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Abstract

While flowing through a porous medium, a reactive fluid dissolves minerals thereby increasing its porosity and
ultimately the permeability. The reactive fluid flows preferentially into highly permeable zones, which are therefore
dissolved most rapidly, producing a further preferential permeability enhancement. Thus, the reaction front may be
unstable. However, other factors, such as diffusion, suppress the instability of a reaction front. This study presents a

numerical model to evaluate the interactions between mechanisms that determine the shape of a reactive front. That is,
a method is developed to solve a set of nonlinear equations coupled with fluid flow, species transport, and rock–fluid
reactions and includes the effects of grain dissolution and the alteration of porosity and permeability due to mineral–

fluid reactions. The numerical model enables us to evaluate how a dissolution reaction affects the porosity structure and
fluid pressure variation, from which local Darcy flux can then be evaluated. In addition, the model is used to examine
how upstream pressure gradient affects the morphological instability of the species concentrations and the aquifer

porosity. Simulation results indicate that, although stable for small upstream pressure gradients, the growth of a planar
front becomes unstable for large upstream ones. Moreover, the diffusive, advective and resultant species fluxes of both
these mechanisms are computed and presented to further elucidate the behavior of the morphological instability for a

planar concentration and porosity front that results from the interactions between diffusion and advection. r 2002
Elsevier Science Ltd. All rights reserved.
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1. Introduction

In subsurface formations, modeling coupled reactions

and flow involve critical geochemical functions in terms
of interpreting phenomena such as weathering, diagen-
esis and ore deposition (Lichtner, 1996). The water–

mineral interaction is of relevant interest in several
branches of geochemistry that includes subsurface flow
and chemical processes. The change in aquifer porosity
owing to the interaction of a penetrating fluid with a

porous solid has received considerable attention. That is,
due to complete rock dissolution, these phenomena can
produce dissolution fingers and create flow channels

(Liu et al., 1997). When flowing through a porous
medium, a reactive fluid dissolves the mineral, thereby
increasing porosity and ultimately permeability. Re-

gardless of whether hydraulic or thermal driving forces
are maintained, the flow pattern evolves as the perme-
ability distribution changes. The reactive fluid flows
preferentially into zones of high permeability, which are

subsequently dissolved rapidly, ultimately producing a
further preferential permeability enhancement. Thus,
the reaction front may be unstable. However, other

factors such as diffusion consistently compete with the
flow focusing mechanism, which prevents the elongation

$Code available from server at http://www.iamg.org/
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of the finger from proceeding indefinitely. The diffusion
effect inhibits nonuniformities of the reaction front,

which ultimately produces either a planar or nonplanar
reaction front. The instability of reaction fronts has been
studied extensively (Chadam et al., 1986). Through an

analytical approach, Sherwood (1987) developed a
simple model that demonstrates how the Damk +ohler
number and the acid capacity number affect the
instability of a planar reaction front. However, this

investigation did not incorporate the porosity variation,
which produces variation in microscopic fluid velocity.
Hinch and Bhatt (1990) examined the stability of a

moving reaction front using the standard of chemical
reaction rate proportional to the product of concentra-
tion of fluid and soluble minerals. Furthermore,

Ortoleva et al. investigated the stability of a moving
reaction front (Chadam et al., 1986; Ortoleva et al.,
1987a, b). They used complex reaction equations and

included solute diffusion as well as significant changes in
the porosity. A series of studies, which considered
layered porous media (Xin et al., 1993), was performed
on the shape stability of a moving reaction front via the

perturbation method, in which a moving reactive front
for viscosity changes (Chadam et al., 1991). According
to their results, a planar dissolution front is unstable and

small perturbation to the front may develop into long
fingers. Although the linear stability analysis of reactive
transport system equations demonstrates the morpho-

logical instability of planar fronts, the nonlinear
problem must be numerically simulated to understand
more thoroughly the dynamics of the reactive fingering
problem. Steefel and Lasaga (1990) used two-dimen-

sional simulations to investigate how coupling chemical
reactions and fluid flow affect the space–time evolution
of rock dissolution patterns. Lichtner (1992) developed a

system of reactive transport equations based on
continuum approach and applied to study supergene
copper enrichment and metasomatic zoning (Lichtner

and Biino, 1992; Lichtner and Balashov, 1993). Chen
and Ortoleva (1990) used a computer code to predict the
temporal evolution of the reactive feedback problem.

Recently, Liu et al. (1997) proposed a geochemical
simulator that coupled reaction and transport and
predicts the formation of dissolution fingers and worm-
holes. Renard et al. (1998) conducted an experiment to

investigate self-organization phenomenon and com-
pared the experiment to a numerical model of water–
rock interaction. Although there have been numerous

researches that attempt to accurately predict the
instability of reactive fronts, relatively few have
attempted to thoroughly investigate the competition of

relevant mechanism on reaction front shape quantita-
tively (Steefel and Lasaga, 1994; Lichtner and Seth,
1996; Liu et al., 1997). By expanding upon previous

studies, this work presents a two-dimensional numerical
model for the reaction-induced feedback problem to

obtain the time evolution of species concentrations and
aquifer porosity. Quantitative analysis is also performed

to evaluate interactions between relevant mechanisms on
reaction front shape.

2. Mathematical model

The proposed model analyzes how coupling mineral–
fluid reactions affect the space–time evolution of aquifer
porosity and species concentrations. Chadam et al.

(1986) have provided a complete derivation of the
nonlinear partial differential equations that model this
phenomenon. The governing equations employed herein

are described briefly below. The conservation equations
for flow, mass transport and reactions in a porous
medium are formulated using a continuum approach in

which a representative elemental volume (REV) is
assumed to be smaller than the length scale of the
phenomena that is being monitored. In addition, the
various properties within the REV are assumed to

remain constant (Lichtner, 1992).

2.1. Porosity change due to dissolution reactions

Although this mathematical model is simple, there are

generic situations of a single solid component in the
porous medium and a single solute in the field,
respectively. The matrix consists of soluble grains that

have an average volume of L3 and grain number density
of n: The product nL3 is the soluble grain that occupies a
volume fraction. It also contains insoluble grains that
occupy a volume fraction fn: It follows that

nL3 þ fþ fn ¼ 1; ð1Þ

where f is the aquifer porosity.

If G is the rate of grain-volume change due to
reaction, then the following occurs

qf
qt

¼ �nG: ð2Þ

An implicit expression for G is required to completely
describe the phenomenon description.
Assume that G can be written as

G ¼ GSðc� ceqÞ; ð3Þ

where G denotes the reaction rate constant, S ¼ L2

represents the surface area of the soluble grains, c refers

to the concentration of the species in solution and ceq is
the equilibrium concentration. The dissolution reaction
is assumed to follow first-order kinetics. The reaction

rate is also assumed to be proportional to the surface
area L2 of the soluble grains.
Based on Eqs. (1)–(3), the porosity change that

occurred due to the dissolution reactions takes the
following form (detailed derivation is provided in the

J.-S. Chen, C.-W. Liu / Computers & Geosciences 28 (2002) 485–499486



appendix):

qf
qt

¼ �Gn1=3ðff � fÞ2=3ðc� ceqÞ; ð4Þ

where ff ¼ 1� fn is the final porosity after a complete
dissolution of soluble grains. The 2=3-power indicates

that only surface reactions are considered.

2.2. Continuity equation and momentum conservation

The continuity equation, which describes fluid mass
conservation in the system, combined with the momen-

tum conservation, Darcy’s law, can be written as

r � ðfkðfÞrpÞ ¼
qf
qt

; ð5Þ

where p denotes the fluid pressure and kðfÞ represents
the porosity dependent permeability. The Fair–Hatch
relation (Bear, 1972, p. 134) is employed herein in a

modified form to describe the relationship between
porosity and permeability (Chadam et al., 1986;
Ortoleva et al., 1987b)

kðfÞ ¼
1

Jmwy
2

f3

½ð1� ff Þ
2=3 þ n1=3ðff � fÞ2=3	2

;

where J is a packing factor (B5), mw is the water

viscosity (B0.001–0.01 P) and y is a geometric factor
(B6 for spherical factor). The permeability relationship
may also adopt other forms. For instance, Steefel and

Lasaga (1990) used the Kozeny–Carman equation to
describe this dependence. However, limited experimental
data are available to justify one form over another.

2.3. Conservation of solute mass

A differential equation expressing conservation of
species in solution must account for changes in the
concentration in the fluid phase. That is, the movement
of species into and out of the REV must be included in

the governing equation to conserve the solute mass.
Species conservation, in units of moles per unit volume
of porous medium per unit time, can be written as

r � ½fDðfÞrcþ cfkðfÞrp	 þ rs
qf
qt

¼
qðfcÞ
qt

; ð6Þ

where DðfÞ is the porosity dependent diffusion coeffi-

cient and rs is the density of soluble grains. A common
phenomenological relation for DðfÞ is (Bear, 1972;
Lerman, 1979)

DðfÞ ¼ Dif
m 3

2omo
5
2

� �
;

where Di is a constant on the species diffusion coefficient
order in water. The dispersion effects are neglected. The
first, second and third terms on the left-hand side of

Eq. (3) represent the diffusion, advection and source
terms due to the mineral dissolution, respectively.

It is often useful to nondimensionalize a differen-
tial equation because the resulting equation is generally

simpler in form and more applicable. Therefore
a dimensionless time, t; is introduced and defined
by

t ¼ eðGn1=3ceqÞt: ð7Þ

The space variable r ¼ ðx; yÞ; concentration cðx; y; tÞ and
pressure pðx; y; tÞ are also converted to the following
dimensionless forms:

%r ¼ rðkceqÞ1=2; ð8Þ

g ¼
c

ceq
; ð9Þ

%p ¼
pkðff Þ

Dðff Þ
: ð10Þ

Eqs. (4)–(6) can then be written as (dropping the bars

and writing dðfÞ ¼ fDðfÞ=Dðff Þ; lðfÞ ¼ fkðfÞ=kðff ÞÞ;

e
qf
qt

¼ �ðff � fÞ2=3ðg� 1Þ; ð11Þ

e
qðfgÞ
qt

¼ r � ðdrgþ lgrpÞ þ
qf
qt

; ð12Þ

r � ðlrpÞ ¼
qf
qt

: ð13Þ

3. Numerical methods

The numerical model is used to analyze the above
reactive transport problem. Efforts to develop numerical
reactive transport approaches in recent years have
focused on how to couple the reaction and transport

term (Yeh and Tripathi, 1991). To solve the coupled set
of equations, several methods have been proposed
(Rubin, 1983). The most rigorous approach attempts

to solve the governing equations simultaneously, which
is commonly referred to as the fully-coupled method
(Steefel and Lasaga, 1994). Alternatively, iteratively-

coupled techniques can be employed to calculate the
reaction and transport. The sequential iteration ap-
proach (SIA) is a general iteratively-coupled method
that solves coupled set of equations in which reactions

and transport are solved sequentially (for a discussion,
see Yeh and Tripathi, 1991). Notably, the SIA method
was adopted herein. Yeh and Tripathi (1989) discussed

explicit and implicit schemes of the SIA. Owing to its
superior convergent rate, the latter is more desirable
than the former one. Therefore, a numerical solution

technique, which is based on implicit SIA concept, was
developed to solve the coupled set of nonlinear
differential equations. Herein, a subscript ðkÞ is used to

designate quantities at the kth time step. The following
steps describe the implicit SIA method that advances the
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model from time interval Dt to a system of algebraic
equations for the model variables at ðkþ 1Þth time

level:
1. Eq. (11) is used and solved to yield f if g is provided

temporarily. Through g; the temporal evolution of f can

be obtained by applying the method of separating
variable and integration with respect to t over the time
interval, tkptptkþ1; thus obtainingZ fkþ1

fk

df

ðff � fÞ2=3
¼ �

Z tkþ1

tk

gnkþ1=2 � 1

e
dt: ð14Þ

Evaluating these integrals and rearranging the terms
yields

fnkþ1 ¼ ff �
1

3

ðgnkþ1=2 � 1Þ

e
Dtþ

1

3
ðff � fkÞ

2=3

� �� �3

;

ð15Þ

where Dt ¼ tkþ1 � tk; the subscript kþ 1=2 denotes the
intermediate time level between k and kþ 1; the
superscript n denotes nth iteration for solving f at time

level kþ 1: The estimates, gnkþ1=2; are assumed to be
gnkþ1=2 ¼ ðgn�1kþ1 þ gkÞ=2 if n > 1; or gnkþ1=2 ¼ gk if n ¼ 1:
Evaluating fnkþ1 as fnkþ1 approaches ff is essential. If

the choice of Dt is inappropriate, then the computed
value can fall in a region where fnkþ1 > ff ; thus
rendering the computation physically nonsensical. To

ensure that the computed value of fnkþ1 is in the
invariant interval ½f0;ff 	; Dt should be smaller
than.

1

3
ðff � fkÞ

2=3 e
gn�1kþ1=2 � 1

:

As fk approaches ff ; a smaller Dtis required to satisfy
the numerical stability criterion. Nevertheless, there is

an increase in the computing time for small Dt: This can
be handled by simply allowing fnkþ1 to be ff as ff �
fnkþ1 is smaller than a given tolerance error, which

allows much larger time steps to be set in calculating
temporal changes in porosity.
2. Eq. (12) is also discretized using implicit, finite

difference method. If pnkþ1 is provided temporarily, then
the computed porosity, fnkþ1; from step 1 can be
substituted directly into the difference equation to

generate a temporarily known concentration, gnkþ1: The
estimates of pnkþ1=2 are assumed to be pnkþ1=2 ¼ ð pn�1kþ1 þ
pkÞ=2 if n > 1; or pnkþ1=2 ¼ pk: The porosity dependent
permeability and diffusion coefficient are always eval-

uated at the half-time level using lnkþ1=2 ¼ lðfnkþ1=2Þ
and dnkþ1=2 ¼ dðfnkþ1=2Þ: The spatial derivatives of
porosity dependent permeability and diffusion coeffi-

cient in Eq. (12) are also evaluated at the half-time level
using a similar calculation. However, numerical error
may appear when the permeability gradients, ql=qx
and ql=qy; which are nonlinearly porosity dependent,
are discretized. To overcome these numerical

difficulties, an improved method was developed. The
gradient is calculated using a semi-analytical derivative

rather than the spatial discretization of permeability.
The possible error is only the numerical error from
the discretization of the spatial porosity derivative.

Then, the permeability gradient can be computed as
follows:

qlðfÞ
qx

� �����
n

kþ1=2
¼

qf
qx

qlðfÞ
qf

� �����
n

kþ1=2
: ð16Þ

Similarly, the diffusion coefficient gradient can be
computed as

qdðfÞ
qx

� �����
n

kþ1=2
¼

qf
qx

qdðfÞ
qf

� �����
n

kþ1=2
: ð17Þ

By grouping and rearranging terms, the final form of the
finite difference equation becomes

Agni; j;kþ1 þ Bg
n
iþ1; j;kþ1 þ Cg

n
i�1; j;kþ1

þDgni; jþ1;kþ1 þ Eg
n
i; j�1;kþ1

¼ Fgi; j;k þ Ggiþ1; j;k þHgi�1; j;k
þ Igi; jþ1;k þ Jgi; j�1;k þ K ; ð18Þ

where the subscript ði; jÞ denotes grid center,

A ¼ e
a1
Dt

þ e
a2
2
þ
a4
Dy2

þ
a6
Dz2

�
a8a9
2

�
a10lni; j;kþ1

2

�
a12a13
2

�
a14l

n
i; j;kþ1

2
;

B ¼ �
a3
4Dx

�
a4

2Dx2
�
a7a9
4Dx

;

C ¼
a3
4Dx

�
a4

2Dx2
þ
a7a9
4Dx

;

D ¼ �
a5
4Dy

�
a6

2Dy2
�
a11a13
4Dy

;

E ¼
a5
4Dy

�
a6

2Dy2
þ
a11a13
4Dy

;

F ¼ e
a1
Dt

� e
a2
2
�
a4
Dx2

�
a6
Dy2

þ
a8a9
2

þ
a10li; j;k

2

þ
a12a13
2

þ
a14li; j;k

2
;

G ¼
a3
4Dx

þ
a4

2Dx2
þ
a7a9
4Dx

;

H ¼ �
a3
4Dx

þ
a4

2Dx2
�
a7a9
4Dx

;

I ¼
a5
4Dy

þ
a6

2Dy2
þ
a11a13
4Dy

;

J ¼ �
a5
4Dy

þ
a6

2Dy2
�
a11a13
4Dy

;

K ¼ b1;
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Fig. 1. Numerical simulation domain. Inlet fluid is pumped in from left wall and flows out of right wall.
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Fig. 2. Temporal evolution of aquifer porosity ðf ¼ ðf0 þ ff Þ=2Þ with (a) upstream pressure gradient=0.5, (b) upstream pressure

gradient=2.0 and (c) upstream pressure gradient=5.0. Solid line: Cauchy boundary condition, dashed line: Dirichlet boundary

condition.
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where

a1 ¼
fni; j;kþ1 þ fi; j;k

2
; a2 ¼ b2 ¼

fni; j;kþ1 � fi; j;k
2

;

a3 ¼
qd
qx

����
n

i; j;kþ1=2
; a4 ¼ a6 ¼

dni; j;kþ1 þ di; j;k
2

;

a5 ¼
qd
qy

����
n

i; j;kþ1=2
; a7 ¼ a11 ¼

lni; j;kþ1 þ li; j;k
2

;

a8 ¼
ql
qx

����
n

i; j;kþ1=2
; a9 ¼

pniþ1; j;kþ1=2 � p
n
i�1; j;kþ1=2

2Dx
;

a10 ¼
p;niþ1; j;kþ1=2 �2p

n
j;kþ1=2 þ p

n
i�1; j;kþ1=2

Dx2
;

a12 ¼
ql
qy

����
n

i; j;kþ1=2
; a13 ¼

pniþ1; j;kþ1=2 � p
n
i�1; j;kþ1=2

2Dy
;

a14 ¼
pni; jþ1;kþ1=2 � 2pni; j;kþ1=2 þ p

n
i; j�1;kþ1=2

Dy2
;

b1 ¼
fni; j;kþ1 � fi; j;k

Dt
:

3. Similarly, Eq. (13) is discretized to evaluate fluid
pressure, pni;j;kþ1; if f

n
i;j;kþ1 that was obtained previously
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Fig. 3. Temporal evolution of species concentration ðg ¼ 0:5Þ with (a) upstream pressure gradient=0.5, (b) upstream pressure

gradient=2.0 and (c) upstream pressure gradient=5.0. Solid line: Cauchy boundary condition, dashed line: Dirichlet boundary

condition.
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is substituted into finite difference Eq. (13). The final
form after grouping and rearranging can be expressed

again in the following form:

Apni; j;k þ Bp
n
iþ1; j;k þ Cp

n
i�1; j;k þDp

n
i; jþ1;k þ Ep

n
ij; j�1;k ¼ F ;

ð19Þ

A ¼ �
2c2
Dx2

�
2c4
Dy2

; B ¼
c1
2Dx

þ
c2
Dx2

;

C ¼ �
c1
2Dx

þ
c2
Dx2

; D ¼
c3
2Dy

þ
c4
Dy2

;

E ¼ �
c3
2Dy

þ
c4
Dy2

; F ¼ c5:

After implementing steps 1–3, the computed solution
fni; j;kþ1; g

n
i; j;kþ1 and p

n
i; j;kþ1 may be inaccurate and can be

used as the new guess value of the next solving iteration.

4. Repeat steps 1–3 successively until the solution has
converged. The criterion set for convergence is

ðlnþ1i; j;kþ1 � lni; j;kþ1Þ=l
n
i; j;kþ1

��� ���
max

pzl; ð20Þ

where l refers to f; g; or p; zl is a specified residue
constant and, the subscript max denotes the maximum

value over all grid centers.

4. Simulation results

The developed two-dimensional numerical model is
applied to simulate the permeability change due to the
coupled flow and reaction as well as to investigate the
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Fig. 4. Quantitative analysis of competition between diffusion and advection with (a) upstream pressure gradient=2.0 at time=0.7,

(b) upstream pressure gradient=2.0 at time=2.1 and (c) upstream pressure gradient=2.0 at time=3.5.
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unstable growth of the dissolution front. A hypothetical
situation is defined for simulation and illustration
purposes. The problem considered here is a geometri-

cally simple rectangular system, which was designed to
simulate isothermal flow and reaction in a carbonated
cemented sandstone in which a percentage of the rock is

reactive (e.g., a carbonate cement), whereas the remain-
der is inert (e.g., a quartz at low temperature). Fig. 1
illustrates the simulation domain and the boundary

conditions used herein.
It is assumed that water is imposed in the positive x

direction. Furthermore, a constant pressure gradient,
ðp0f Þ; is applied, which induces a constant velocity ðvf Þ
flow to enter the sandstone. Therefore, the boundary

condition of pressure at x ¼ 0 is prescribed as

qp
qx

¼ �p0f ¼ �
vf

kf
ðx ¼ 0Þ: ð21aÞ

The imposed flow is undersaturated with respect to the
reactive mineral phase and the value of the inlet
concentration is assumed as constant concentration

strength g0: Chadam et al. (1986) and Steefel and
Lasaga (1990) use a Dirichlet (the first type) boundary
for concentration at x ¼ 0 as

g ¼ g0 ðx ¼ 0Þ: ð21bÞ

However, Van Genuchten and Alves (1982) and Chen
(1987) have suggested that as injected fluids enter the
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Resultant species transport by advection and diffusion (b)

Fig. 4 (continued)
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porous medium, a Cauchy (third type) boundary is more

reasonable than a Dirichlet boundary. The Dirichlet
boundary may produce a considerably different result
than the Cauchy boundary. That is, as injection begins,

the Dirichlet boundary, which neglects the concentra-
tion gradient across the interface, increases the local
concentration level instantaneously. This condition
causes more solute mass to enter the medium. Thus,

the Cauchy boundary is also adopted in this study and
formulated as

vf g0 ¼ vf g�DðfÞ
qg
qx

ðx ¼ 0Þ: ð21b0Þ

Since the fluid density is assumed to be constant, only
the net pressure decrease across the region of interest is

important, therefore, the outlet of the system is fixed. It

is appropriate to apply the conditions such that

p ¼ pRðyÞ ¼ 0;
qg
qx

¼ 0 ðx ¼ LxÞ: ð22Þ

Both sides have no flow boundary condition such that

qp
qy

¼ 0;
qg
qy

¼ 0 ð y ¼ �Ly;LyÞ: ð23Þ

Initially, a small, local nonuniformity was introduced,
which had a higher porosity near the left-end side of the

system as the porosity distribution at time=0.0 as
illustrated in Fig. 2a–c. Then, the initial concentration
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Resultant species transport by advection and diffusion (c)

Fig. 4 (continued)
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and porosity conditions are chosen as follows:

fðx; y; 0Þ ¼ f0 þ ðff � f0Þe
�x; ð24Þ

gðx; y; 0Þ ¼ ð1� e�5xÞð1� e�xÞ; ð25Þ

where xðx; yÞ ¼ ðx4 þ y4Þ=ðwLyÞ4 is the initial perturba-
tion parameter.
The initial condition represents a situation in which

the porosity is near its initial post-washout values ff at
the corner of x ¼ y ¼ 0 and is at its initial value f0

elsewhere. The initial finger is wLy and 2wLy in length

and width, respectively. Also, investigation herein is how
the upstream pressure gradient, affects the development

of the reaction front. The input parameters used to
simulate upstream pressure gradient, which influence

morphological instability of reaction front, are as
follows: initial porosity, f0 ¼ 0:1; final porosity, ff ¼
0:2; inlet concentration, g0 ¼ 0; length, Lx ¼ 18; width,
2Ly ¼ 8; upstream pressure gradients, 0.5, 2 and 5 and
initial perturbation parameter, w ¼ 0:1: Furthermore,
the fine-grid (Dx ¼ 0:2 and Dy ¼ 0:2Þ spacing both in the
x and y directions are applied to avoid numerical
dispersion.
The choices of Cauchy or Dirichlet boundary condi-

tions for inflow boundary concentrations, which may

affect the simulation results, are also examined. Fig. 2a–c
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Fig. 5. Temporal evolution of aquifer porosity ðf ¼ ðf0 þ ff Þ=2Þ with (a) upstream pressure gradient=0.5, (b) upstream pressure

gradient=2.0 and (c) upstream pressure gradient=5.0.
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and Fig. 3a–c plot the temporal evolution of simulated
aquifer porosity and species concentrations contours for
upstream pressure gradient=0.5, 2 and 5, respectively.

The solid and dashed lines denote the porosity contours
with ðf0 þ ff Þ=2 ¼ ð0:1þ 0:2Þ=2 ¼ 0:15 and dimension-
less concentration contours with g ¼ ðg0 þ gf Þ=2 ¼
ð0:0þ 1:0Þ=2 ¼ 0:5 for Cauchy and Dirichlet bound-
aries, respectively. The Cauchy and Dirichlet boundaries
produce considerably different reaction front advance-

ments. Notably, the reaction front advancement for the
former boundaries is slower than that for the latter. This
difference is only significant for a small upstream
pressure gradient. Dirichlet boundary neglects the local

diffusion at the interface, as well as forces more solute

mass to enter the porous medium and accelerates
reaction front movement. If upstream pressure gradient
is larger, then local diffusion becomes less important.

The advection dominates the transport that flows into
the formation; hence, the Dirichlet boundary condition
is close to that of the Cauchy one. Thus, the Dirichlet

boundary condition is only valid for the large upstream
gradient condition, which is generally not appropriated
to model reactive transport through geological forma-

tion. The third type Cauchy boundary condition is
adopted at the inflow boundary. Additionally, as the
upstream pressure gradient increases (and also inlet
velocity), the instability of reaction front (concentration

and porosity) also increases for both boundary conditions.
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(c) 

Fig. 6. Temporal evolution of species concentration ðg ¼ 0:5Þ with (a) upstream pressure gradient=0.5, (b) upstream pressure

gradient=2.0 and (c) upstream pressure gradient=5.0.
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The development of reaction front resembles the results
of Chadam et al. (1986), who performed linear stability

analysis to demonstrate the morphological instability of
a planar front. Notably, the development of the
instability of the planar front can be explained as

follows: according to Darcy’s law, if a protrusion of the
porosity level line in the reacting zone exists at certain
times, the flow of the most reactive fluid tends to be
focused in the tip of the protrusion. That is, the

permeability at the tip is greater than that in the
neighboring regions. As additional reactive fluid arrives
in the tip, it tends to advance more rapidly, which

subsequently causes fingering. Conversely, diffusion
owing to the concentration gradient causes the fluid

within tip to be less reactive and hence decelerates its
advancement. The competition between these two

mechanisms results either in the shape selection of
reacting zone (self-organization), which in turn produces
the decay of this protrusion, or in the temporal

development of successively more elongated protrusion.
While attempting to account for competition between
diffusion and advection (the fluid focusing at tip)
mechanisms, Fig. 4a–c displays the spatial distribution

of the diffusive, advective and resultant species flux of
both for times 0.7, 2.1 and 3.5 with an upstream pressure
gradient of 2.0. The arrows and their adjacent values

denote the direction and magnitude of the species flux
transport, while the solid line represents the concentration
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Resultant species transport by advection and diffusion (a)

Fig. 7. Quantitative analysis of competition between diffusion and advection with (a) upstream pressure gradient=2.0 at time=0.7,

(b) upstream pressure gradient=2.0 at time=2.1 and (c) upstream pressure gradient=2.0 at time=3.5.
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contour. Obviously, although diffusion tends to decele-

rate reaction front advancement, advection con-
sistently accelerates it. Diffusion produces a smaller
species flux than advection does and, therefore, the

resultant species flux tends to travel to the tip of the
protrusion. To further illustrate the phenomenon of
reaction front instability, the temporal evolution of

aquifer porosity for two, initially small perturbations are
investigated. That is, two small, local nonuniformities
with higher porosity were introduced near the left-end

side of the system, which the porosity distribution at
time=0.0 in Fig. 5a–c demonstrates. The initial condi-
tion represents a situation in which the porosity is
proximal to its initial post-washout value ff at the

corner of ðx ¼ 0; y ¼ 71Þ and is at its initial value f0

elsewhere. Fig. 5a–c and Fig. 6a–c display the temporal

evolution of simulated aquifer porosity and species
concentration contours for upstream pressure gradi-
ent=0.5, 2 and 5, respectively. The result is similar to

that of one finger, however two fingers have emerged
for large upstream gradient. Fig. 7a–b display the
spatial distribution of the diffusive, advective and

resultant species flux of both the mechanisms at times
0.7, 2.1 and 3.5 with an upstream gradient of 2.0.
Obviously, the resultant species flux tends to travel to

the tips of two fingers. The above discussion on reaction
front stability reveals that flow self-focusing that occurs
from interactions between advection and diffusion can
drive a front out of a planar state into fingering

morphology.
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Fig. 7 (continued)
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5. Conclusion

A mathematical model was presented to elucidate the

reaction front of the water–mineral interaction problem.
A finite difference method was developed to solve a set
of nonlinear equations, which are fully-coupled fluid

flow, species transport and rock/fluid reactions. Further-
more, numerical algorithms were employed to improve
the stability of the calculations. Numerical simulations

were performed to examine the morphology of the
reaction front. Results indicate that when the driving
force exceeds a critical value, the planar dissolution
front becomes unstable and finger-shaped fronts

emerge. Moreover, the unstable fronts become more

pronounced under higher upstream pressure gradients.
Quantitative analysis of diffusive, advective and resul-
tant species fluctuations within these mechanisms was

also performed to explain the shape selection of a
reaction front.
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(c)

Fig. 7 (continued)
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Appendix

In this appendix, Eq. (4) is derived via Eqs. (1)–(3).

First, Eq. (1) can be rearranged as

L ¼
1� f� fn

n

	 
1=3

¼
ff � f

n

	 
1=3

: ðA:1Þ

Inserting Eq. (A.1) into Eq. (3) yields

G ¼ G
ff � f

n

	 
2=3

ðc� ceqÞ: ðA:2Þ

Eq. (4) can be obtained by substituting Eq. (A.2) into
Eq. (2) and expressed as

qf
qt

¼ �Gn1=3ðff � fÞðc� ceqÞ: ðA:3Þ
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