;) according to the relative positionsules of each rectilinear module can be maintained. Without loss
between submoduldg, andb,, before relaxingu, . of generality, given a rectilinear modulgwith submodule$,_,

Fig. 6(a) shows the augmented, for the C, shown in ¢ =1,..., p, obtained by slicing along its vertical boundaries,
Fig. 5(a). We first add the edgds.,,n,) and (n.,n,,) to  we show that the vertical relative positions betwégs will be
the augmented’, to makeF;,(ny, ) = Fin(ns,) = Fin(np,).  kept. By our procedure, thgcoordinates of nodes;. s, prede-
[See Fig. 6(b).] (Note that we do not add edges,n,,) cessors ofiy,s, have been determined before the coordinate of
and (ns,np,) since they source fromm,.) After obtaining b, is computed. The coordinatesdy, s) of n,,s are known by
a topological order, say(ns,nc,nq, b, Nd, Ny, My, Ne),  Felaxingngs. We can compute the coordinates of a submodule
of the new augmented’,, we remove the added edges and,, from submodule$;, s,j = 1,...,p, if b;,s are placed at
start to compute th& coordinates for all nodes based on the,,s, and choose the maximum value as the coordinatg, of
topological order. [See Fig. 6(c)—(9g).] Fig. 6(c) shows the initidfter the location ofb,, is determined, the coordinatestgfs,
configuration, in which all nodes have thevalue —1 except j = 1,...,p andi # j, can be computed by their relative po-
thatc, = 0. Fig. 6(d) illustrates the configuration after relaxingsitions to the submodulg, . Therefore, the vertical relative po-
the nodes,, n., andn,. We then start to process,, . Since sitions among,,s are maintained. Similar claims hold for the
nyp, corresponds to a submodule of the rectilinear modylle rectilinear module sliced along horizontal boundaries.
first encountered and there exists no edge among noges  Since a (simple) graph can have at mosin’?) edges, the
ny,, andn,,, we shall first determine,, [see Fig. 6(e)] and time complexity of adding additional edges is al3en’?). Be-
then compute,, andc;,, [see Fig. 6(f)] before relaxing;, sides, it takes)(m'?) time to compute a longest path on an
to maintain the relative positions of the rectilinear modul@acyclic) constraint graph. Therefore, the time complexity of our
by. Here,cp, = max{cy, + r(b2,b1),ce, + r(bs,b1),cp, }= packing scheme i®(m'?) time. |
max{2—2,2—-1,0} =1,¢p, = cp, +r(b1,b2) =1+2=3, It should be noted that the SP-based packing scheme pre-
andcy, = ¢, +7(b1,b3) = 1+ 1 = 2. We then relax the node sented in [2] need®(m'?) time.
ny, , resulting incg = max{cq, ¢y, + Hp, } = max{2,14+3.5 =
4.5}. The relaxation process continues for the nodgsny,,
ny,, and finally n,, resulting in the final configuration shown V. ALGORITHM

in Fig. 6(g), in which ally” coordinates have been determined.  5,¢ 51gorithm is based on simulated annealing [8]. Given an

Theorem 2: Given a feasible TCG for a sliceable rectilinea[nitia| solution represented by a TCG, we perturb the TCG to

module, the packing scheme proposed above gives a feas{igin 4 new TCG. The perturbation continues to search for
placement inD(m’?) time, wherem/ is the number of rectan-

a “good” configuration until a predefined termination condi-
gular modules and SmequIGS' ) . tion is satisfied. To ensure the correctness of rectilinear module
Proof: It was shown in [11] that TCG gives a feasibl

epacking, the new TCG for each rectilinear module must satisfy

placement for rectangular modules if we apply a longest alge TcG feasibility conditions described in Section 11l and the

rithm on TCG to compute the (y) coordinates of the modules;nsenarability constraint presented in Section IV-A. To identify
based on their topological ordering@, (C,). Here, we need

_ - a feasible TCG for perturbation, we need to identify reduction
to guarantee that all submodules in each rectilinear module vy
_ o -dges.
abut and the relative positions between submodules are main-

tained after packing. Before applying the topological sorting
gorithm, we modify the TCG to mak&,(ny,) = Fin(ns,,,),
j=1,...,p— 1, for each rectilinear modull, with submod- Since TCG is formed by directed acyclic transitive closure
ulesby,, i = 1,...,p, by adding edges into the augmentéd graphs, given an arbitrary node in one transitive closure
(Cr). We claim that 1) the resulting graph is directed acycligraph, there exists at least one reduction edgen;), where
after adding the additional edges; and 2) a topological order ob- € F,.(n;). For nodes, n; € Fou(n;), the edg€n;, ny)
tained from the new graph is also one in the original graph. cannotbe a reduction edgeif € Fi,:(n;). Hence, we remove
Let n,, andn,, denote two nodes in the resulting graphthose nodes i, (n;) that are fan-outs of others. The edges
which are associated with two submodules of the rectilinebetweem,; and the remaining nodes i, (n;) are reduction
moduleb . If there exist no edge betweer andn,, , we add edges. Forth€’;, of Fig. 5(a),Fout(nc) = {na,ns,,n4}. Since
an additional edgén, s, ) to the graph, where,, is the prede- n,, andnq belong toF,¢(n.), edges(n.,ny,) and (n.,nq)
cessor ofn,, . Assume that the resulting graph is cyclic. Therare closure edges while:., n,) is a reduction one. The time
must exist a pathin, , . ..,ny) fromn,, to ny in the original complexity for finding such a reduction edgedgm'?), where
graph. This implies that there exists a path_,...,nx,np,). m’ is the number of rectangular modules and submodules [11].

a'k. Reduction Edge Identification
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B. Solution Perturbation To reverse a reduction edge;,n;) in a transitive closure
G graph, we first delete the edge from the graph, and then add the

We apply the following eight operations to perturb a TC edge(n;, n;) to the graph. For each nodg € Fi(n;) U {n,}

* Rotation:Rotate a rectangular_ modul_e. andn; € Fou(n;) U {n;} in the new graph, we shall check

. Swap:Swap two nodes associated with rectangular mogether the edgén,, n;) exists in the new graph. If the graph
ules in bothC, andC. _ . contains the edge, we do nothing; otherwise, we need to add the

* ReverseReverse aeduction edgen Cj, or C,,. edge to the graph and delete the corresponding edge:; ) or

* Move:Move areduction edgdrom one transitive closure (,,, ,,, ) in the other transitive closure graph, if any, to maintain
graph C}, or C,) to the other. the properties of the TCG.

» Transpositional MoveMove areduction edgdrom one 4) Move: The Move operation moves eduction edge
transitive closure grapi§, or C,) to the other and then (ni,nj) in a transitive closure graph to the other, where
transpose the two nodes associated with the edge. Iisd p,; are not associated with two submodules of the same
clear later that this operation is different from performingectilinear module. Move switches the geometric relation of
Move and then Reverse. the two modules; andb; between a horizontal relation and a

* Perpendicular Flip:Flip a rectilinear module about theygrtical one. For two modulds andb;, b; - b; (b; L b;) if
axis perpendicular to the cut lines for obtaining its sullpere exists a reduction edge;, n;) in C), (C,); after moving

modules. N _ the edge(n;,n;) to C, (Cj), we have the new geometric
+ Parallel Flip: Flip a rectilinear module about the axis parte|ations; 1 bj (bi b bj).

allel to its cut lines. - To move a reduction edge;, ;) from a transitive closure
* Twirl: Rotate a rectilinear module. graphG to the other” in a TCG, we first deletén;, n; ) from G

Note that Rotation, Swap, Reverse, and Move are first intrand then ad@n;, n;) to G’. Similar to the Reverse operation, for
ducedin [11], which can be performed inrespectdg), O(1), each nodey, € Fi,(n;) U {n;} andn; € Fou(n;) U {n;}, we
O(m'?), andO(m/?) times, wheren/ is the number of modules shall check whether the ed@e,., n;) exists inG’. If G’ contains
and submodules. Further, the resulting graph after performitige edge, we do nothing; otherwise, we need to add the edge to
any of these operations on a TCG is still a TCG. G’ and delete the corresponding edag, n;) or (n;, nx) in G,
Rotation, Swap, Perpendicular Flip, and Parallel Flip wiif any, to maintain the properties of the TCG.
not change the topology of TCG, and thus the inseparability5) Transpositional Move:The Transpositional Move opera-
constraint will not be violated, either. However, Reverse, Movéipn removes aeductionedge(n;, n;) from a transitive closure
Transpositional Move, and Twirl will, and we may need t@raph, and adds an edge;, n;) to the other, where; andn;
update TCG after performing Reverse, Move, Transpositiorale not associated with two submodules of the same rectilinear
Move, and Twirl. Further, in order to guarantee that the inseprodule. Transpositional Move switches the geometric relation
arability constraint will not be violated, we need feasibilityof the two module$,; andb; between a horizontal relation and a
detection during the operation. We first detail the operations wertical one and changes the ordering of the two modylesd
the following. b; in their geometric relation. For two modulgsandb;, b; F b;
1) Rotation: To rotate arectangular moduleb;, we only (b; L b;) if there exists a reduction edge;,n;) in C;, (C,);
need to exchange the weights of the corresponding nodie  after transpositionally moving the edge;, n,) toC,, (Cy), we

C, andC,. have the new geometric relation L b; (b; + b;).
Lemma 1: The inseparability constraint of a TCG will notbe To transpositionally move a reduction edge, n;) from a
violated for the Rotation operation. transitive closure graply to the otherG’ in a TCG, we first

Proof: Since the configuration of a TCG remains the samgelete(n;, n;) from G and add(n;,n;) to G’. Similar to the
for the Rotation operation, the inseparability constraint will ndtlove operation, for each nodg, € Fi,(n;) U {n,} andn, €
be violated. B F,u.(n;)U{n;}, we shall check whether the edge., n;) exists
2) Swap: To swap nodes; andn; of two rectangular mod- in G'. If G’ contains the edge, we do nothing; otherwise, we
ulesb; andb;, we only need to exchange the noggesindn; in  need to add the edge & and delete the corresponding edge

both C;, andC,,. (nk,n) or (ng,ng) in G, if any, to maintain the properties of
Lemma 2: The inseparability constraint of a TCG will not bethe TCG. We have the following theorem.
violated for the Swap operation. Theorem 3: TCG is closed under the Transpositional Move

Proof: Since we only exchange the nodes of rectangulaperation, and such an operation takésn'?) time, wherem’
modules and the topology of the TCG remains the same afiethe number of modules and submodules.
the Swap operation, the inseparability constraint will not be Proof: We first show that the resulting grapt andC,
violated. m of a TCG satisfy the three properties of TCG after performing

3) Reverse:The Reverse operation reverses the direction tife Transpositional Move operation.

areductionedge(n;,n;) in a transitive closure graph, where Without loss of generality, we focus on the case for trans-
n; andn; are not associated with two submodules of the sarpesitionally moving a reduction edde;,n;) from Cj, to C,.
rectilinear module. For two modulés andb;, b; - b; (b; L  For Property 1, suppose that the resultif\gis not acyclic after
b;) if there exists a reduction edge;,n;) in C, (C,); after we delete a reduction edge,,n;) from C;, and add an edge
reversing the edge;, n;), we have the new geometric relationn;, n;) to C,. There must exist a path from ton; in the orig-
bj Fb; (b; Lb;). inal C,,. This implies that the edde:;, n;) is also in the original
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C, sinceC, is a transitive closure graph. This is a contradiction 7) Parallel Flip: The Parallel Flip operation flips a recti-
since(n;, n;) cannot both exist in the original TCG (Property 2)linear moduleb, about the axis parallel to the cut lines for ob-
Therefore, the new’, must be acyclic. The ne&, must also taining its submodules by swapping the nodgsandny,_, . ,,

be acyclic since we do not add any edge into the origihalFor & = 1,...,|p/2], in both C}, and C,. Given a rectilinear
Property 2, each pair of nodes must be connected by exactly omeduleb, consisting of submodulds,, i = 1,..., p, formed

edge either in the ne@, or in the newC, after the operation by vertical (horizontal) cuts (i.eb, = by, ., (bs, L by, ,),
because the corresponding edge will be deleted ftgnafter there exist reduction edgés, , 1, , ) and their corresponding
the edgén;, n;) is added ta@’, . For Property 3, suppose that theclosure edges iy, (C,), wherej = 1,...,p — 1. After
new C, is not a transitive closure of itself. Then, there exists swapping the nodes,, andn,__, .,k =1,...,[p/2],inboth
path(n,,...,n;j,n;,...,n,) inthe newC,, buttheC, doesnot of C;, andC,, we have the new reduction edg@s,, , ny,_, )
contain the closure edge.., n, ). During the operation, for each and their corresponding closure edge<iin (C,), implying
nodeny € Fi,(n;)U{n;}andn; € Fou(n;)U{n;} inC,,we by by, (by, L by, ,), Wherel =p,... 2.
add the edge@:, n;)s to the new’,, and delete them frorfy), . Fig. 7(c) shows the resulting, C,, and placement after
Therefore, at least one of the eddes, n;) and(n;,n,) does parallel flipping the rectilinear modulk, of Fig. 7(b). Notice
not exist in the originalC’;,; otherwise, we would have addedthat after swapping the nodes, andn;, in both C;, andC,
the closure edgén,, n,) into the newC,, during the Transpo- of Fig. 7(b), we introduce the new edges,, , 7, ), (76, 76, ),
sitional Move operation. This implies that the origidg) is not  and(n, , ns,) in C,, of Fig. 7(c), implyingb; L b andby L bs.
a transitive closure graph, contradicting to our assumption. It isParallel Flip needs to perform the Swap operat{gi2|
clear that the deleted edges@f are closure edges of the newtimes, wherep is the number of submodules in a rectilinear
C,, which cannot be the closure edgegin Therefore, the new module, and each Swap operation guarantees to perturb into
C}, is still a transitive closure graph of itself. a unique feasible TCG W (1) time. We have the following
The time complexity is dominated by checking whether thdeorem and lemma.
edges(ni,n1)s (n € Fin(n;) U {n;} andn; € F,u(n;) U Theorem 5: TCG is closed under the Parallel Flip operation,
{n;}) exist in the new graph and by inserting and deleting tf&nd such an operation tak€gp) time, wherep is the number
corresponding edges. Since there are at mist’) n,s and Of submodules in the rectilinear module.
O(m’) n;s, the operation take8(m’?) time in total. n Proof: Since the Parallel Flip operation only reverses the
6) Perpendicular Flip: The Perpendicular Flip operationsequence of the nodes,,j = 1,..., p, of arectilinear module
flips a rectilinear modulé, about the axis perpendicular to thebs in both Cj, and €, without changing the topology of TCG,
cut lines for obtaining its submodules by changing the diffefl€ resulting graphs are still a TCG. _
ence of relative positions fromb;, b;) to Wy, — Wy, —r(b;, b;) The ParaI'IeI Flip operation has to perform the Swgp operation
(Hy, — Hy, —r(b;,b;)) for horizontal (vertical) cut lines, where for each pair of the symmetric nodes, andns,_,,, in both
i,j =1,...,pandj # i. Fig. 7(b) shows the resulting),, Cr»andCu, k=1,...,|p/2], and a Swap operation takeg1)
C,, and placement after perpendicularly flipping the rectilinedime [11]. There argp/2| pairs of nodes; there fore, the time

moduleby. r(b1,bs) = 1, r(bi,bs) = 2, r(bs,by) = —2, ComPlexityisO(p). - . =
r(bs, bs) = —1, (b3, by) = —1, andr(bs, bs) = 1 in Fig. 7(b) Lemma 4: The inseparability constraint of a TCG will not be
while 7(b,bs) = r(bi,bs) = r(ba,b1) — r(ba,bs) — violated in Parallel Flip operation.

r(bs, b1) = (b3, b) = 0 in Fig. 7(a) Proof: The Parallel Flip operation only reverses the se-
Since Perpendicular Flip changes only the relative positiofsc© of nodes,,, j = 1,...,p, of a rectilinear modulé,
without changing the topology of a TCG, the inseparability con-

of each pair of submodules, the topology of TCG remains tg?raint will not be violated. .

same after the operation. We have the following theorem and8) Twirl: The Twirl operation rotates a rectilinear module

lemma. . : .
. . . b h h hts of th
Theorem 4: TCG is closed under the Perpendicular Flip opé’ by exchanging the weights of the corresponding nadgs

. . . ) 1 =1,...,p,inCy andC,, and transpositionally moving the re-
eration, and such an operation tak&®?) time, wherep is the duction edgegn, ,ny. ), j = 1 p— 1, from a transitive
: HH IR j+1/1 . 7ty ’
number Of_ supmodules in the rgculmear_module._ closure graph to the other. Given a rectilinear modyleon-
Proof: Since the Perpendicular Flip operation only €xgjsting of submodules,, obtained by vertical (horizontal) cuts
changes the differences of relative positions among submodylgs by by (by. L by..,)); after exchanging the weights
. - . . . . e Vb, Dj+1 D j bj+1/)0
in a rectilinear module without changing the configuration Qi transpositionally moving the reduction edges, we rotate the
TCG, the resulting graphs are still a TCG. _ rectangular submodulés,,i = 1,...,p, and make,, L by, |
It takesO(1) time to exchange the value for the relative POth,, + by, )l =p 2
. . 1 -1/ Yty
sition between two submodules; th_erefore, we r@épf) time Fig. 7(d) shows the resulting},, C,, and placement after
to update these values for each pair of submodules if thene afvirling the b, of Fig. 7(c). To transpositionally move the re-

submodules in a rectilinear module. B duction edge(ns, , ns,) from C, to Cy, we first remove the
Lemma 3: The inseparability constraint of a TCG will not bereduction edgén,, , ny,) from C,, and add(ns,, ny,) to Cj,.
violated for Perpendicular Flip operation. Since{ny,} U Fin(ny,) = {ns,} and{ny, } U Fou(np,) =

Proof: Since the configuration of TCG remains the samgy, } in C),, for each noder, € {ny,} andn; € {n, }, we
after the Perpendicular Flip operation, the inseparability coghall check whether the eddes,n;) exists. Since the edge
straint will not be violated. B (ny,,np, ) is already added during the transpositional move, we
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(a) Initial configuration of TCG
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(b) Perpendicular Flip b,
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Fig. 7. Examples of perturbations. (a) The initial TGG,(andC',) and its corresponding placement. (b) The resulting TCG and placement after perpendicularly
flipping the rectilinear modulé, shown in (a). (c) The resulting TCG and placement after parallel flipping the rectilinear niosludsvn in (b). (d) The resulting
TCG and placement after twirling the rectilinear modulley —90° shown in (c).
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do nothing. Similarly, to transpositionally move the reductio ,
edge(ny, , ny, ) from the newC, to the newC’,, we remove the
reduction edgény, , ny,) from the newC, and add(ny. , ns. )
to the newC),. Since{ny, } U Fin(np,) = {nep, } and{n;,} U
Fout(np,) = {np,, np, } inthe newC), and(ny, , ny, ) is already
added, we only need to add the edgg, , ns, ). Finally, we ex-
change the weights of each nodg, : = 1,2, 3, in C, andC, Cy
of Fig. 7(c). Fig. 7(d) illustrates the resulting TCG. (a) Move the edge (na,my)) from Cv to Ch
The Twirl operation needs to perform Rotation and Tran:
positional Movep andp — 1 times, and each Rotation and
Transpositional Move operation guarantees to perturb into a fe
sible TCG in respectiv®(1) andO(m/?) times, where is the
number of submodules in a rectilinear module andis the
number of rectangular modules and submodules. We have
following theorem. C,
Theorem 6: TCG is closed under the Twirl operation, anc (b) Transpositionally move the edge (na,my,) from Cv to Ch
such an operation take3(m'2p) time, wherep is the number
of submodules in a rectilinear module and is the number of Fig. 8. Examples of perturbations (continued from Fig. 7). (a) The resulting
rectangular modules and submodules. TCG and placement after moving the reduction edge n,, ) from theC,, of
Proof: By Lin and Chang [11] and Theorem 3, TCG igFig. 7(d) toC.. (b) The resulting TCG and placement after transpositionally
close under the Rotation and Transpositional Move operatiofg¥ing the reduction edger.. n;;,) from theC', shown in (€) taC..
The resulting graphs are still a TCG after performing the
Rotation and Transpositional Move operatign@ndp — 1 n; = n;,, andn, = n,, for a reduction edgén,, . n;, ), the
times, respectively, wherg is the number of sumbodules inedge will become a closure edge (see the example of Fig. 4(b)).
the rectilinear modulé,. The time complexities of Rotation Similar claims hold for the Move and Transpositional Move
and Transpositional Move operations ap1) and O(m'?), operations.
respectively. Therefore, the time complexity of the Twirl The Twirl operation performs the Transpositional Move op-
operation isO(m'?p). B erationp — 1 times on each edgew,, ns,.,,),j = 1,...,p—1,
for a rectilinear module with submodules. Therefore, if we can
guarantee that the inseparability constraint of TCG will not be
violated for each Transpositional Move operation, the insepara-
To maintain the shapes of rectilinear modules, TCG must shtlity constraint of the resulting TCG will not be violated. Be-
isfy the inseparability constraint for each rectilinear modulsides, we also have to show that the inseparability constraint of
Among the eight operations, only Reverse, Move, Transposi- will be maintained during the Twirl operation. Without loss
tional Move, and Twirl could violate the constraints, which canf generality, we transpositionally move the reduction edges
easily be detected during perturbation. When we move an edgg,; , ns,.,)S,j = 1,...,p—1,fromC}, to C, in twirling a rec-
(ni,m;) or reverse/transpositionally moye;, n;), the insepa- tilinear moduleb,. We first delete the edgeus, , s, ) from Cj,
rability constraint will be violated ifi;, € Fin(n;) U{n;} and and add the edgew,, ns, ) to C,. Similarly, the edgén,, , ns, )
my, € Fou(n;) U {n;}, where|l — k| = 1 since(ns,,ns,) is deleted fromC}, and a new edgén,,,ny,) is added taC,.
would become a closure edge. Since Twirl consists of Rotate é®idcen,, € Fin(np,) U {np, } andny, € Fout(ne,) U {np, },
Transpositional Move operations, the inseparability constraithte edgg(n,, , np, ) Will be added toC,, after transpositionally
will not be violated if the inseparability constraint is satisfied fomoving the edgény, , ny, ). (ns, , 7, ) remains areduction edge
each Transpositional Move operation. By doing the feasibilisince all newly added edges that start frog or an ancestor of
detection during the Reverse, Move, or Transpositional Movg, cannot makén,,,n;, ) a closure one. By performing such
operation, we can guarantee that the resulting TCG is stilla T@peratiorp — 1 times, the reduction edgés,, ., , , 4, )s and the
for rectilinear modules. We thus have the following theorem. corresponding closure edges will be added’toand there ex-
Theorem 7:The inseparability constraint of a TCG is notists no edge among nodes, andn;,., in C,. Therefore, the
violated for the Reverse, Move, Transpositional Move, or Twithseparability constraint of a TCG is not violated for the Twirl
operation with the feasibility detection. operation with the feasibility detection. [ |
Proof: The inseparability constraint will be violated if Fig. 8(a) shows the resulting},, C,, and placement after
a reduction edgén,,,ny,) is converted into a closure one.moving the edgén,, 1y, ) from C, shown in Fig. 7(d) ta’},.
Without loss of generality, we focus on the case for reversir®nce{n,} N Fin(n,) = {na,n.} and{ny, } N Fout(np,) =
a reduction edgén;,n;) in C,. During the operation, we {n,, } in Cj,, we shall check the edde.., n;, ) for the insepa-
should check the existence of each e@geny) in C,, where rability constraint. The inseparability constraint will not be vi-
nodesn; € Fi,(n;) Un; andn, € Fou(ni) U n;. If such olated becausé. andb,, are not adjacent submodules of the
edge does not exist, we would add the edgé€’'toand delete same rectilinear module. Fig. 8(b) shows the resultiag C,,,
the corresponding edde;, nx) or (ng,n;) in C,. Each newly and placement after transpositionally moving the gdgen,., )
added edge i, must be a closure edge; therefore, if nodesom the C, of Fig. 8(a) toC),. Since{ny,} N Fiy(ny,) =

nbl
m 35

C

ne na

n n
D245 Q135

ne ny

C. Feasibility Detection
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1 25 2
Algorithm: Simulated_Annealing Floorplanning(P,¢,, k) 22 2 1y,
1 begin 2.5 by E—
2 E + TCG; /* initial solution */ b oo o
Dav 2| by | by bs My 1y
3 Best + E; T + In(F)s N =km; 1.5 Mpy b4 Tos
4 repeat 5 ’72 Ty
5 MT « uphill + reject + 0; — 1 c
6 repeat 1 %2 3 %4 v
7 SelectMove(M); (a) (d)
8 Case M of
9 M1: NE + Rotation(E); Fig. 10. (a) A nonsliceable rectilinear module. (b) The componerds,iand
10 M2: NE + Swap(E); C, for the rectilinear module of (a).
11 M3: NE « Reverse(E);
12 if (Feasibility Detection(NE)==Fail) ) ) .
13 Jump to Line 7; stateN £’ can be obtained by applying the operation to the cur-
14 Mj: NE « Move(E); . rent state. If the new stateV £ gives a better cost thafi (i.e.,
15 if (Feasibility ]?etectxon(NE)::Fall) Acost — cost(NE) _ cost(E) < 0)or e—Acost/T ig smaller
o Jump to Line 7; th dom valuRandomth tateV E is selected
17 M5: NE « Transpositional Move(E); an a random valuRandomthe new sta is selected as
18 if (Feasibility Detection(NE)==Fail) the current staté’; otherwise, the current staté remains un-
19 Jump to Line 7; changed.
20 M6: NE « PerpendicularFlip(E);
21 M7: NE < ParallelFlip(E);
29 M8: NE « Twirl(E); P(E) VI. TCG FORNONSLICEABLE RECTILINEAR MODULES
3?1 if (E‘ilaf:;l;zy Ssze;_“"“(NE)zzFa"‘l) Due to the limitation of space, we briefly give the idea on
25 MT & MT +1; Acost + cost(NE) — cost(E); hqw to deal vy|_th nonsliceable rectilinear modules._ For a non-
2 if (Acost < 0) or (Random < =) sliceable rectilinear module, each zone may contain mort_a_than
27  then one submodule. Therefore, to maintain the shape of a rectilinear
28 if (Acost > 0) then uphill + uphill +1; module, we need to keep the relative positions of the submod-
29 B« NE; ules in a zone as well as between zones. Given a nonsliceable
30 if cost(E) < cost(Best) then Best + E; il dulés with by slici f left to riaht
31 else reject  reject + 1; rectilinear modulé, with p zones by s |cm(j;b_ rom leftto right
32 until (uphill > N) or (MT > 2N); (or from bottom to top) along vertical (horizontal) boundaries,
33 T =rT; /* reduce temperature */ for each pair of submodulég, andb,; in different zones with
34 until ("7 > 0.95) or (T <e); by, left to (below)b,,, we introduce an edge,, n;,) in Cj,

35 end

(Cy). Also, for each pair of submodulés, andby, in a zone
with b;, below (left to)b,,, we introduce an edggus, , 1, ) in
C, (Cp). Similar to the’inseparability constraint for sliceable
rectilinear modules, for two submodulis andb;; in adjacent
) zones, we must guarantee that the corresponding(egdger; ;)
{ne,} and{na} N Fout(na) = {na,ns, } in Cp,, we shall check s 5 reduction edge during perturbation to maintain the shape of
(n45,n, ) for the constraint. Sinck, andb,, are not adjacent j rectilinear module. Let(b;, b;) denote the spacing between
submodules, the inseparability constraint will not be violatedyg submodules;, andb,, in thex (y) direction if by, - by,
(by, L by,). For examples(by,bz) = 2 sinceb, L b; and

D. Floorplan Design Algorithm their spacing in the direction is 2. To prevent submodules from

In this subsection, we describe our rectilinear module pladeeing deformed by other modules, for every pair of submodules
ment algorithm (see Fig. 9 for the pseudocode). Our algorithim andb,; that do not abut or are not in adjacent zones, we need
is based on the simulated annealing method [8]. We first irfP impose the following constraint:
tialize a TCG as the current stafe as well as the best state « Dimension ConstraintW,, + --- + W, < s(b;,b;)

Fig. 9. Floorplanning design algorithm for rectilinear modules using TCG.

(Bes). We set the initial temperatuté = A,,,,/In(P), where (Hy + ---+ H, < s(b;,b;)) if there exists another path
P is the initial probability of accepting uphill moves and the (M Ny ooy My, mp, ) from my, to my; in addition to the
value is very close to 1. Then, we s8t= km, wherem and edge(ny,, 1, ).

k are the number of modules and a user defined value, respecAs the example shown in Fig. 10, for each pair of submod-
tively. T" is gradually cooled down until the value is lower thamles in different zones, we introduce an edg€’in(see theC},

a predefined value, or the rejection rate is larger than 0.95. Lebf Fig. 10(b)). Also, for the submodulés, andb, in the same
uphill denote the number of bad moves. In each temperatuzenez;, we introduce an edgéu,,ns, ) in C,. To maintain

the following process is repeated uniiphill is larger thanV.  the shape of the rectilinear module, we must guarantee that the
or the procedure runs more thaw times. We first randomly edges(ny, , 7, ), (Rpys s ), (65, M, ), @nd (ny,, 1y, ) are re-

pick one operation from the eight operations proposed in Seliction edges during perturbation. If any of the four edges be-
tion V-B. As mentioned in Section V-C, if the selected operatiocomes a closure edge, the submodules will no longer be in ad-
is Reverse, Move, Transpositional Move, or Twirl and the insefacent zones in the resulting placement. (See Fig. 4(b) for an
arability constraint of TCG is violated during the operation, wexample.) Besides, for submodulgs andb,, that do not abut
give up the operation and reselect a new one; otherwise, a raware not in adjacent zones, if there exists an additional path
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H,,..., H, cannotbe larger thas(b1, b) to avoid submodules ‘| ]
by, andb,, from being deformed by modulés, . .., andb,.
According to the earlier discussions, all operations introduct
in Section V-B can be applied with minor modifications by con
sidering the inseparability and dimension constraints. ’J

VII. EXPERIMENTAL RESULTS |J

Based on the simulated annealing method [8], we impli [ ]
mented the TCG-based rectilinear module placement algoritt | [
using the TCG representation in the C++ programming lal lﬂ T
guage on a 433 MHz SUN Sparc Ultra-60 workstation wit|
1 GB memory. The experiments consist of two parts: are ]
optimization and wirelength optimizationFor area optimiza-
tion, we first compared our method with that presented in [21]
based on the same circuits generated byeXal. To generate Fig. 11. Resulting placement of ami49_L (area37.24 mnf).
L- and T-shaped rectilinear modules for experimentation,
they combined two (three) rectangular modules in the MCN — T
benchmark ami49 to form an L-shaped (T-shaped) modu 1 :|

(Note that all previous works on rectilinear modules generat:
circuits by themselves without making comparisons wit
others. Therefore, most of the data are not available to us.) T
parameters used for simulated annealing are as follows: init — | I—
temperature= 0.9°, termination temperature: 30°, and the [
probabilities for operationd/1, M2, M3, M4, M5, M6, M7,
and M8 are 0.125, 0.15, 0.15, 0.15, 0.15, 0.075, 0.075, a1
0.125, respectively. )
Columns 2, 3, and 4 in Table | list the respective humbe L‘_ [

[ ]

of rectangular, L-shaped, and T-shaped modules. ami49
consists of seven rectangular modules and 21 L-shaped m l
ules, and ami49_LT consists of six rectangular modules, :
L-shaped modules, and one T-shaped mo#ulks shown

in the table, our method achieved significantly better are j
utilization for ami49_L and ami49_LT, compared to Xt al.
[21]. Further, our method is also very efficient (see Columgg 12, Resulting placement of ami49_LT (are87.37 mnd).
10 for the runtimes). Figs. 11 and 12 show the placements for

ami49_L and ami49_LT. In addition to the two circuits use — = —
in Xu et al. [21], we also construct three circuits based o
ami49. Their configurations are listed in rows 3, 4, and 5 ¢ — F

Table I. The experimental results show that our TCG-bas
algorithm consistently obtains good results; the dead spaces
all smaller than 6%. Fig. 13 shows the placement for ami49_f—— |

In addition to L-shaped and T-shaped modules, we also ge :L J

erated two cases with arbitrarily shaped modules, sucld-as
+-, U-, stair-shaped, etc., to show the flexibility of our methoc i
Our test cases were generated by cutting a rectangle into a s¢
modules. Fig. 14(a) and (b) [see also Fig. 15(a) and (b)] sho |_
the optimum placement and the resulting placement genera .
by our methods, respectively. There are six (22) rectangular, t —ID
(1) L-shaped, and nine (6) arbitrarily shaped modules in Fig. : ' I_

1Although our experiments only “demonstrate” the optimization of the cost
metric defined by area or wirelength, the TCG-based approach readily appiif;@_ 13. Resulting placement of ami49_1 (ares7.40 mn?).
to other considerations. -
2In addition to the two modified ami49 benchmark circuits, Xu et al. [21] also
experimented on a small randomly generated test case with 2 rectangular gg@e Fig. 15). The dead space is 9.375% (6.944%) and runtime
4 L-shaped modules. Unlike the two modified ami49 benchmark circuits tha 1224 (1409) s.

can be re-generated (since their module IDs are given in the paper), however, e L . dth irel h of
we are unable to re-construct the small randomly generated test case. Therefor&,OF liming optimization, we estimated the wirelength of a net

we focus on the comparison with the two modified ami49 benchmark circuitdy half the perimeter of the minimum bounding box enclosing
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TABLE |
AREA AND RUNTIME COMPARISONSBETWEEN XU et al.[21] (ON SUN SPARC ULTRA | WiTH 233 MHz) AND TCG (ON SUN SPARC ULTRA 60 WITH 433 MHz).
(NOTE THAT [21] DOES NOTREPORTRUNTIMES FORAMI49_L AND AMI49_LT. THE RUNTIME FOR AMI49_L IS TAKEN FROM ITS JOURNAL VERSION[22],
BUT [22] DOES NOTREPORT THERESULT FORAMI49_LT.) THE OPTIMAL AREA OF AMI49 1S 35.445 mm

# of # of # of Xu et al. [21] TCG

Circuit | rectangular | L-shaped | T-shaped || Area | Dead space | Time Area | Dead space | Time
modules modules | modules || (mm?) (%) (sec) || (mm?) (%) (sec)

amid9 L 7 21 0 37,39 5.20 1200— 37,24 4.83 448
ami49 LT 6 20 1 39,43 10.09 NA 37,37 5.16 2073
ami49_1 8 19 1 - - - 37,40 5.22 991
amid9._2 18 11 3 - - - 37,51 5.51 603
ami49_3 9 11 6 - - - 37,61 5.76 620

Comparison I - ] 1.54 [ - ] - 1.00 -

H L

L]

al=n

-

(b)

(

Fig. 14. (a) The optimal placement (area64). (b) The resulting placement
of (a) (area= 70).

[ T N | e . I
L _ |

T
i—r e ] ~——

Fig. 16. Resulting placement of ami49_2 (wite740 mn?).

Fig. 15. (a) The optimal placement (areal44). (b) The resulting placement
of (a) (area= 154). TABLE 1l

WIRELENGTH AND RUNTIME OF TCG (ON SUN SPARC ULTRA60 WITH
433 MHz). (NOTE THAT WE ARE THE FIRST WORK THAT RUNS

the net. The wirelength of a placement is given by the summa- WIRELENGTH WITH RECTILINEAR MODULES)

tion of the wirelengths of all nets. Table Il shows the experi-

mental results of TCG in optimizing wirelength. (Note that our # of # of # of TCG

work is the first to report the results on wirelength optimization ~Circuit RSC“I- L'S}:ialied T'SléaI;Ed wirelength | Time

for rectilinear modules. So there is no comparative report here ——— o 7“ il m°2;‘ S | mo Ou e (17“8‘2) (1?;;

. . . . . . ami
The resultmg plac_ement for ami49_2 with wirelength optimiza- .19 17 6 20 1 832 2103
tion is shown in Fig. 16. 2mid9 1 3 19 1 708 750
amid9 2 18 11 3 740 605

VIIl. CONCLUDING REMARKS amid9 3 9 11 6 834 535

We have presented a TCG-based algorithm to deal with
rectilinear module packing for nonslicing floorplans. Weyperimental results have shown that our method is very
have derived necessary and sufficient conditions of TC&icient and effective.
for rectilinear modules. Our algorithm not only can avoid
infeasible packing during perturbation but also can eliminate REFERENCES
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