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Design of a Class of IIR Eigenfilters With Time- and
Frequency-Domain Constraints

Soo-Chang Pei, Chia-Chen Hsu, and Peng-Hua Wang

Abstract—An effective eigenfilter approach is presented to design spe-
cial classes of infinite-impulse response (IIR) filters with time- and fre-
quency-domain constraints is presented. By minimizing a quadratic mea-
sure of the error in the passband and stopband, an eigenvector of an ap-
propriate real symmetric and positive-definite matrix is computed to get
the filter coefficients. Several IIR filters such as notch filters, Nyquist fil-
ters and partial response filters can be easily designed by this approach.
Some numerical design examples are illustrated to show the effectiveness
of this approach.

Index Terms—Infinite-impulse response (IIR) eigenfilter, notch filter,
Nyquist filter, partial response filter.

I. INTRODUCTION

THE eigenfilter approach has been recently used to effectively de-
sign linear phase finite-impulse response (FIR) digital filters [1], FIR
Hilbert transformers [2], and digital differentiators [3]. This approach
has also been applied to design complex FIR filters with arbitrary com-
plex frequency response [4] and [5]. The design of 1-D and 2-D infinite-
impulse response (IIR) eigenfilters in time domain has been studied in
[6]. In the present communication, we compute the filter coefficients by
approximating an ideal desired impulse response. Recently, the eigen-
filter approach is extended to design stable causal IIR filters in fre-
quency domain with an arbitrary number of zeros and poles [7] and
[8]. These methods work out in the frequency domain and allow to
design filters with arbitrary prescribed magnitude frequency response.
In this paper, the eigenfilter approach is used to design IIR notch fil-
ters, Nyquist filters, and partial response filters which have special fre-
quency domain or time domain constraints.

In many signal processing applications, it is necessary to eliminate
narrowband or sinusoidal disturbance while leaving the broardband
signal unchanged. Usually this work can be done by the notch filters
characterized by a unit gain over the whole frequency domain except
at some certain frequencies in which their gain are zero. So far, sev-
eral methods to effectively design IIR or FIR notch filters have been
developed [9]. Adaptive notch filter design has been studied too, [10]
and [11]. When the frequencies of narrowband interferences are known
in advance, fixed notch filters can be used. In Section II, we study the
properties of notch filters and formulate the design algorithm by adding
the frequency-domain constraints to the eigenfilter approach. In Sec-
tion III, we present the effectiveness of this method by showing some
examples with arbitrarily chosen frequencies of notches.

Nyquist filters play an important role in digital data transmission
for its intersymbol interference (ISI)-free property. Also they can be
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adopted in decimation or interpolation multirate systems. To achieve
zero ISI, Nyquist filters must satisfy some criteria in time domain that
they should have zeros equally spaced in the impulse response co-
efficients except one specified. There are two conventional methods,
which are IIR and FIR filter forms, to implement Nyquist filters. So far
the design procedures on FIR Nyquist filters have been widely studied
[12] and [13]. However, FIR Nyquist filters usually require higher filter
order to meet the magnitude specification. In contrast to FIR filters, IIR
filters have lower orders, but their impulse responses are more difficult
to keep the zero-crossing time constraint property and the problem of
filter stability should also be carefully examined.

Recently, Nakayama and Mizukami have proposed a novel expres-
sion of transfer functions for IIR Nyquist filters that can keep exact
zero intersymbol interference [14]. They have used the iterative Cheby-
shev approximation procedure but without considering its filter sta-
bility [15]. After adopting the proposed transfer function, the frequency
response of the filters can be optimized without taking into account
its time domain constraints (zero-crossing property). In this paper, we
study this transfer function of Nyquist filters and present a new process
based on eigenfilter method to design a Nyquist filter satisfying the ar-
bitrarily selected time and frequency criteria.

The eigenfilter approach can also be applied to design the partial re-
sponse filters which have similiar zero-crossings as Nyquist filters but
sinusoidal shape magnitude response over the passband [16]. Partial
response filters have received considerable attention since they can be
employed at an increased bit rate under a prescribed available band-
width for data transmission [16] and [17]. They play an important role
in binary data communication for that the intersymbol interference can
be reduced by introducing rolloff around the Nyquist frequency. The
designing procedures of class 1–5 partial response filters are mainly
based on Nyquist filter design for we can take one partial response
filter as the multiplication of one Nyquist filter and a polynomial which
shapes the filter. In Section III experimental results are presented.

II. PROBLEM FORMULATION AND DESIGN PROCEDURES

A. Notch Filters

Assume the transfer function of a notch filter is defined by

H(z) =
N(z)

D(z)
=

b0 + b1z
�1 + b2z

�2 + � � �+ bMz
�M

a0 + a1z
�1 + a2z

�2 + � � �+ aMz
�M

: (1)

If we need this filter to have a notch at frequency!i, i.e., the ideal de-
sired frequency response is unity everywhere in the frequency domain
except at! = !i. The transfer function (1) should have a pair of zeroes
at z = e

�j! , that is

1� 2 � cos(!i) � z
�1 + z

�2 jN(z): (2)

Equation (2) means that if we needK different notch positions in the
frequency domain, the order of numerator polynomial should be at least
2K.

When the positions of the notches of the desired filter are given by
(1) and (2), the transfer function of this filter can be written as

H(z) =
N(z)

D(z)
=

b0 � C(z)

a0 + a1z
�1 + a2z

�2 + � � �+ a2Kz
�2K

(3)

1057-7130/02$17.00 © 2002 IEEE

Authorized licensed use limited to: National Taiwan University. Downloaded on January 22, 2009 at 03:03 from IEEE Xplore.  Restrictions apply.



146 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 49, NO. 2, FEBRUARY 2002

TABLE I
PROPERTIES OFCLASS 1–5 PARTIAL RESPONSEFILTERS [16]

where

C(z) =

K

i=1

1� 2 � cos(!i) � z
�1 + z

�2
: (4)

Clearly, C(z) is known when we have chosen the position of the
notches. Then we will use the eigenfilter approach to find the optimal
b0 and denominator coefficients.

LetHd(!) denote the desired target function representing the notch
filter with some specified notch bandwidth�! at each chosen notch
position, and we have set�! = 0:001� in our examples. WithK
notches, we can divide the frequency domain into3K + 1 intervals to
express different desired frequency response in each interval. The re-
sponse inside the notch consists of two transition bands: one decreasing
function from 1–0 and the other increasing function from 0–1, respec-
tively, and is unity elsewhere.

To proceed with the formulation of notch filters, consider a cost func-
tion related to the error of the difference between the calculated re-
sponseH(!) and target responseHd(!)

E(!) = (Hd(!)�H(!))D(!): (5)

LetEk(!) be the cost function in the frequency intervalIk, so

Ek(!) = D(!)Hd
k(!)

� b0

K

i=1

1� 2 � cos(!i) � e
�j! + e

�2j!
: (6)

To minimizeE(!) somehow means a weighted minimization of the
error, in whichD(!) acts as the weighting function. Consider the
global square cost function given by� =

k
�k�k, where�k is a

positive constant that weights thekth band cost function. And�k is
given by

�k =
I

jEk(!)j
2
Wk(!)d! (7)

whereWk(!) denotes the positive weighting function. Consider the
vectors (8) and (9) shown at the bottom of the next page.

The cost function�k can be expressed as

�k =
I

A
T
C
�

k(!)C
T
k (!)AWk(!)d! (10)

(a)

(b)

Fig. 1. (a) Magnitude response of example 1. (b) Pole-zero plotting of example
1.

where superscriptT and� denote the transposition and conjugation
operations, respectively, (AT = A� since the filter coefficients are
assumed real). Therefore,�k is given by

�k = A
T
PkA (11)

and

Pk =
I

C
�

k(!)C
T
k (!)Wk(!)d! (12)
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TABLE II
RESULTING COEFFICIENTS OFEXAMPLE 1

is a real, symmetric, positive-definite(2K + 2) � (2K + 2) matrix.
The global square cost function now can be expressed as

� =
k

�k�k = AT

k

Pk A = ATPA: (13)

Applying the eigenfilter approach, the optimum filter coefficients,
which minimize the cost function, are the elements of the eigenvector
of the matrixP corresponding to the minimum eigenvalue. After some
calculation iterations and computing the corresponding eigenvector, we
obtain the solution ofA = [ a0 a1 � � � a2K b0 ]

T . Then we can
get the transfer function coefficients of numerator and denominator by
(3) and (4).

Experimentally, some remarks need to be mentioned.

1) Updating of the target function phase:Reference to [1], here
we only approximate the magnitude response ofHd(!). Yet
the cost functionE(!) also depends on the phase ofHd(!).
In absence of any information, we can initially assume the de-
sired phase response linear, i.e.,'(!) = M!, whereM is
a given constant. Reference to [1] and [8], to have a well-be-
haved response and fast convergence, an iterative phase updating
can be adopted. Here we describe this method in brief. At the
nth iteration, letA(n) be the coefficient vector obtained and
H(n)(!) the corresponding frequency response. Assume that
'(n+1)(!) be the phase ofHd(!) at the(n + 1)th iteration.
Assign'(n+1)(!) = 6 H(n)(!), and redo the design procedure
until some criterion is met.

2) Choice of weighting functionWk(!): As discussed previously,
to compute the quadratic matrixP in (12) and (13), we need to
decide the weighting function. LetW (n)(!) be the weighting
function in thenth iteration. We adopt the recommendation of
[8] in our experiments, let

W (n)(!) =
1

jD(n�1)(!)j
(14)

whereD(n)(!) is the denominator ofH(n)(!). So at each itera-
tion, we can give higher weights to the regions whereD(n�1)(!)
is small and the error will be smaller in the regions. Another re-
cursive weighting functionW (n)(!) = 1=[D(n�1)(!)]2 can be
used here and suggested in [18].

3) Stability check: The stability of the filters we designed should
be carefully concerned. To ensure the stability of the IIR filters,
we need to calculate the roots of denominator polynomial to find
unstable poles and substitute them with their inverse conjugate.
So that we can make this filter always stable without changing
its magnitude response.

To summarize the method to design IIR multiple notch filters, we
can take the following steps.

1) Decide the positions of notches and calculate polynomialC(z)
according to (4). The initial state can be set'(0)(!) = K!
(where K denotes the number of notches we need) and
W

(0)
k (!) = 1 8 k.

2) Compute the matrixP by using (12)–(14), whereP is a func-
tion of'(n)(!) andW (n)

k (!). LetA(n) be the eigenvector cor-
responding to the minimum eigenvalue ofP , and letH(n)(z) be
the relative transfer function; find unstable poles and substitute
them with their inverse conjugate.

3) Update the phase of the target function by using'(n+1)(!) =
6 H(n)(!); update the weighting functionW (n+1)

k (!) ac-
cording to (14).

4) Compute the poles outside the unit circle and substitute them
with their inverse conjugate.

5) Repeat steps (2)–(4) until some stop criterion is met. In our ex-
periments, we take fifty iterations in each result for that the error
converges within twenty iterations.

6) Using (1) and (2) to get the desired transfer function coefficients.

B. Nyquist Filters and Partial Response Filters

1) Nyquist Filters: As mentioned in the introduction, to obtain the
zero intersymbol interference, Nyquist filterH(z) has the impulse re-
sponseh(n) with the time domain constraints, i.e.

h(K + kN) =
c 6= 0; if k = 0

0; otherwise
(15)

whereK andN are integers. Then the impulse response crosses the
time axis everyN samples. According to [15], the conditions in (15)
can be rearranged and written as

h(K + kN) =
1
N

6= 0; if k = 0

0; otherwise
(16)

whereK andN are integers. It is known that the transfer function of
an IIR Nyquist filter can be expressed in the form

H(z) = bKz
�K +

N

i=0; i6=kN+K

biz
�i

N =N

i=0

aiNz�iN
; bK =

1

N
(17)

whereNn, Nd are integers, and all the filter coefficientsai, bi are
real,a0 = 1. Nd is a multiple ofN . Hence, only frequency-response
optimization should be considered when the above transfer function
is employed. The specification of Nyquist filters in frequency domain

Ck(!) = [Hd
k(!) Hd

k(!)e
�j! � � � Hd

k(!)e
�j2K! � k

i=1 1� 2 � cos(!i) � e
�j! + e�j2! ]T (8)

and

A = [ a0 a1 � � � a2K b0 ]
T : (9)
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(a) (b)

(c)

Fig. 2. (a) Magnitude response of example 2. (b) Impulse response of example 2. (c) Pole-zero plotting of example 2.

should be a lowpass filter with passband and stopband cutoff frequency
!p and!s expressed as

!p =
1� �

N
� (18a)

!s =
1 + �

N
� (18b)

whereN is the interpolation ratio and� is the rolloff rate.
2) Partial Response Filters:The partial response filters can be

thought as a modification of Nyquist filters but have some specified
magnitude and impulse response. These filters can be classified to five
classes and summarized in Table I [16].

In Table I, each binary symbolCn is chosen to be a prescribed
superposition ofn successive transmitted impulsesb1; b2; . . . ; bn as
Cn = k1bn + k2bn�1 + � � � + knb1 [16]. Partial response filters can
achieve high data rates with better error rate performance. And the class
of binary in Table I is the original Nyquist filter.

The transfer function of partial response filters is assumed as
H(z) = Num(z)=Den(z), to obtain the impulse and magnitude
response prescribed, the numerator polynomial of the transfer function
must be divided by some specified polynomial. That is

R(z) j Num(z) (19)
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(a) (b)

(c) (d)

Fig. 3. (a) Linear magnitude response of example 3: class 1 partial response filter. (b) Impulse response of example 3. (c) Magnitude response of equiripple case
of example 3. (d) Impulse response of equiripple case of example 3.

where

R(z) =

1 Nyquist filter
1 + z

�N class (1)
1 + 2z�N + z

�2N class (2)
2 + z

�N
� z

�2N class (3)
1� z

�2N class (4)
�1 + 2z�2N � z

�4N class (5).

(20)

So the transfer functions of the classified partial response filters
can be thought as Nyquist filters cascade with some specifiedR(z).
Nyquist filter is a special case of partial response filter withR(z) = 1.

We can assume the calculated frequency response of a partial response
filter as

H(ej!) =
1

N
e
�jK! +

N

i=0; i6=kN+K

bie
�ij!

N =N

i=0

aiN (e�j!)iN
R(ej!) (21)

and the desired frequency responseH
d(ej!) is given in Table I, then

the current error is

"(!) = H
d(ej!)�H(ej!): (22)
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Let the cost function be

E(!) ="(!)

N =N

i=0

aiN (e�j!)iN

= Hd(ej!)�
1

N
e�jK!D(ej!)

N =N

i=0

aiN (e�j!)iN

�R(ej!)

N

i=0; i 6=kN+K

bie
�ij! (23)

and the total error function of the whole frequency range will be

�(!) =
!

jE(!)j2W (!)d!: (24)

If

C(!) = [A0 B0 ] (25a)

where (25b), (25c), and (26) are shown at the bottom of the page. Then
we can rewrite the cost function as

�(!) =
!

ATC�(!)C(!)AW(!)d! = ATPA (27)

and

P =
!

C�(!)C(!)W(!)d!: (28)

In (27) and (28),W (!) is the weighting function of each frequency
grid.

Since (27) results an eigenform, we can solve the minimization
problem by eigenfilter approach to obtain the optimal solution. At
last, according to (21), we should multiply the calculated numerator
by R(z) specified by (20) and obtain the desired transfer function
coefficients. The resulting numerator order will beNn + deg[R(z)].

As the notch filter design discussed in Section II-A, we need a
weighting functionW (!) when computing the matrixP . Here we can
use the weighting function prescribed in (14) to get a nonequiripple
response. If the equiripple response is desired, another kind of
weighting function should be employed. In the previous works
proposed [8], a recursive updating of the weighting function was
introduced to obtain an almost equiripple solution. Also we adopted
the recursive procedure to get a convergent solution satisfying the
given specification. An adequate choice of the recursively updating
weighting function is given below.

LetA(n) be the solution vector at thenth iteration andH(n)(!) the
corresponding frequency response. The magnitude error is

e(n)(!) = jHd(!)j � jH(n)(!)j (29)

and the weighting function used in the(n+ 1) iteration will be

W (n+1)(!) =W (n)(!)env(e(n)(!)) (30)

whereenv(e(n)(!)) is the envelope of the positive functione(n)(!).
Then the resulting solution will be almost equiripple.

The Nyquist filters and partial response filters are lowpass filters
and have no constraints of the phase response. Usually we use a linear
phase as the initial target phase response. So that we can initially set
6 H(!) = �M!, in whichM is a constant, as the desired phase re-

TABLE III
RESULTING COEFFICIENTS OFEXAMPLE 2

sponse when we calculatedHd(!). Experimentally we use the given
integerK to beM , then

Hd(!) = jHd(!)je
�jK!: (31)

III. EXPERIMENTAL RESULTS

A. Notch Filter Design

Here we present some design examples using our proposed method.
First for the notch filters, we show the effectiveness of the proposed
approach with arbitrarily prescribed notch frequencies and bandwidth.

Example 1: A notch filter with three different notches at! = 0:3�,
0:6�, and0:9�. Besides that, we can arbitrarily specify the notch band-
width. Here the widths of three notches are0:002�, 0:02�, and0:04�,
respectively. The responses are shown in Fig. 1, and Table II gives the
resultant coefficients. It is interesting that the mirror-image symmetry
relation exists between the numerator and denominator polynomials of
allpass filter, and the resultant IIR notch filterH(z) can be expressed
asH(z) = (1 + A(z))=2, whereA(z) is an allpass filter [19]. The
main advantage of this form is that it can be realized by a computation-
ally efficient lattice structure with low sensitivity [19].

Designing the notch filter using the eigenfilter approach with con-
straints can obtain exact zeroes at the desired locations and very flat
passband elsewhere, and the solution converges after several iterations.

B. Nyquist Filter Design

Example 2: A Nyquist filter with Nn = 15, Nd = 4, � = 0:3,
N = 4, K = 9 and the weighting of ripple ratio�p=�s = 1000. To
express the properties of Nyquist filters completely, the equiripple mag-
nitude response, impulse response, and pole-zero plotting are given in
Fig. 2. The resultant coefficients are given in Table III. The specifica-
tion of this example is the same as illustrated in [14]. Compared with
the attenuation 38 dB in [14], an improved minimum stopband attenu-
ation of almost 40 dB is obtained but the ripples are not quite equal.

C. Partial Response Filter Design

At last we design the class 1 partial response filter in example 3. Both
equiripple and nonequiripple cases are displayed.

A0 = Hd(ej!)�
1

N
e�jK!R(ej!) [ 1 e�j! e�jN! e�j2N! . . . e�jN ! ] (25b)

B0 =R(ej!) b�1 �e�j! �e�j2! . . . �e�ji! . . . �e�jN ! c ; i 6= kN +K (25c)

and

A = [ a0 aN a2N . . . aN b0 b1 b2 . . . bi . . . bN ]T ; i 6= kN +K (26)
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TABLE IV
RESULTING COEFFICIENTS OFEQUIRIPPLECASE OFEXAMPLE 3

Example 3: Class 1 partial response filter with the specifications:
Nn = 10, Nd = 2, N = 2, K = 6. The magnitude responses
and impulse responses of both equiripple and nonequiripple cases are
given in Fig. 3. To express the cosine shape of the magnitude response
of the class 1 partial response filter, the magnitude response of the
nonequal ripple is given in linear scale in Fig. 3(a). Other magnitude
responses are given in log scale to show the attenuation of the stop-
band. The coefficients of equiripple case of class 1 filter are given in
Table IV. Compared with the design example of 30 dB stopband atten-
uation using the complicated three step optimization in [20], the de-
signed filter with better 32-dB stopband rejection can be obtained by
our effective one-step eigen approach.

IV. CONCLUSION

In this paper, we have presented a new method to design digital IIR
notch filters, Nyquist filters, and partial response filters. To design these
filters, many methods have been proposed before. However, designing
these filters with time-domain or frequency-domain constraints, IIR
eigenfilter approach is a better choice and easier to handle. Here we first
formulated the properties of these IIR filters and extended the existing
IIR eigenfilter approach to design these filters. The effectiveness of
eigenfilter approach has been revealed for adding the time-domain or
frequency-domain constraints. We have employed an iteration process
to obtain an equiripple, stable solution of the desired IIR filters.
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The Design of Peak-Constrained Least Squares FIR Filters
With Low-Complexity Finite-Precision Coefficients

Trevor W. Fox and Laurence E. Turner

Abstract—A method for the design of peak-constrained least squares
(PCLS) finite-impulse response (FIR) digital filters with low-complexity fi-
nite-precision coefficients (FPC) based on Adams’ optimality criterion and
an efficient local search is presented. Simple quantization of the infinite pre-
cision coefficients typically leads to filter designs which fail to meet the fre-
quency response, passband to stopband energy ratio (PSR) and coefficient
complexity (number of coefficient adders and subtractors) specifications.
It is shown that it is possible to design a filter with an acceptable PSR that
meets the frequency response specification while using a reduced number
of adders and subtractors.

Index Terms—Canonic signed digit (CSD), finite-impulse response (FIR),
local search, peak-constrained least squares (PCLS).

I. INTRODUCTION

Peak-constrained least squares (PCLS) filters are well suited for ap-
plications where both the minimum stopband attenuation (DBs) and
the passband to stopband energy ratio (PSR) of the filter are important
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