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ABSTRACT — The discovery of polynomial time prime fac-
torization, secure key distribution, and fast database search
algorithm have recently made quantum computing the most
rapidly expanding research field. For a quantum algorithm to
be useful, it is essential that the algorithm can be implemented
using quantum circuits. Nanotechnology, in particular quan-
tum mechanics based devices, can be used to realize sach an al-
gorithm. In this paper, we show how guantum boolean circuits
can be used to implement the oracle circuit and the inversion-
about-average function in Grover’s search algorithm. We also
show that a slight modification of the oracle circuit can be used
to search multiple targets.

I. INTRODUCTION

The discovery of secure key distribution [1], polynomial
time prime factorization [2], and fast database search al-
gorithm [3] have recently made quantum computing the
most rapidly expanding research field. The fast database
search algorithm is important because, from an engineer-
ing point of view, many problems can be formulated as a
database searching process. For instance, cracking a 1024-
digit secret key in a 2'02* key space is essentially a search-
ing process in an unordered database. To search an unsorted
database, the only way is to test the elements sequentially
against the condition until the target is found. For a database
of n elements, this brute-force search requires an average of
n/2 comparisons. However, Grover’s algorithm can iden-
tify the target in an unordered database in /7 steps. The
idea of Grover’s algorithm is to prepare a register in an
equal superposition state, selectively invert the target, then
perform an inversion-about-average operation. The selec-
tive inversion of the target followed by an inversion-about-
average has the effect of amplitude amplification. After /i
operations the probability of measuring the marked state ap-
proaches 1.

As we can see, the only request in Grover’s algorithm is
the information regarding to whether a selected item is the

"David SL. Wei is with Department of Computer and Information
Science, Fordham University, Bronx, NY.

0-7803-7338-602%17.00/9200:2 IEEE

315

target. This is also known as the oracle. If we label the
itemns in a database with the integers 0,1,2,...,2" 1and
denote the [abel of the unknown marked record by zo, the
oracle is an n bit binary function

f:{0,1* —{0,1} o)

defined by

1 if z2=uxz

fla) = 2

0 otherwise.

Note that, as a standard oracle, we have no access to the
internal structure of the function f. It operates transparently
in Grover's algorithm as a black-box function, which we
can query as many times as we like.

Using the oracle, the selective inversion can be defined as
the unitary function

] .7:0) if

|z)
This function does an inversion on the input if it is the tar-
get, while leaving all other cases unchanged. Due to the
lingarity of quanturn mechanics, every item in the database
can be processed at the same time by applying the selec-
tive inversion to the superposition state of all items. When
this operation is applied to such a superposition state, it is
equivalent to

T =Ip

Legy{l2)) = ( 1)/ @z) = 3)

otherwise.

Lag) =1 2{zo){zol- “)
Note that the unitary transformation /|, is actually an in-
version in H about the hyperplane perpendicular to |zg).
Following the same notation, if we define

2" 1
> 18,

i=0

1
Jon

the inversion-about-average operation can be regarded as an
inversion in 7 about the hyperplane perpendicular to 43 ),
and [4]

liho} = 5)

Il‘/’d’) = IW’D)‘ (6)
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The operation of a selective inversion followed by an
inversion-about-average can be represented as

G= (7

Based on this operator, Grover’s algorithm can find the tar-
get with a high probability (approaching 1) by applying the
operator (5 to the superposition state

gy Loy -

o) = HI0) = = 3 1) ®)
i=0

for \/n times before the final measurement. ,

The optimality of Grover’s algorithm has been studied
[5] and a generalization of the algorithm has been proposed
to search multi-object [6]. In this paper, we focus on the
circuit design aspect of the algorithm.

11. CirRCUIT BLOCK DIAGRAM

The first step of implementing the operator G is to con-
struct a circuit which performs the function of selective in-
version Jy,y. Animportant property called eigenvalue kick-
back is used in the construction of the circuit, as shown in
Fig.1.

4o [0} ——1 — —
9 00— 7 Cracle —  Average I~
q, tO)— | |
aus [1)— H & 4

]

inversion

k__:elect!'ve__.{ k__ about _.‘

nversion average

Fig. 1. The circuit block diagram of Grover’s search algorithm.

The initial qubits in Fig.1 include » qubits prepared in

the ground state |) = |G} ---10) and 1 auxiliary qubit in

the excited state |1). This can be written as
[y@lg) = (D@0 e --e)e(l). ©

After the the Hadamard transform H™ and H, all possible
states are superposed as [¥) @ |do), where

1 27 1 ‘

o) = ﬁglz) (10)
1

|} = ﬁ(lﬂ) 11)). (1)

Theoretically, the oracle is only a function which checks
whether a specific item is the target. However, due to the
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linearity of quantum mechanics, when the oracle circuit is
applied to the superposition state |2/q), all possible items are
examined against the criteria. It follows from the fact that
the eigenvalue of 7%(]0) [1}), ie. 1, is kicked back to
the state 9’

1)

O; NOT(|¢0)®|¢o)) = (1‘m0>(|¢0)))®i_0>f_2

The oracte circuit Oy plus the control-not gate is compu-
tationally equivalent to the operator /|,), which inverts the
unknown target in one single operation. From a circuit point
of view, the oracle, which takes n qubits as input and 1 qubit
as output, is a standard n x 1 boolean function. It can be
implemented vsing gquantum boolean logic.

The second step of the operation ( is the inversion-about-
average circuit. When the operation is applied to a super-
position state, it actually keeps the component in the |1f)
direction unchanged, while inverting the components in di-
mensions which are perpendicular to |3}. This can be rep-
resented as

, (12)

Tugy = liwo) a3
where
1 21
) = —= i (14)
| U) \/QH ;D ‘ )

represents the “average”.

Using the same concept of eigenvalue kickback, the com-
ponent in the |17} dimension can be selectively inverted,
as shown in Fig.1. Note that this part of the circuit does not
depend on the search criteria.

Since most practical engineering preblems can be binary
encoded, searching a target in the database is the same thing
as finding a satisfiable solution for a binary boolean expres-
sion. In other words, the oracle function can be represented
by boolean logic and implemented using quantum gates.
The classical boolean logic can be simulated using elemen-
tary quantum boolean gates as follows:

« By sending the input into a quantum N gate, we can
invert the quantum state and hence simulate a classical
NOT operation.

o Ifwesetz = 0inaCCN gate, then the output 2’ = -y
simulates the output of a classical AND gate.

« The OR function can be done using DeMorgan’s law.
Thatis, AV B = AA B.

Another non-trivial quantum boolean logic function is
FANOUT, which takes one bit as input and gives two copies
of the same bit value as output. In the classical world, we
can do this simply with a metallic contact. However, in this
application, a CN gate can be used to create an entangled
copy of the source qubit.

HI. CIRCUIT FOR SINGLE-TARGET SEARCH
Without loss of generality, we use the binary expression

EVyIAZA(zV2) (15)
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as an example to show how the solution is found using the
circuit described in the previous section. The oracle circuit
is an quantum implementation of the expression, which is
shown in Fig.2.
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Fig. 2. The oracle circuit for a single-target search.

-In Fig.2, gate 1, 2, 3, and 4 duplicate the input , y, and 2z
10 go, 91, g2, and g3 for later use, so the original copy won’t
be affected by the subsequent operations. Gate 5, 6, and 7
implement the function (% V y). Gate 8 inverts z. Gate 9,
10, and 11 implement the function (z V z). Finally, gate 12
performs the AND function for these three clauses. The final
result is in qubit gg, which is the control bit for the selective
inversion circuit in Fig.1. Note that although the three-input
AND function can be implemented by cascading two two-
input AND gates, it is shown as one 4-bit generalized Toffoli
gate for simplicity. An m + 1 bit generalized Toffoli gate is
defined as

Am(lmla e ,Sﬂm,y)) = |"L‘17 yTm, (/\Tkn=1$k) Qy)

(16)

The second part of the circuit performs the function of
inversion-about-average. To invert the component in the
|40} dimension, Hadamard gates are used to transform |¢)
to |0), then the state [0} is selectively inverted. - After the
inversion, the state is transformed back by another set of
Hadamard gates. The circuit can be represented by

ooy = HIjo)H, a”n
where
1 1
H= ( Y3 ) (18)
Vi 2

as shown in Fig.3. Similarly, the function of Ijgy can be
done using the eigenvalue kickback property. 1t is shown in
Fig.3 as a generalized Toffoli gate with the exception that
the target is inverted when all the control qubits are 0’s.
This is shown by the circles, instead of solid dots, in Fig.3.

Although it does not effect the measurement, the minus
signin I}y, can be implemented by applying a = phase

0-7B02-7538-602/4%17 .00/0 2002 [EEE

shift to any one of the qubits. This is shown as the I/ trans-
form in Fig.3, where
1
0 .

Note that since this part of the circuit is completely indepen-
dent of the search criterion, it can be used to do any single-
or multi-target search.

0

v 1

(19)
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Fig. 3. The circuit of inversion-about-average.

The complete circuit for G is shown in Fig4. After /n
steps of &, a final measurement on the state of x, y, and z
reveals the target with high probability.
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Fig. 4. The circuit G in the quantam search algorithm.

IV. CIRCUIT FOR MULTI-TARGET SEARCH
The circuit design for a single-object search can be easily
generalized to search multiple objects. The only difference
is that after each target is found, the oracle circuit is mod-
ified to exclude this target. A typical scenario is shown in
the foilowing example.
Assuming the problem is binary encoded as

(Tvz)Ay. (20)

The equivalent oracle circuit is shown in Fig,5.
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Fig. 5. The oracle circuit for searching the first target.

In this circuit, gate 1 duplicates the variable 2, gate 2, 3,
and 4 implement the function (Z V z). Finally, gate 5 per-
forms the AND function for these two clauses. The oracle
circuit is then followed by the same circuit in Fig.3 to per-
form the function of inversion-about-average. These form
the operation (7. A measurement after 1/ steps of G results
in one of the targets with equal probability.

At the end of the first measurement, the criterion is mod-
ified to exclude the target that has been found. Assume the
firstresultis ¢ = 0,y = 1, z = 0, the oracle is then changed
to be

(TVIIAYNE y- 2 2n

The clause T - - Z is used to exclude the combination of
z =10,y =1, and z = 0. The new oracle circuit is shown
in Fig.6. In this circuit, gate 7, 8, and 9 are used to imple-
ment I - y - z. At the same time, gate 10 includes g4 as one
reference to form the new oracle. This new oracle circuit
and the same circnit of inversion-about-average are used to
find the second target.
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Fig. 6. The oracle circuit for searching the second target.

Similarly, if the result of the second measurement is x =
1,y = 1, and z = 1, the oracle is then changed to be
(TVZIAYNT Y- ZAT ¥ 2 (22)

The new clause - i - z is added to exclude the second tar-
get. Although further reduction can be done on the boolean

expression, the original form is used to illustrate the mod-
ification. The cracle circuit is shown in Fig.7. Again, gate
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Fig. 7. The oracle circuit for searching the third target.

10 and 11 are used to implement the new critetion = - ¥ - z,
gate 12 takes the result ¢; and forms the new oracle. This
new oracle circuit, together with the circuit of inversion-
about-average, are used to query the third target.

V. CONCLUSIONS

Due to its wide application in classical engineering prob-
lems, Grover’s quantum search algorithm is one of the im-
portant applications in quantum computing. This algorithm
shows a dramatic improvement compared with the classical
brute-force search process, especially when r is large. The
algorithm is built on top of two key operations, namely: se-
lective inversion and inversion-about-average. In this paper,
we present how quantum boolean circuits can be used to im-
plement the selective inversion and inversion-about-average
in the quantum search algorithm, We also show that a slight
modification of the oracle circuit can be used to do a multi-
object database search.

REFERENCES

[1] C. Bennett and G. Brassard, "Quantum Cryptography: Public Key
Distribution and Coin Tossing,” in Proc. of IEEE International Con-
ference on Computers Systems and Signal Processing, 1984, pp. 175-
179.

P. 8hor, "Algorithms for quantum computation: discrete Jogarithms
and factoring,” in Proc. of the 35th Annual IEEE Symposium on the
Foundations of Computer Science, 1994, pp. 124-134.

L. Grover, A fast quantum mechanical algorithm for database
search,” Proc. of the 28th Annual ACM Symposium on the Theory
of Computing, 1996, pp. 212-219.

S. Lomonaco. (2000, Qct.). Grover's quantum search algorithm .
[Online]. Available: http:/fwww.arXive.org/quant-ph/0010040/.

C. Zalka. "Grover's quantum searching algorithm is optimal,” Phys.
Rev. A, vol. 60, 2746-2751 (1999),

G. Chen, S. Fulling, J. Chen, S. Sur: (2000, Jul.). Generaiization
of Grover’s algorithm to multiobject search in quantum compufing.
[Online). Available: http:/fwww.arXive.org/quant-ph/0007123/ and
https/fwww.arXive.org/quant-ph/0007124/.

[2

—_—

31

(4]
(51
(6]



	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


