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Transactions Briefs

Design of a Class of IR Eigenfilters With Time- and adopted in decimation or interpolation multirate systems. To achieve
Frequency-Domain Constraints zero ISI, Nyquist filters must satisfy some criteria in time domain that

they should have zeros equally spaced in the impulse response co-

Soo-Chang Pei, Chia-Chen Hsu, and Peng-Hua Wang efficients except one specified. There are two conventional methods,

which are IIR and FIR filter forms, to implement Nyquist filters. So far

S ) ) the design procedures on FIR Nyquist filters have been widely studied
Abstract—An effective eigenfilter approach is presented to design spe-

. L ) e [12] and [13]. However, FIR Nyquist filters usually require higher filter
cial classes of infinite-impulse response (lIR) filters with time- and fre- . o .
quency-domain constraints is presented. By minimizing a quadratic mea- ©rder to meet the magnitude specification. In contrast to FIR filters, lIR

sure of the error in the passband and stopband, an eigenvector of an ap- filters have lower orders, but their impulse responses are more difficult

propriate real symmetric and positive-definite matrix is computed to get  to keep the zero-crossing time constraint property and the problem of
the filter coefficients. Several IIR filters such as notch filters, Nyquist fil-  fjter stability should also be carefully examined.

ters and partial response filters can be easily designed by this approach. . .
Some numerical design examples are illustrated to show the effectiveness Recently, Nakayama and Mizukami have proposed a novel expres-

of this approach. sion of transfer functions for IIR Nyquist filters that can keep exact
zero intersymbol interference [14]. They have used the iterative Cheby-
shev approximation procedure but without considering its filter sta-
bility [15]. After adopting the proposed transfer function, the frequency
response of the filters can be optimized without taking into account
I. INTRODUCTION its time domain constraints (zero-crossing property). In this paper, we
q’;tydy this transfer function of Nyquist filters and present a new process
I

Index Terms—infinite-impulse response (lIR) eigenfilter, notch filter,
Nyquist filter, partial response filter.

THE eigenfilter approach has been recently used to effectively
sign linear phase finite-impulse response (FIR) digital filters [1], FIR. ™" . Lo
Hilbert transformers [2], and digital differentiators [3]. This approacRItrarlly _selec_ted time and frequency crltena}. . .
has also been applied to design complex FIR filters with arbitrary com-The eigentfilter approach can also be applied to design the partial re-

plex frequency response [4] and [5]. The design of 1-D and 2-D infinitsPense filters which hav.e similiar zero-crossings as Nyquist filters but.
impulse response (IIR) eigenfilters in time domain has been studied usoidal shape magnitude response over the passband [16]. Partial

[6]. In the present communication, we compute the filter coefficients jesponse filters have receive_d considerable attenti_on since_they can be
approximating an ideal desired impulse response. Recently, the ei % ployed at an increased bit rate under a prescribed available band-

filter approach is extended to design stable causal IIR filters in fr -'th for data transm|s§|or_1 [16] and [17]._They play an important role
|rbb|nary data communication for that the intersymbol interference can

uency domain with an arbitrary number of zeros and poles [7] a ; ; .
?8]. Th{ese methods work out i;ythe frequency domain F;nd al[lo]w%e reduced by introducing rolloff around the Nyquist frequency. The

eased on eigenfilter method to design a Nyquist filter satisfying the ar-

design filters with arbitrary prescribed magnitude frequency respon &>'9ning proce_dur_es of C""TSS 1-5 partial response fllter_s are mainly
ased on Nyquist filter design for we can take one partial response

In this paper, the eigenfilter approach is used to design IIR notch r%lt th ltinlicati p Nvauist filt d | ial which
ters, Nyquist filters, and partial response filters which have special fi éﬁer as the muftiphication otone Nyquistfiiter and a polynomialwhic
apes the filter. In Section Il experimental results are presented.

quency domain or time domain constraints. s
In many signal processing applications, it is necessary to eliminate

narrowband or sinusoidal disturbance while leaving the broardband  Il. PROBLEM FORMULATION AND DESIGN PROCEDURES
sighal unchanged. Usually this work can be done by the notch fiIteAs
characterized by a unit gain over the whole frequency domain except
at some certain frequencies in which their gain are zero. So far, sevAssume the transfer function of a notch filter is defined by
eral methods to effectively design IIR or FIR notch filters have been
developed [9]. Adaptive notch filter design has been studied too, [10]
and [11]. When the frequencies of narrowband interferences are known
in advance, fixed notch filters can be used. In Section I, we study the
properties of notch filters and formulate the design algorithm by addirigve need this filter to have a notch at frequengy i.e., the ideal de-

the frequency-domain constraints to the eigenfilter approach. In Séded frequency response is unity everywhere in the frequency domain
tion I1l, we present the effectiveness of this method by showing sore&cept atv = w;. The transfer function (1) should have a pair of zeroes

Notch Filters
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TABLE | Frequency Response
PROPERTIES OFCLASS 1-5 PARTIAL RESPONSEFILTERS [16] 1.4 T T . -
Class  Impulse response h(n) H{f) overthepasshand {D< f < F]
1.2}
ko ok Rk kK
Binary |1 i
1
s 11 2eos(af { 2F) B \ . w
2 1 2 1 4cos’ (a1 2F)
08}
3 21 4 2+cos(af ( Fy—cos(2af ¢ F)+ 8
Jlsin{af 1 F)—siné2af / £ g
3 1 0 -1 2sin(#f / F) gﬂﬁ-
5 10 2 0 - 4sinf{m/F)
0.4}
where 02}
K
C(z) = H(I—Z.cos(;ui).zfl —1—372). 4) . . . . ‘ . .
=t g0 01 02 03 04 05 06 07 08 09 1
Clearly, C(z) is known when we have chosen the position of the MNormalized Freguency
notches. Then we will use the eigenfilter approach to find the optimal (@)

bo and denominator coefficients.

Let H(w) denote the desired target function representing the notch 3
filter with some specified notch bandwidthw at each chosen notch
position, and we have s&fw = 0.0017 in our examples. Withik’
notches, we can divide the frequency domain Bif6 + 1 intervals to 161-----
express different desired frequency response in each interval. The re
sponse inside the notch consists of two transition bands: one decreasir 4
function from 1-0 and the other increasing function from 0-1, respec-
tively, and is unity elsewhere.

To proceed with the formulation of notch filters, consider a costfunc- ~ 85[----~
tion related to the error of the difference between the calculated re-
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sponseH (w) and target responsé® (w) Y R SN SR SO AU SO IS S
5y A T
E(w) = (H"(w) — H(w))D(w). G) " 5p----- SRR W e . A S
Let F(w) be the cost function in the frequency interdial so 1 I 1 _____ i R et R R beoons
Pl = Dl L B A S e
K 1 ' ' I ] ' '
—bo [T (1 -2 cos(wi)- e 4724}, (6 I
OH( cos(w;)-e 7" +e ) (6) 5 . .
= 2 15 1 05 0 05 1 15 2
Real Part
To minimize E(w) somehow means a weighted minimization of the (b)

error, in which D(w) acts as the weighting function. Consider the ) )
global square cost function given iy — ZL Ber, wheresy, is a Elg.l. (a) Magnitude response of example 1. (b) Pole-zero plotting of example
positive constant that weights tie¢h band cost function. And;, is
given by
where superscripgl’ and x denote the transposition and conjugation
. 217 (N operations, respectivelyAf’ = A* since the filter coefficients are
Oh = /,k | B () Wik () des ) assumed real). Thereforg, is given by

whereW; (w) denotes the positive weighting function. Consider the

b = A" P A 11
vectors (8) and (9) shown at the bottom of the next page. ok r (11)
The cost functior;. can be expressed as
and
or = / AT CH) O (W) AW (w) dw (10) P = / Cri(w) it (w) Wi (w)dw (12)
Iy In
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TABLE I 3) Stability check: The stability of the filters we designed should
RESULTING COEFFICIENTS OFEXAMPLE 1 be carefully concerned. To ensure the stability of the IIR filters,

we need to calculate the roots of denominator polynomial to find

b, 10.29801430260418 a, [0.30692859574000 unstable poles and substitute them with their inverse conjugate.

b, 10.40070303293878 a, 0.39958611590026 So that we can make this filter always stable without changing

b, 10.36147942821254 a, [0.35985811773165 its magnitude response.

b, 10.38956042881218 a, 10.38939406634299 To summarize the method to design IIR multiple notch filters, we

b, 0.36147942821254 a, |0.36292519208517 can take the following steps. ,

b, 10.40070303293878 2. 0.40128160491205 1) DeC|de_ the positions of rptches and calculate polynom(fﬂ)
according to (4). The initial state can be sét)(w) = Kw

by 10.29801430260418 a, |0.28887025331247

(where I denotes the number of notches we need) and
W) =1V k.
2) Compute the matrix? bg/ using (12)—(14), wher® is a func-
tion of (™) (w) andW " (w). Let AT be the eigenvector cor-
responding to the minimum eigenvalue®fand letd (=) be
the relative transfer function; find unstable poles and substitute
d=> Bor=A" (Z P;,,) A=A"PA. (13) them with their inverse conjugate.
! p 3) Update the phase of the target function by usifigt? (w) =
LH™ (w); update the weighting functiodV." ™" (w) ac-
Applying the eigenfilter approach, the optimum filter coefficients, cording to (14).
which minimize the cost function, are the elements of the eigenvector4) Compute the poles outside the unit circle and substitute them
of the matrixP corresponding to the minimum eigenvalue. After some with their inverse conjugate.

calculation iterations and computing the corresponding eigenvector, wes) Repeat steps (2)—(4) until some stop criterion is met. In our ex-

is a real, symmetric, positive-definitf€ K’ + 2) x (2K + 2) matrix.
The global square cost function now can be expressed as

obtain the solution oft = [ag a1 --- axx bo]’. Thenwe can periments, we take fifty iterations in each result for that the error
get the transfer function coefficients of numerator and denominator by  converges within twenty iterations.
(3) and (4). 6) Using (1) and (2) to get the desired transfer function coefficients.

Experimentally, some remarks need to be mentioned.
1) Updating of the target function phase:Reference to [1], here B. Nyquist Filters and Partial Response Filters

we only approximate the magnitude responsefifi«v). Yet 1y Nyquist Filters: As mentioned in the introduction, to obtain the

the cost function(w) also depends on the phase Bf (w).  zero intersymbol interference, Nyquist filtF( =) has the impulse re-
In absence of any information, we can initially assume the dgponse: () with the time domain constraints, i.e.

sired phase response linear, i@(w) = Mw, where M is
a given constant. Reference to [1] and [8], to have a well-be- . . c#0, ifk=0
haved response and fast convergence, an iterative phase updating h(K +kN) = { 0, otherwise (15)

can be adopted. Here we describe this method in brief. At the
nth iteration, letA™ be the coefficient vector obtained andwhere K and N are integers. Then the impulse response crosses the
H™(w) the corresponding frequency response. Assume thirne axis everyN samples. According to [15], the conditions in (15)
"D (L) be the phase off?(w) at the(n + 1)th iteration. can be rearranged and written as
Assigne" Y (w) = £H™ (W), and redo the design procedure
until.some crjteripn is met. . . K + kN) = { + #0, ifk= 0 (16)

2) Choice of weighting functionW; (w): As discussed previously, 0, otherwise
to compute the quadratic matriR in (12) and (13), we need to
decide the weighting function. La¥/") (w) be the weighting wherel{ and N are integers. It is known that the transfer function of
function in thenth iteration. We adopt the recommendation oftn IR Nyquist filter can be expressed in the form
[8] in our experiments, let

Ny )
1 bz~ )
()N N —K =0, iZkN+K 1
W w) = = (14) H(z)=bxz" + o — k=g 17)
a;nzTH

i=0
whereD™) () is the denominator off (") (). So at each itera-

tion, we can give higher weights to the regions whefé—Y(w)  where N,,, N, are integers, and all the filter coefficients, b; are
is small and the error will be smaller in the regions. Another reeal,ao = 1. N is a multiple of V. Hence, only frequency-response
cursive weighting functiofiV’ (™) (w) = 1/[D™~Y(w)]? canbe optimization should be considered when the above transfer function

used here and suggested in [18]. is employed. The specification of Nyquist filters in frequency domain
Ci(w)=[Hi(w) Hi(w)e™ -+ Hi(w)e 5 —[IE, (1=2-cos(w;) e/ +e772) ] ®)
and
A = [a() aq e a2 K bo ]T. (9)
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Frequency Response Impulse response
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Fig. 2. (a) Magnitude response of example 2. (b) Impulse response of example 2. (c) Pole-zero plotting of example 2.

should be a lowpass filter with passband and stopband cutoff frequencyn Table I, each binary symbal’,, is chosen to be a prescribed

wp andw, expressed as superposition of: successive transmitted impulskes bs, ..., b, as
Cy = k1by + k2bn—1 + -+ - + kb1 [16]. Partial response filters can
W = 1—-p p 18 achieve high data rates with better error rate performance. And the class
D N (18a) . X X o S
1*_1_ of binary in Table | is the original Nyquist filter.
ws = N,prr (18b) The transfer function of partial response filters is assumed as
: H(z) = Num(z)/Den(z), to obtain the impulse and magnitude
whereNN is the interpolation ratio ang is the rolloff rate. response prescribed, the numerator polynomial of the transfer function

2) Partial Response Filters:The partial response filters can bemust be divided by some specified polynomial. That is
thought as a modification of Nyquist filters but have some specified
magnitude and impulse response. These filters can be classified to five
classes and summarized in Table | [16]. R(z) | Num(z) (29)
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Frequency Response Impulse response
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Fig. 3. (a) Linear magnitude response of example 3: class 1 partial response filter. (b) Impulse response of example 3. (c) Magnitude respipmse chsguir
of example 3. (d) Impulse response of equiripple case of example 3.

where We can assume the calculated frequency response of a partial response
1 Nyquist filter filter as
142N class (1) R Cijw
1427V 472N class (2) . 1 g im0 iZtnar bie™™ ,
R =54 v v class (3) (20) HE) = |z 7+ w7 R(e7™)  (21)
1— 272N class (4) 2, aiv(em)

—1+42:72N — =7*V  class (5).
So the transfer functions of the classified partial response filt
can be thought as Nyquist filters cascade with some spediied.
Nyquist filter is a special case of partial response filter wiffx) = 1. s(w) = HY (™) — H('™). (22)

e%‘d the desired frequency respotsé(e’) is given in Table |, then
the current error is
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Let the cost function be TABLE Il
Ny/N RESULTING COEFFICIENTS OFEXAMPLE 2
E(w) ==(w) Z a,ihr(c_‘jw)i‘NT
= b, 10.00373701676675 b, 10.25294719373311
. L e o\ e N b__|0 b, 10.19736549464621
= <H (€)= z7¢ 777D )) Z ain(e7) b, |-0.01124615922963 b, 10.13402787767668
N = b, |-0.02174419712868 b, 0.06879712348272
—R(™) >0 b (23) b, |-0.02126344099409 b 10.02727697661389
i=0, i#kN+K b, 10 a, (1.0
and the total error function of the whole frequency range will be b, |0.04660624892311 a, |0
B(w) = / |E(u})|2W7(w)dw. (24) b, 10.11623394636996 a, |0
w b, 10.19049647956317 a, 0
If b, 10.25 a, 10.53611151070671
Cw)=[4A" B'] (25a) ba ]0.27100557266568

where (25b), (25¢), and (26) are shown at the bottom of the page. Tts@@nse when we calculatél;(«). Experimentally we use the given
we can rewrite the cost function as integer " to be M, then

: ¢ —jKw
<1>(w)=/A’Tc*(w)c(w)AW(mczw:ATPA (27) Ha(w) = [Ha(w)|e™" . (31)
and I1l. EXPERIMENTAL RESULTS
P= / C*(w)C(w)W(w)dw. (28) A. Notch Filter Design

Here we present some design examples using our proposed method.
In (27) and (28) W (w) is the weighting function of each frequencyFirst for the notch filters, we show the effectiveness of the proposed
grid. approach with arbitrarily prescribed notch frequencies and bandwidth.
Since (27) results an eigenform, we can solve the minimization Example 1: A notch filter with three different notches at= 0.3,
problem by eigenfilter approach to obtain the optimal solution. AL6x, and0.97. Besides that, we can arbitrarily specify the notch band-
last, according to (21), we should multiply the calculated numerataiidth. Here the widths of three notches are02x, 0.02x, and0.04,
by R(z) specified by (20) and obtain the desired transfer functiorespectively. The responses are shown in Fig. 1, and Table Il gives the
coefficients. The resulting numerator order will Bg + deg[R(z)].  resultant coefficients. It is interesting that the mirror-image symmetry
As the notch filter design discussed in Section II-A, we need r@lation exists between the numerator and denominator polynomials of
weighting functioni¥ () when computing the matrik. Here we can allpass filter, and the resultant IIR notch filt&f(z) can be expressed
use the weighting function prescribed in (14) to get a nonequirippds H(z) = (1 + A(z))/2, whereA(z) is an allpass filter [19]. The
response. If the equiripple response is desired, another kind méin advantage of this form is that it can be realized by a computation-
weighting function should be employed. In the previous workally efficient lattice structure with low sensitivity [19].
proposed [8], a recursive updating of the weighting function was Designing the notch filter using the eigenfilter approach with con-
introduced to obtain an almost equiripple solution. Also we adoptetraints can obtain exact zeroes at the desired locations and very flat
the recursive procedure to get a convergent solution satisfying th&ssband elsewhere, and the solution converges after several iterations.
given specification. An adequate choice of the recursively updating

weighting function is given below. B. Nyquist Filter Design
Let A be the solution vector at theth iteration and? ™ (w) the  Example 2: A Nyquist filter with N, = 15, Ny = 4, p = 0.3,
corresponding frequency response. The magnitude error is N = 4, K = 9 and the weighting of ripple rati6, /6. = 1000. To
(W) = ||H (w)| = [H™ (w)] (29) expressthe properties of Nyquist filters completely, the equiripple mag-

nitude response, impulse response, and pole-zero plotting are given in

and the weighting function used in the + 1) iteration will be Fig. 2. The resultant coefficients are given in Table Ill. The specifica-

WO () = W (w)env(e™ (W) (30) tion of this example is the same as illustrated in [14]. Compared with
whereenv(e(™ (w)) is the envelope of the positive functie®) (). the attenuation 38 dB in [14], an improved minimum stopband attenu-
Then the resulting solution will be almost equiripple. ation of almost 40 dB is obtained but the ripples are not quite equal.

The Nyquist filters and partial response filters are lowpass filters
and have no constraints of the phase response. Usually we use a lifeal
phase as the initial target phase response. So that we can initially seit last we design the class 1 partial response filter in example 3. Both

Partial Response Filter Design

(H(w) = —Mw, in which M is a constant, as the desired phase reequiripple and nonequiripple cases are displayed.
A = <Hd(ejw) - %eﬂka('ej”)> [1 e7dv 7dNw mi2Nw = o=iNaw] (25b)
B ' =R(e™)| =1 —e77¢ —e72¢ . —eTiw . e Nnw | AL EN4 K (25¢)
and
A=Jap an aan ... an, bo b1 by ... b ... bn, ]T , i#kEN+ K (26)
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TABLE IV [10] A.Nehorai, “A minimal parameter adaptive notch filter with constrained
RESULTING COEFFICIENTS OFEQUIRIPPLE CASE OF EXAMPLE 3 poles and zeros [EEE Trans. Acoust. Speech, Signal Processiad
ASSP-33, pp. 983-966, Aug. 1985.

[11] T. S. Ng, “Some aspects of an adaptive digital notch filter with

b, |0.01446798102295 b, 10.45110472197426 constrained poles and zerodEEE Trans. Acoust. Speech, Signal
b, |0 b, |0.37240643153797 Processingvol. ASSP-35, pp. 158-161, Feb. 1987.
b -0.00961818862706 b 10.20708477391566 [12] J. K. Liang, R. J. Pefigueriredo, and F. C. Lu, “Design of optimal

2 . . - Nyquist, partial responseyth band and nonuniform tap spacing FIR
b, |0 b,, |0.08488537433446 digital filters using linear programming techniquedEEE Trans.
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IV. CONCLUSION

In this paper, we have presented a new method to design digital IIR
notch filters, Nyquist filters, and partial response filters. To design these
filters, many methods have been proposed before. However, designing
these filters with time-domain or frequency-domain constraints, lIRhe Design of Peak-Constrained Least Squares FIR Filters
eigenfilter approach is a better choice and easier to handle. Here we first With Low-Complexity Finite-Precision Coefficients
formulated the properties of these IIR filters and extended the existing
IIR eigenfilter approach to design these filters. The effectiveness of Trevor W. Fox and Laurence E. Turner
eigenfilter approach has been revealed for adding the time-domain or
frequency-domain constraints. We have employed an iteration process
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