
A Low Overhead Checkpointing Protocol for Mobile Computing Systems

Chi-Yi Lin, Szu-Chi Wang, Sy-Yen Kuo

Department of Electrical Engineering
National Taiwan University

Taipei, Taiwan
sykuo@cc.ee.ntu.edu.tw

Ing-Yi Chen

Department of Electronic Engineering
Chung Yuan Christian University

Chung-Li, Taiwan
ichen@cycu.edu.tw

Abstract

Checkpointing protocols for distributed computing
systems can also be applied to mobile computing systems,
but the unique characteristics of the mobile environment
need to be taken into account. In this paper, an improved
time-based checkpointing protocol is proposed, which is
suitable for mobile computing systems based on Mobile
IP. The main improvement over a traditional time-based
protocol is that our protocol reduces the number of
checkpoints per checkpointing process to nearly
minimum, so that fewer checkpoints need to be
transmitted through the bandwidth-limited wireless links.
The proposed protocol also performs very well in the
aspects of minimizing the number and the size of
messages transmitted in the wireless network. Therefore,
the protocol brings very little overhead to a mobile host
which has limited resource. Additionally, by integrating
the improved timer synchronization technique, our
protocol can also be applied to wide area networks.

1. Introduction

The infrastructure supporting mobile computation is
growing mature rapidly. Users with mobile devices are
able to access and exchange information on the move. As
a result, collaborative works can be done effectively, no
matter where the participating members/hosts are
physically located. For example, in a sensor network
which carries out real-time scientific computation, sensors
with processing capability can be mobile and distributed.

To provide fault-tolerance capability for mobile
computing systems, checkpointing and rollback-recovery
techniques for traditional distributed computing systems
such as [1, 2] can be used. Recently, checkpointing
protocols specifically designed for mobile computing
systems have also been proposed [3-11]. A common goal
of these protocols is to avoid extra coordinating messages
and unnecessary checkpoints. Prakash and Singhal [4]
first proposed a checkpointing protocol that requires only

a minimum number of processes to take checkpoints and
does not block the underlying computation during
checkpointing. However, Cao and Singhal [6] proved that
such a min-process nonblocking checkpointing algorithm
does not exist. They also introduced the concept of
mutable checkpoints [10] in their nonblocking algorithm,
which forces a minimum number of processes to take
checkpoints on the stable storage.

Time-based protocols [2, 5, 12] use synchronized clocks
or timers to indirectly coordinate the creation of
checkpoints so that coordinating messages are reduced.
However, time-based protocols require every process to
take a checkpoint during a checkpointing process.
Moreover, since timers cannot be perfectly synchronized,
the consistency between all the checkpoints can still be a
problem. In [12], the problem is solved by disallowing
message sending during a period after a timer expires, but
doing this blocks the computation. In [5], however,
processes are nonblocking because the inconsistency was
resolved by the information piggybacked in each message.
Timer synchronization can also be done using the
piggybacked information. But when the transmission
delay between two mobile hosts becomes relatively large,
the synchronization result will be less accurate.

In this paper, we propose an improved time-based
checkpointing protocol that tries to reduce the number of
checkpoints. The basic idea is that if a checkpoint initiator
does not transitively depend on a process, the process does
not have to take a checkpoint associated with the initiator.
The result is that the number of checkpoints transmitted
over the air can be minimized. Also, and the number of
coordinating messages is very small compared to other
existing protocols. The protocol is also nonblocking
because the inconsistency between processes is avoided
by piggybacking necessary information in each message.

The rest of this paper is organized as follows. Section 2
describes the system model. In Section 3 we show the
improved timer synchronization technique for time-based
protocols. In Section 4 we present our checkpointing
protocol and give a performance analysis. Section 5
concludes our work.

Proceedings of the 2002 Pacific Rim International Symposium on Dependable Computing (PRDC’02)

0-7695-1852-4/02 $17.00 © 2002 IEEE

2. System Model and Background

A mobile computing application is executed by a set of
N processes running on several mobile hosts (MHs).
Processes communicate with each other by sending
messages. These messages are received and then
forwarded to the destination host by the mobile support
stations (MSSs), which are interconnected by a fixed
network. The mobility of MHs is supported by Mobile IP,
so that messages can be routed to the destination MH
which is moving around in the network. A MH is
associated with a Home Agent (HA)/Foreign Agent (FA)
when it is in the home/foreign network.

To ensure ordered and reliable message deliveries, each
message is assigned an increasing sequence number. In
the system every process takes a checkpoint periodically.
Each checkpoint is associated with a monotonically
increasing checkpoint number. The time interval after
taking the kth checkpoint and before taking the k+1th
checkpoint is called the kth checkpoint interval
(represented as Ik in the following text).

In the system every node (MH or MSS) contains a
system clock, with typical clock drift rate ρ in the order of
10-5 or 10-6. The system clocks of MSSs can be
synchronized using Internet time synchronization services
such as Network Time Protocol, which makes the
maximum deviation σ of all the clocks within tens of
milliseconds. However, in wide area networks, MSSs may
belong to different organizations. So, we use the clock
synchronization protocol to sync the logical clocks instead
of the physical system clocks of MSSs. The clocks of MHs
can be synchronized likewise, but explicit synchronization
messages bring overhead to MHs because of the limited
wireless bandwidth. In addition, the system clocks of MHs
may not be controlled by a user-level application.
Therefore, to coordinate with each other, processes use
synchronized timers instead of synchronized clocks. The
advantages of using timers to coordinate the creation of
checkpoints are that the checkpointing protocol does not
have to rely on synchronized system clocks, and no
explicit synchronization is needed.

Before a mobile computing application starts, a
predefined checkpoint period T is set on the timers. When
the local timer expires, the process saves its system state
as a checkpoint. If all the timers expire at exactly the same
time, the set of N checkpoints taken at the same instant
forms a globally consistent checkpoint. Since timers are
not perfectly synchronized, the checkpoints may not be
consistent because of orphan messages. An orphan
message m represents an inconsistent system state with the
event receive(m) included in the state while the event
send(m) not in the state. Orphan messages may lead to
domino effect, which causes unbounded, cascading
rollback propagation. So, by definition, a globally
consistent checkpoint is free from the domino effect.

3. Improved Timer Synchronization

In this section we introduce the mechanism of improved
timer synchronization. The mechanism then serves as a
basis in our checkpointing algorithm, as described in the
next section.

The mechanism of timer synchronization in [5] uses
piggybacked timer information from the sender to adjust
the timer at the receiver. When the sender sends a message,
it piggybacks its “time to next checkpoint” (represented as
timeToCkp) in the message. The receiver then uses the
information to adjust its own timeToCkp. The checkpoint
number of the sender is also piggybacked in the message,
so that the receiver can act accordingly to avoid an orphan
message. However, if the timer of the sender is faulty, the
erroneous timer information will be spread to the receiver.
Besides, since the transmission delay between the sender
and the receiver is variable, the timer information from the
sender may not reflect the correct situation when the
message finally arrives at the receiver.

To achieve more accurate timer synchronization, we
utilize the timers in MSSs as an absolute reference because
timers in the fixed hosts are more reliable than those in
MHs. We also assume that the timers of the MSSs are
synchronized every checkpoint period. In our design, the
local MSS of the receiver is responsible for piggybacking its
own timeToCkp in every message destined to the receiver,
because the MSS is the closest fixed host to the receiver.

In the system every MH/MSS maintains a checkpoint
number. In the following we use cnS, cnD, and cnMSS to
represent the checkpoint number of the sender, the receiver,
and the local MSS of the receiver, respectively. Like [5], the
sender piggybacks its own checkpoint number cnS in each
message. When the local MSS of the receiver receives the
message, apart from timeToCkp, it also piggybacks cnMSS in
the message, and then it forwards the message to the
receiver. So, when receiving the message, the receiver has
the following information: cnS, cnMSS, and timeToCkp of the
local MSS (represented as m.timeToCkp). Note that in
practice messages take a minimum time tdmin to be
delivered from a MSS to a MH in its cell. So, whenever the
local timer of a MH is adjusted by m.timeToCkp,
substracting tdmin from m.timeToCkp makes the adjustment
more accurate. In the following description we use the
symbol ∆ to represent minus tdmin. The relationship between
cnD, cnMSS, and cnS determines how the timer is adjusted, as
described in the following cases.

I. cnS = cnD
(1) cnMSS = cnS = cnD : The receiver resets its timeToCkp

to “m.timeToCkp + ∆”.
(2) cnMSS > cnS = cnD: The timer of MHD is late compared

to that of MSS2. So as soon as message m is processed,
MHD takes a checkpoint with ckpt number cnMSS, and
then resets its timeToCkp to “m.timeToCkp + ∆”.

Proceedings of the 2002 Pacific Rim International Symposium on Dependable Computing (PRDC’02)

0-7695-1852-4/02 $17.00 © 2002 IEEE

(3) cnMSS < cnS = cnD: The timers of MHS and MHD are
both early compared to that of MSS2. MHD resets its
timeToCkp to “T + m.timeToCkp + ∆”.

II. cnS < cnD
(1) cnS < cnMSS = cnD : Since MHD and its local MSS are

within the same ckpt period, MHD just resets its
timeToCkp to “m.timeToCkp + ∆”.

(2) cnS = cnMSS < cnD : cnMSS < cnD means that the timer
of MHD expires too early, so MHD resets its
timeToCkp to “T + m.timeToCkp + ∆”.

MHS

MHD

MSS1

MSS2

m

m

m

cn

Tcn

Tcn

Tcn+1

Tcn+1

Tcn+1

Tcn+1

Reset!cn

MHS

MHD

MSS1

MSS2

m

m

m

cn

Tcn

Tcn

Tcn+1

Tcn+1

Tcn+1

Tcn+1

Reset!cn
(a)

MHS

MHD

MSS1

MSS2

m

m

m

cn

Tcn

Tcn

Tcn+1

Tcn+1

Tcn+1

Tcn+1

Reset!
cn

MHS

MHD

MSS1

MSS2

m

m

m

cn

Tcn

Tcn

Tcn+1

Tcn+1

Tcn+1

Tcn+1

Reset!
cn

(b)

Figure 1. Timer synchronization (a) cnS > cnMSS = cnD
(b) cnS = cnMSS > cnD.

III. cnS > cnD
(1) cnS > cnMSS = cnD (Fig. 1(a)): Before MHD can

process m, it has to take a ckpt with ckpt number cnS;
otherwise m is an orphan message. Then MHD resets
its timeToCkp to “T + m.timeToCkp + ∆”.

(2) cnS = cnMSS > cnD (Fig. 1(b)): MHD has to take a ckpt
before processing m in order not to make m an orphan
message. Since the timer of MHD is late compared to
that of MSS2 (cnMSS > cnD), MHD then resets its
timeToCkp to “m.timeToCkp + ∆”.

From the above discussion, we can find that the

receiver’s timer can be synchronized whenever a message
is received. Since the synchronization information is
piggybacked in every message, the sender’s timer can also
be synchronized with its local MSS as soon as the sender
receives the acknowledgement.

In the next section, our checkpointing protocol requires

that at the end of a checkpoint interval, none of the MH’s
timers expires earlier than those of MSSs. To fulfill the
requirement, we need to take the clock drifts of MHs and
MSSs into account. The clock drift rates of the timers in
MHs and MSSs are represented as ρMH and ρMSS
respectively. In the system model we also mentioned that
after the clock synchronization, there exists a maximum
deviation σ between two MSSs. In the following lemma,
we show how the requirement is achieved.

Lemma 1: By setting ∆ = σ + 2ρMSS×T + ρMH×2T – tdmin
in the algorithm, ∀ process that has received a message in
Icn-1, its Icn+1 begins no earlier than that of a MSS.

Proof: Assume a process is in Icn-1 and it receives a
message. It is straightforward that the maximum time
deviation between any two MSSs after a time period T, is
σ + 2ρMSS×T. If receiving the message triggers a new ckpt
to be taken immediately, the maximum time to the cn+1th
ckpt is 2T. As a result, the maximum time deviation
between the process and its MSS is ρMH×2T – tdmin from
receiving the message to taking the cn+1th ckpt. By setting
∆ = σ + 2ρMSS×T + ρMH×2T – tdmin, the adjustment of
timeToCkp makes the local timer expire no earlier than
that of a MSS for Icn. On the other hand, if receiving the
message does not trigger a new ckpt immediately, the
maximum time to the cn+1th ckpt is T. But multiplying 2T
with ρMH in ∆ ensures that even if the process does not
receive any message during Icn, the process’s Icn+1 will not
begin earlier than that of a MSS. □

4. Time-based Checkpointing Protocol

In this section, we present our time-based checkpointing
protocol, which is applicable for mobile computing systems
over Mobile IP.

4.1. Notations and Data Structures

• SoftCkptcn: The cnth soft checkpoint of a process, saved

in the main memory of a MH.
• PermCkptcn: The cnth permanent checkpoint of a process,

saved in the stable storage of the process’ HA or FA. The
system recovery line consists of N consistent permanent
checkpoints, one from each process.

• Cellk: The wireless cell served by MSSk.
• Recvi: An array of N bits of process Pi maintained by

Pi’s local MSS. In the beginning of every checkpoint
interval, Recvi[j] is initialized to 0 for j = 1 to N, except
that Recvi[i]=1. When Pi receives a message m from Pj,
and the receipt of m is confirmed by Pi’s MSS, Recvi[j]
is set to 1.

• LastRecvi: The Recvi of the preceding checkpoint
interval of process Pi, maintained by Pi’s local MSS.

Proceedings of the 2002 Pacific Rim International Symposium on Dependable Computing (PRDC’02)

0-7695-1852-4/02 $17.00 © 2002 IEEE

• CkptNumi: The current checkpoint number of Pi in the
local MSS’s knowledge.

• RejectCPi: A variable that saves a checkpoint number
of process Pi, maintained by Pi’s local MSS. When Pi is
trying to transmit its soft checkpoint to the HA/FA, the
local MSS rejects the transmission if the checkpoint
number of the soft checkpoint equals RejectCPi.

4.2. Checkpointing Protocol

4.2.1. Checkpoint initiation. When the local timer
expires, a process takes a soft checkpoint. More precisely,
a soft checkpoint SoftCkptcn is taken at the beginning of
Icn. After a soft checkpoint has been taken, the process
resumes its computation.

For simplicity, here we assume that only one of the N
processes will play the role of the checkpoint initiator of a
checkpoint interval. Let’s say process Pi decides to act as
the initiator of the next checkpoint interval. In the
algorithm, Pi has to send a checkpoint request to its local
MSS during the current checkpoint interval. On receiving
the checkpoint request, the MSS becomes the initiator
MSS (denoted by MSSinit), which is responsible for
collecting and calculating the dependency relationship
between the initiator and all other processes in the next
checkpoint interval.

4.2.2. Maintaining dependency variables in MSSs.
Since an MSS is responsible for forwarding messages for
the processes in its cell, it is reasonable to use the MSS to
maintain the dependency variables (Recv, LastRecv) for
those processes as well. For example, process Pi in Cellk
receives a message from Pj and then sends an ACK back
to Pj via MSSk. By inspecting the ACK, MSSk knows that
the message from Pj has been delivered, so MSSk sets
Recvi[j] to 1. Note that the ACK is piggybacked with the
checkpoint number of Pi as described in Section 3, which
can be used by MSSk to tell whether Pi has entered the
next checkpoint interval or not. As soon as MSSk finds that
Pi has entered a new checkpoint interval, MSSk saves the
current Recvi as LastRecvi, resets Recvi, and then modifies
Recvi accordingly. At the same time, MSSk also updates
CkptNumi for Pi. Note that the variable RejectCPi is also
maintained in the MSS, but the explanation is left to
Section 4.3.2.

4.2.3. Determining the dependency relationship. As
soon as the timer of MSSinit expires, MSSinit broadcasts a
Recv_Request message to all MSSs. At Tdefer after
receiving Recv_Request, each MSS sends to MSSinit the
dependency vector (Recv or LastRecv) of every process in
its cell. Here Tdefer is a tunable parameter that the last
message sent by a process before the process’s timer
expires is expected to arrive at the local MSS no later than
Tdefer after the MSS’s timer expires. We can choose a

proper Tdefer according to the QoS requirements of the
wireless network: the better the QoS, the smaller the Tdefer.
A reasonable upper bound of Tdefer can be one half of a
checkpoint period (T/2), which is normally in the order of
several minutes or more.

After receiving all the dependency vectors, MSSinit
constructs an N × N dependency matrix D with one row
per process. We adopt the algorithm in [6] that by matrix
multiplications, all the processes on which the initiator
transitively depends can be calculated. In the following
we call such processes initiator-depended processes. After
finishing the calculation, the final dependency vector Dinit
can be obtained, in which Dinit[i] = 1 represents that the
initiator transitively depends on Pi in the preceding
checkpoint interval.

4.2.4. Discarding unnecessary soft checkpoints. A
process can discard the newly taken soft checkpoint if the
initiator does not transitively depend on the process in the
preceding checkpoint interval. To do that, MSSinit obtains
a set S_Discardcn from Dinit, which consists of any process
Pi such that Dinit[i] = 0, and then MSSinit sends a
notification DISCARDcn to the processes in S_Discardcn.
If process Pj receives DISCARDcn, it deletes SoftCkptcn
from its main memory, and the local MSS of Pj sets Recvj
= (LastRecvj ∨ Recvj).

On the other hand, if a process does not receive
DISCARDcn until Tdecide after taking SoftCkptcn, it will send
SoftCkptcn to a fixed host to make the checkpoint a
permanent one. Here Tdecide is also a tunable parameter,
which represents a reasonably long period of time from
entering the current checkpoint interval to DISCARDcn
should have been delivered to all the processes in
S_Discardcn.

4.2.5. Maintaining permanent checkpoints. In order to
ensure the robustness of the recovery line, the soft
checkpoints in a MH’s memory should be transmitted to
the stable storage of a fixed host periodically. In a mobile
computing system based on Mobile IP, the stable storage
of the home agent (HA) or foreign agent (FA) is an ideal
place to store the permanent checkpoints for the
processes. When an HA/FA receives a soft checkpoint
SoftCkptcn from process Pi, it saves SoftCkptcn in its stable
storage as a permanent checkpoint PermCkptcn of Pi. If
SoftCkptcn of a process is discarded, the process’s local
MSS will inform the process’s HA/FA to renumber
PermCkptcn-1 as PermCkptcn for the process. After the
HA/FA has collected all the checkpoints it should have
received, it then proposes to advance the recovery line to
checkpoint number cn. By adopting any feasible total
agreement protocol for distributed systems, the recovery
line will be committed to be advanced.

Proceedings of the 2002 Pacific Rim International Symposium on Dependable Computing (PRDC’02)

0-7695-1852-4/02 $17.00 © 2002 IEEE

4.2.6. Handling disconnections and handoffs. When an
MH within its cnth checkpoint interval is about to
disconnect with its local MSS (say MSSp), the processes on
the MH are required to take a soft checkpoint with
checkpoint cn+1, and then send these checkpoints to
MSSp. Assume process Pi takes a soft checkpoint
SoftCkptcn+1 and sends it to MSSp. On receiving
SoftCkptcn+1, MSSp saves (i, SoftCkptcn+1) in the stable
storage, but MSSp does not forward SoftCkptcn+1 to Pi’s
HA/FA at the moment. The reason is that SoftCkptcn+1 may
possibly be discarded later if Pi is in S_Discardcn+1. If
MSSp finds that Pi is not in S_Discardcn+1, it sends
SoftCkptcn+1 to Pi’s HA/FA on behalf of Pi. Note that if the
MH is about to disconnect before Tdecide after entering the
cnth checkpoint interval, Pi has to send SoftCkptcn along
with SoftCkptcn+1 to MSSp. In this case, MSSp keeps
SoftCkptcn for Pi until Tdecide after entering the cnth
checkpoint interval: MSSp may either discard it or send it
to Pi’s HA/FA, depending on Pi is in S_Discardcn or not.

For a disconnected process, its dependency information
(Recv, LastRecv, RejectCP, CkptNum) is still kept in the
MSS. If the process reconnects with another MSS at a later
time, the old MSS then sends the dependency information
of the process to the new MSS. For the handoff of a MH,
the old MSS also forwards the dependency information of
all the processes in the MH to the new MSS. If the handoff
involves a change of agents, the old agent forwards the
permanent checkpoints of the processes in the MH to the
new agent.

In the following we present a formal description of our
checkpointing algorithm:

I. Action at the initiator Pj:
01 send Checkpoint_Request to the local MSS;

II. Actions at the MSSinit when the local timer expires:
01 cn ← cn + 1; timeToCkp ← T;
02 send Recv_Request to all MSSs;
03 while (not receiving all Recvs from each MSS)
04 if (timeToCkp = T - Tdecide)
05 exit; /* Abort checkpointing process for this time */
06 construct matrix D;

07 Dinit ← calculate(Recvinit, D); /* Recvinit is Recv of the initiator */
08 S_Discard

cn
 ← φ;

09 for each Pi:

10 if (Dinit[i] = 0) S_Discard
cn
 ← S_Discard

cn
 ∪ Pi;

11 send DISCARD
cn
 to all processes ∈ S_Discardcn

;

III. Actions at process Pi when Timeout_Event is
triggered for Icn:
01 if (SoftCkpt

cn
 has not been sent to HA/FA)

02 save SoftCkpt
cn
 in the local disk;

03 take SoftCkpt
cn+1

;

04 cn ← cn + 1; timeToCkp ← nextTimeToCkp;

IV. Actions executed at an MSS, say MSSk, in Icn:
01 upon relaying message m from Pi ∈ Cellk to Pj:
02 if (m.cni > CkptNumi) {
03 CkptNumi ← m.cni; LastRecvi ← Recvi; reset Recvi;
04 modify Recvi if necessary, then send m to Pj;
05 }

06 else if (m.cni = CkptNumi)
07 modify Recvi if necessary, then send m to Pj;
08 else /* m.cni < CkptNumi , m is an out-of-sequence message */
09 send m to Pj;
10 upon receiving Recv_Request from MSSinit:
11 wait (Tdefer);

12 for each i that Pi ∈ Cellk:
13 if (CkptNumi = cn) send LastRecvi to MSSinit;

14 else /* CkptNumi < cn, and CkptNumi cannot be larger than cn */ {
15 for any j that a message from Pj is unacknowledged:
16 Recvi[j] ← 1;

17 send Recvi to MSSinit; LastRecvi ← Recvi;

18 reset Recvi; CkptNumi ← cn;
19 }
20 upon receiving DISCARD

cn
 for Pi in Cellk from MSSinit:

21 if (Pi is disconnected) discard SoftCkpt
cn
 of Pi;

22 else forward DISCARDcn to Pi;
23 Recvi ← LastRecvi ∨ Recvi;
24 upon receiving Disconnect_Request from MHq in Cellk:
25 for each Pi in MHq: /* SoftCkptcn+1 is included in the request */
26 save SoftCkpt

cn+1
 of Pi in the local disk;

27 upon receiving Handoff_Request from MHq in Cellk:
28 for each Pi in MHq:
29 send (Recvi, LastRecvi, CkptNumi, RejectCPi) to the
 new MSS of Pi;
30 upon Tdecide after entering the cn

th
 checkpoint interval:

31 for any i such that DISCARD
cn
 for Pi ∈ Cellk is undelivered:

32 RejectCPi ← cn;

33 upon receiving ForwardCP_Request(cn) from Pi ∈ Cellk:
34 if (RejectCPi ≠ cn)
35 receive and then forward the ckpt to the HA/FA of Pi;
36 else reject the transmission;
37 upon expiration of the local timer:

38 cn ← cn + 1; timeToCkp ← T;

V. Actions for any process Pi in Icn:
01 upon sending SoftCkpt

cn
 to the HA or FA:

02 send ForwardCP_Request(cn) to the local MSS;
03 if (request not rejected) send SoftCkpt

cn
 to the HA or FA;

04 upon receiving DISCARD
cn
:

05 discard SoftCkpt
cn
;

06 upon expiration of the local timer:

07 nextTimeToCkp � T; trigger Timeout_Event;

08 upon receiving a message m from Pj:
09 if (m.cnj = cn) {
10 deliverMsgToProcess(m);

11 if (m.cnMSS = m.cnj) timeToCkp ← m.timeToCkp + ∆;
12 else if (m.cnMSS > m.cnj) {

13 cn ← m.cnMSS; nextTimeToCkp ← m.timeToCkp + ∆;
14 trigger Timeout_Event; /* A soft ckpt will be taken */
15 }
16 else /* m.cnMSS < m.cnj */
17 timeToCkp ← T + m.timeToCkp + ∆;
18 }
19 else if (m.cnj < cn) {
20 deliverMsgToProcess(m);

21 if (m.cnMSS = cn) timeToCkp ← m.timeToCkp + ∆;
22 else timeToCkp ← T + m.timeToCkp + ∆;
23 }
24 else /* m.cnj > cn */ {
25 if (m.cnMSS = cn) nextTimeToCkp ← T +timeToCkp+∆;
26 else /* m.cnMSS = m.cnj */
27 nextTimeToCkp ← m.timeToCkp + ∆;
28 cn ← m.cnj;
29 trigger Timeout_Event; /* A soft ckpt will be taken now */
30 wait until SoftCkpt

cn
 is taken:

31 deliverMsgToProcess (m);
32 }

Proceedings of the 2002 Pacific Rim International Symposium on Dependable Computing (PRDC’02)

0-7695-1852-4/02 $17.00 © 2002 IEEE

4.3. Handling Untimely Delayed Messages

In this section we discuss the problem of untimely
delayed messages in the network. Since there exists
inherent uncertainty of message delivery time in the wired
and wireless network, we have to deal with untimely
delayed messages in the checkpointing algorithm carefully.

4.3.1. Untimely delayed Recv vectors. When MSSinit is
collecting the Recv vectors, it is possible that because of
network congestions or link failures in the wired network,
some of the Recv vectors have not been received until
Tdecide after entering the current checkpoint interval. In this
case, the checkpointing process for this time has to be
aborted (see code II of the checkpointing algorithm, lines
03-05). In effect, aborting the checkpointing process does
not stop the progression of the recovery line since every
process has taken a soft checkpoint, and these soft
checkpoints will become permanent when they are sent to
the HAs or FAs.

4.3.2. Untimely delayed DISCARDcn notifications. An
inconsistency situation may occur due to untimely delayed
DISCARDcn notifications. Although we can choose a
proper Tdecide value such that the untimely delayed
notifications are very rare, our algorithm has to cope with
the problem in order to ensure the consistency of the
global checkpoints. Let’s demonstrate the problem as
illustrated in Figure 2.

Pi

Pj

m

DISCARDcn

cn

cn

soft ckpt ckpt deleted

Tdecide

Tdecide

Send SoftCkptcn

to Pj’s HA/FA

Pi

Pj

m

DISCARDcn

cn

cn

soft ckpt ckpt deletedsoft ckpt ckpt deleted

Tdecide

Tdecide

Send SoftCkptcn

to Pj’s HA/FA

Figure 2. A possible scenario that the delivery of
DISCARDcn for Pj is delayed.

Assume Pi and Pj are both in S_Discardcn, but Pj does not
receive DISCARDcn until Tdecide after entering Icn. For Pi, since
its SoftCkptcn is discarded, its HA/FA will renumber Pi’s
PermCkptcn-1 as PermCkptcn. For Pj, it will send its SoftCkptcn
to its HA/FA in order to make the checkpoint permanent.
However, if there exists a message m between Pi and Pj, m
will be an orphan message with respect to Pi’s PermCkptcn
and Pj’s PermCkptcn. To cope with the problem, we introduce
the variable RejectCP of a process, which is also maintained
by the local MSS of the process. In the above example, the
local MSS of Pj is aware that DISCARDcn for Pj has not been
delivered until Tdecide after entering Icn, so it sets RejectCPj to
cn. Afterwards when Pj tries to send its SoftCkptcn to HA/FA,
the MSS rejects the transmission because RejectCPj equals cn

(see code IV, lines 30-36). Therefore, Pj’s PermCkptcn-1 will
be renumbered as PermCkptcn so that the inconsistency no
longer exists. On Pj’s part, if the transmission of its SoftCkptcn
is rejected by the local MSS, Pj deletes SoftCkptcn.

4.3.3. Untimely delayed acknowledgements. In our
algorithm, the MSS maintains the dependency vectors
Recv and LastRecv for a process by inspecting the
piggybacked information in an ACK sent by the process,
but an untimely delayed ACK could be a problem during
the checkpointing process. Take Figure 3 as an example,
when MSSk is about to send Recvi to MSSinit, ACK.m has
not arrived so that MSSk cannot tell whether or not to
include the receipt of m in Recvi at the instant. In our
algorithm we take the following policy (refer to code IV,
lines 14-19): when MSSk is about to send Recvi to MSSinit
and it finds that such an unacknowledged message exists,
Recvi[j] is set to 1. That is, MSSk presumes the case in
Figure 3(a) always occurs. But if ACK.m finally arrives
and shows that Figure 3(b) is true instead, the receipt of m
is then included in Recvi of Icn.

MSSk

Pi

m

cn

cn
cn-1

cn-1

(from Pj)

Recvi

(to MSSinit)

ACK.m

Tdefer
MSSk

Pi

m

cn

cn
cn-1

cn-1

(from Pj)

Recvi

(to MSSinit)

ACK.m

Tdefer

(a)

MSSk

Pi

m

cn

cn
cn-1

cn-1

(from Pj)

Recvi

(to MSSinit)

ACK.m

Tdefer
MSSk

Pi

m

cn

cn
cn-1

cn-1

(from Pj)

Recvi

(to MSSinit)

ACK.m

Tdefer

(b)

Figure 3. The ACK of m arrives later than MSSk has sent
Recvi to MSSinit (a) Receipt of m is in Icn-1 of Pi (b) Receipt

of m is in Icn of Pi.

4.4. Rollback Recovery

When a failure occurs, all the processes roll back to the
latest recovery line. Assume the latest recovery line is
numbered as cn. For a non-faulty process, if its SoftCkptcn
is still in the main memory and its RejectCP is not cn, it
can roll back to the state of SoftCkptcn because the content
of SoftCkptcn is identical to PermCkptcn. Otherwise, the
process requests its PermCkptcn from the HA or FA.

From the above description, we can see that with the
help of local soft checkpoints, some of the processes can
be recovered locally so that the recovery can be done
efficiently.

Proceedings of the 2002 Pacific Rim International Symposium on Dependable Computing (PRDC’02)

0-7695-1852-4/02 $17.00 © 2002 IEEE

4.5. Proofs of Correctness

Lemma 2. If a process Pi receives a message from
another process Pj during Icn-1 and Pj ∈ S_Discardcn, then
Pi ∈ S_Discardcn.

Proof: If Pi ∉ S_Discardcn, from the proposed algorithm,
the initiator transitively depends on Pi during Icn-1. Since Pi
depends on Pj, the initiator also transitively depends on Pj
during Icn-1. From the proposed algorithm, Pj ∉
S_Discardcn. A contradiction. □

Lemma 3. N permanent checkpoints with the same
checkpoint number form a globally consistent checkpoint.

Proof: We prove it by induction. In the beginning, the N
permanent ckpts with ckpt number 0 obviously form a
globally consistent ckpt. Assume there are N permanent
ckpts with ckpt number k and they form a globally
consistent ckpt. In the proposed algorithm, if a process Pi
receives a message m from another process Pj during Ik,
there are two possibilities:
Case 1: If Pj ∈ S_Discardk+1, there are two possibilities
for Pj:

1.1 Pj does not receive DISCARDk+1 until Tdecide after
entering Ik+1. From Section 4.3.2 we know Pj’s local
MSS will set RejectCPj to k+1, so that Pj’s
SoftCkptk+1 will not be saved as PermCkptk+1. It is
Pj’s PermCkptk be renumbered as PermCkptk+1.

1.2 Pj receives DISCARDk+1 before Tdecide after entering
Ik+1. In this case, Pj discards SoftCkptk+1 and the
preceding permanent ckpt PermCkptk of Pj is
renumbered as PermCkptk+1.

From Lemma 2 we know Pi ∈ S_Discardk+1. Through the
above discussion, we know no matter if Pi receives
DISCARDk+1 or not, the preceding permanent ckpt
PermCkptk of Pi is renumbered as PermCkptk+1. Since the
permanent ckpts with ckpt number k form a globally
consistent ckpt, there is no orphan message between the
k+1th permanent ckpt of Pi and the k+1th permanent ckpt
of Pj.
Case 2: If Pj ∉ S_Discardk+1, Pj does not receive
DISCARDk+1 and its SoftCkptk+1 is sent to HA/FA and
saved as PermCkptk+1. From the proposed algorithm, Pj
must send m before it takes SoftCkptk+1. Otherwise, Pi will
take SoftCkptk+1 before processing m, which makes m
been received within Pi’s Ik+1. As a result, no matter Pi’s
PermCkptk is renumbered as PermCkptk+1 or Pi’s
SoftCkptk+1 is saved as PermCkptk+1, there is no orphan
message between Pi’s PermCkptk+1 and Pj’s PermCkptk+1.
Thus, if the N permanent checkpoints with ckpt number k
form a globally consistent ckpt, there is no orphan
message between the k+1th permanent ckpts of any two
processes. That is, N permanent ckpts with ckpt number
k+1 form a globally consistent ckpt. □

Theorem. The proposed algorithm always creates a
consistent global checkpoint.

Proof: In the beginning there are N permanent ckpts with
ckpt number 0, and they form the initial recovery line.
Suppose there exists N permanent ckpts with the same
ckpt number k. In the proposed algorithm, we advance the
recovery line to ckpt number k+1 only when all processes’
permanent ckpts PermCkptk+1 are collected. From Lemma
3, N permanent ckpts with the same ckpt number form a
globally consistent ckpt. Therefore, there always exists a
consistent global ckpt. □

4.6. Performance Analysis

In this section we discuss the performance of our
checkpointing algorithm, including the blocking time, the
number of permanent checkpoints, and the number of
coordinating messages. Then we show the comparison
with other protocols in a table. Here are the notations used
in the following text:

- Nmin: the number of processes that need to take
checkpoints using the Koo-Toueg algorithm [1].

- Ndep: the average number of processes on which a
process depends. (1 ≤ Ndep ≤ N – 1)

- Cwireless: cost of sending a message in the wireless link.
- Cwired: cost of sending a message in the wired link.
- Cbroad: cost of broadcasting a message to all processes.
- Tckpt: the checkpointing time, including the delays

incurred in transferring a checkpoint from a MH to its
MSS and saving the checkpoint in the stable storage in
the MSS or a fixed host.

4.6.1. Blocking time. It is very clear that the blocking
time of our protocol is 0.

4.6.2. Number of new permanent checkpoints. In
Section 4.3.3, we described that if there is an
unacknowledged message like the scenario depicted in
Figure 3, the MSS presumes the case in Figure 3(a) always
occurs. That is, the receipt of message m from Pj is included
in the Recv vector of Pi’s Icn-1. If it turns out later that Figure
3(b) is true instead, then there is a chance that Pj and
Pj-depended processes should not have been included in the
dependency with the initiator. The consequence is that there
may be additional soft checkpoints been made permanent,
so as to increase the number of new permanent checkpoints.
If we choose a proper Tdefer such that the untimely delayed
ACKs are very rare, the number of new permanent
checkpoints is then close to minimum.

4.6.3. Number of coordinating messages. In the
algorithm, the only coordinating message transmitted in
the wireless link is the discard notification to a process in
the set S_Discardcn. The approximate number of discard

Proceedings of the 2002 Pacific Rim International Symposium on Dependable Computing (PRDC’02)

0-7695-1852-4/02 $17.00 © 2002 IEEE

notifications is N – Nmin. Messages sent in the wired link
are N Recv vectors from MSSs to MSSinit, and N – Nmin
discard notifications from MSSinit to MSSs that serve the
processes in S_Discardcn.

4.6.4. Comparison with other algorithms. Table 1
compares the performance of our algorithm with the
algorithms in [1], [10], [12]. Compared to the
Neves-Fuchs algorithm which is also time-based, our
algorithm reduces the number of checkpoints to nearly
minimum, so that the total number of checkpoints
transmitted onto the fixed network is reduced. Fewer
checkpoints transmitted also means less power
consumption for mobile hosts. For a mobile computing
system, it is also very critical to minimize the number and
size of the messages transmitted in the wireless link. So, if
we only consider the number of coordinating messages
sent in the wireless link, our algorithm performs fairly
well. For the size of the piggybacked information and the
coordination message in the wireless link, our protocol
outperforms Cao-Singhal algorithm with O(1) to O(N). On
the other hand, the cost of transmitting a message in the
wired link is far less than transmitting in the wireless link.
So, although our protocol requires O(N) coordinating
messages in the wired network, the cost is affordable for
wired networks with high bandwidth.

Table 1. Performance Comparison*

Algorithm
Blocking

time
of

ckpts
of messages

Koo-Toueg
[1] Nmin × Tckpt Nmin 3×Nmin×Ndep× (Cwired+Cwireless)

Neves-Fuchs
[12]

σ + 2ρMHT
- tdmin

N 2×N×Cwireless

Cao-Singhal
[10]

0 Nmin
≈ 2×Nmin× (Cwired+Cwireless) +
min(Nmin×(Cwired+Cwireless),Cbroad)

Our
algorithm

0 ≈
Nmin

≈ (N-Nmin) × (Cwired+Cwireless) +
N × Cwired

* The performance data of algorithms [1] and [10] are from [10].

5. Conclusions

In this paper we have proposed a time-based
checkpointing protocol for mobile computing systems
over Mobile IP. Our protocol reduces the number of
checkpoints compared to the traditional time-based
protocols. We also make use of the accurate timers in the
MSSs to adjust the timers in the MHs, so that our protocol
is well suited to mobile computing systems with MHs
spread across a wide area network. We also take
advantage of the infrastructure provided by Mobile IP, so
that the permanent checkpoints of the participating
processes can be saved in the HA or FA depending on the
process’s current location. Compared to other protocols,

our protocol performs very well in the aspects of
minimizing the number and size of messages transmitted
in the wireless media. Tracking and computing the
dependency relationship between processes are performed
in the MSSs, so that MHs are free from additional tasks
during checkpointing.

6. Acknowledgement

This research was supported in part by the Development

of Communication Software Core Technology project of
Institute for Information Industry and sponsored by MOEA,
R.O.C.

References

[1] R. Koo and S. Toueg, “Checkpointing and Rollback-

Recovery for Distributed Systems,” IEEE Trans. on Software
Engineering, pp. 23-31, Jan. 1987.

[2] Z. Tong, R. Y. Kain, and W. T. Tsai, “A Low Overhead
Checkpointing and Rollback Recovery Scheme for Distributed
Systems,” Proc. of the 8th Symp. on Reliable Distributed
Systems, pp. 12-20, Oct. 1989.

[3] A. Acharya and B. R. Badrinath, “Checkpointing
Distributed Applications on Mobile Computers,” Proc. of
Int’l Conf. on Parallel and Distributed Information
Systems, pp. 73-80, Sep. 1994.

[4] R. Prakash and M. Singhal, “Low-Cost Checkpointing and
Failure Recovery in Mobile Computing Systems,” IEEE
Trans. on Parallel and Distributed Systems, Vol. 7(10), pp.
1035-1048, Oct. 1996.

[5] N. Neves and W. K. Fuchs, “Adaptive Recovery for Mobile
Environments,” Comm. of the ACM, pp. 68-74, Jan. 1997.

[6] G. Cao and M. Singhal, “On the Impossibility of
Min-Process Non-Blocking Checkpointing and An
Efficient Checkpointing Algorithm for Mobile Computing
Systems,” Proc. of the 27th Int’l Conf. on Parallel
Processing, pp. 37-44, Aug. 1998.

[7] H. Higaki and M. Takizawa, “Checkpoint-Recovery Protocol
for Reliable Mobile Systems,” Proc. of the IEEE Symp. on
Reliable Distributed Systems, pages 93-99, Oct. 1998.

[8] K. F. Ssu, B. Yao, W. K. Fuchs, N. Neves, “Adaptive
Checkpointing with Storage Management for Mobile
Environments,“ IEEE Trans. on Reliability, Vol. 48(4), pp.
315-324, Dec. 1999.

[9] T. Park and H. Y. Yeom, “An Asynchronous Recovery
Scheme based on Optimistic Message Logging for Mobile
Computing Systems,” Proc. of the Int’l Conf. on
Distributed Computing Systems, pp. 436-443, Apr. 2000.

[10] G. Cao and M. Singhal, “Mutable Checkpoints: A New
Checkpointing Approach for Mobile Computing,” IEEE
Trans. on Parallel and Distributed Systems, Vol. 12(2), pp.
157-172, Feb. 2001.

[11] T. Park, N. Woo, and H. Y. Yeom, “An Efficient Recovery
Scheme for Mobile Computing Environments,” IEEE Int’l
Conf. on Parallel and Distributed Systems, Jun. 2001.

[12] N. Neves and W. K. Fuchs, “Coordinated Checkpointing
Without Direct Coordination,” Proc. of the IEEE Int’l
Computer Performance & Dependability Symp., pp. 23-31,
Sep. 1998.

Proceedings of the 2002 Pacific Rim International Symposium on Dependable Computing (PRDC’02)

0-7695-1852-4/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

