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Abstract 
 

Checkpointing protocols for distributed computing 
systems can also be applied to mobile computing systems, 
but the unique characteristics of the mobile environment 
need to be taken into account. In this paper, an improved 
time-based checkpointing protocol is proposed, which is 
suitable for mobile computing systems based on Mobile 
IP. The main improvement over a traditional time-based 
protocol is that our protocol reduces the number of 
checkpoints per checkpointing process to nearly 
minimum, so that fewer checkpoints need to be 
transmitted through the bandwidth-limited wireless links. 
The proposed protocol also performs very well in the 
aspects of minimizing the number and the size of 
messages transmitted in the wireless network. Therefore, 
the protocol brings very little overhead to a mobile host 
which has limited resource. Additionally, by integrating 
the improved timer synchronization technique, our 
protocol can also be applied to wide area networks. 
 
1. Introduction 
 

The infrastructure supporting mobile computation is 
growing mature rapidly. Users with mobile devices are 
able to access and exchange information on the move. As 
a result, collaborative works can be done effectively, no 
matter where the participating members/hosts are 
physically located. For example, in a sensor network 
which carries out real-time scientific computation, sensors 
with processing capability can be mobile and distributed.  

To provide fault-tolerance capability for mobile 
computing systems, checkpointing and rollback-recovery 
techniques for traditional distributed computing systems 
such as [1, 2] can be used. Recently, checkpointing 
protocols specifically designed for mobile computing 
systems have also been proposed [3-11]. A common goal 
of these protocols is to avoid extra coordinating messages 
and unnecessary checkpoints. Prakash and Singhal [4] 
first proposed a checkpointing protocol that requires only 

a minimum number of processes to take checkpoints and 
does not block the underlying computation during 
checkpointing. However, Cao and Singhal [6] proved that 
such a min-process nonblocking checkpointing algorithm 
does not exist. They also introduced the concept of 
mutable checkpoints [10] in their nonblocking algorithm, 
which forces a minimum number of processes to take 
checkpoints on the stable storage. 

Time-based protocols [2, 5, 12] use synchronized clocks 
or timers to indirectly coordinate the creation of 
checkpoints so that coordinating messages are reduced. 
However, time-based protocols require every process to 
take a checkpoint during a checkpointing process. 
Moreover, since timers cannot be perfectly synchronized, 
the consistency between all the checkpoints can still be a 
problem. In [12], the problem is solved by disallowing 
message sending during a period after a timer expires, but 
doing this blocks the computation. In [5], however, 
processes are nonblocking because the inconsistency was 
resolved by the information piggybacked in each message. 
Timer synchronization can also be done using the 
piggybacked information. But when the transmission 
delay between two mobile hosts becomes relatively large, 
the synchronization result will be less accurate. 

In this paper, we propose an improved time-based 
checkpointing protocol that tries to reduce the number of 
checkpoints. The basic idea is that if a checkpoint initiator 
does not transitively depend on a process, the process does 
not have to take a checkpoint associated with the initiator. 
The result is that the number of checkpoints transmitted 
over the air can be minimized. Also, and the number of 
coordinating messages is very small compared to other 
existing protocols. The protocol is also nonblocking 
because the inconsistency between processes is avoided 
by piggybacking necessary information in each message. 

The rest of this paper is organized as follows. Section 2 
describes the system model. In Section 3 we show the 
improved timer synchronization technique for time-based 
protocols. In Section 4 we present our checkpointing 
protocol and give a performance analysis. Section 5 
concludes our work. 

Proceedings of the 2002 Pacific Rim International Symposium on Dependable Computing (PRDC’02) 

0-7695-1852-4/02 $17.00 © 2002 IEEE 



2. System Model and Background 
 

A mobile computing application is executed by a set of 
N processes running on several mobile hosts (MHs). 
Processes communicate with each other by sending 
messages. These messages are received and then 
forwarded to the destination host by the mobile support 
stations (MSSs), which are interconnected by a fixed 
network. The mobility of MHs is supported by Mobile IP, 
so that messages can be routed to the destination MH 
which is moving around in the network. A MH is 
associated with a Home Agent (HA)/Foreign Agent (FA) 
when it is in the home/foreign network. 

To ensure ordered and reliable message deliveries, each 
message is assigned an increasing sequence number. In 
the system every process takes a checkpoint periodically. 
Each checkpoint is associated with a monotonically 
increasing checkpoint number. The time interval after 
taking the kth checkpoint and before taking the k+1th 
checkpoint is called the kth checkpoint interval 
(represented as Ik in the following text). 

In the system every node (MH or MSS) contains a 
system clock, with typical clock drift rate ρ in the order of 
10-5 or 10-6. The system clocks of MSSs can be 
synchronized using Internet time synchronization services 
such as Network Time Protocol, which makes the 
maximum deviation σ of all the clocks within tens of 
milliseconds. However, in wide area networks, MSSs may 
belong to different organizations. So, we use the clock 
synchronization protocol to sync the logical clocks instead 
of the physical system clocks of MSSs. The clocks of MHs 
can be synchronized likewise, but explicit synchronization 
messages bring overhead to MHs because of the limited 
wireless bandwidth. In addition, the system clocks of MHs 
may not be controlled by a user-level application. 
Therefore, to coordinate with each other, processes use 
synchronized timers instead of synchronized clocks. The 
advantages of using timers to coordinate the creation of 
checkpoints are that the checkpointing protocol does not 
have to rely on synchronized system clocks, and no 
explicit synchronization is needed.  

Before a mobile computing application starts, a 
predefined checkpoint period T is set on the timers. When 
the local timer expires, the process saves its system state 
as a checkpoint. If all the timers expire at exactly the same 
time, the set of N checkpoints taken at the same instant 
forms a globally consistent checkpoint. Since timers are 
not perfectly synchronized, the checkpoints may not be 
consistent because of orphan messages. An orphan 
message m represents an inconsistent system state with the 
event receive(m) included in the state while the event 
send(m) not in the state. Orphan messages may lead to 
domino effect, which causes unbounded, cascading 
rollback propagation. So, by definition, a globally 
consistent checkpoint is free from the domino effect. 

3. Improved Timer Synchronization 
 

In this section we introduce the mechanism of improved 
timer synchronization. The mechanism then serves as a 
basis in our checkpointing algorithm, as described in the 
next section. 

The mechanism of timer synchronization in [5] uses 
piggybacked timer information from the sender to adjust 
the timer at the receiver. When the sender sends a message, 
it piggybacks its “time to next checkpoint” (represented as 
timeToCkp) in the message. The receiver then uses the 
information to adjust its own timeToCkp. The checkpoint 
number of the sender is also piggybacked in the message, 
so that the receiver can act accordingly to avoid an orphan 
message. However, if the timer of the sender is faulty, the 
erroneous timer information will be spread to the receiver. 
Besides, since the transmission delay between the sender 
and the receiver is variable, the timer information from the 
sender may not reflect the correct situation when the 
message finally arrives at the receiver. 

To achieve more accurate timer synchronization, we 
utilize the timers in MSSs as an absolute reference because 
timers in the fixed hosts are more reliable than those in 
MHs. We also assume that the timers of the MSSs are 
synchronized every checkpoint period. In our design, the 
local MSS of the receiver is responsible for piggybacking its 
own timeToCkp in every message destined to the receiver, 
because the MSS is the closest fixed host to the receiver. 

In the system every MH/MSS maintains a checkpoint 
number. In the following we use cnS, cnD, and cnMSS to 
represent the checkpoint number of the sender, the receiver, 
and the local MSS of the receiver, respectively. Like [5], the 
sender piggybacks its own checkpoint number cnS in each 
message. When the local MSS of the receiver receives the 
message, apart from timeToCkp, it also piggybacks cnMSS in 
the message, and then it forwards the message to the 
receiver. So, when receiving the message, the receiver has 
the following information: cnS, cnMSS, and timeToCkp of the 
local MSS (represented as m.timeToCkp). Note that in 
practice messages take a minimum time tdmin to be 
delivered from a MSS to a MH in its cell. So, whenever the 
local timer of a MH is adjusted by m.timeToCkp, 
substracting tdmin from m.timeToCkp makes the adjustment 
more accurate. In the following description we use the 
symbol ∆ to represent minus tdmin. The relationship between 
cnD, cnMSS, and cnS determines how the timer is adjusted, as 
described in the following cases. 

I. cnS = cnD 
(1) cnMSS = cnS = cnD : The receiver resets its timeToCkp 

to “m.timeToCkp + ∆”. 
(2) cnMSS > cnS = cnD: The timer of MHD is late compared 

to that of MSS2. So as soon as message m is processed, 
MHD takes a checkpoint with ckpt number cnMSS, and 
then resets its timeToCkp to “m.timeToCkp + ∆”. 
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(3) cnMSS < cnS = cnD: The timers of MHS and MHD are 
both early compared to that of MSS2. MHD resets its 
timeToCkp to “T + m.timeToCkp + ∆”. 

II. cnS < cnD 
(1) cnS < cnMSS = cnD : Since MHD and its local MSS are 

within the same ckpt period, MHD just resets its 
timeToCkp to “m.timeToCkp + ∆”. 

(2) cnS = cnMSS < cnD : cnMSS < cnD means that the timer 
of MHD expires too early, so MHD resets its 
timeToCkp to “T + m.timeToCkp + ∆”. 
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Figure 1. Timer synchronization (a) cnS > cnMSS = cnD  
(b) cnS = cnMSS > cnD. 

III. cnS > cnD 
(1) cnS > cnMSS = cnD (Fig. 1(a)): Before MHD can 

process m, it has to take a ckpt with ckpt number cnS; 
otherwise m is an orphan message. Then MHD resets 
its timeToCkp to “T + m.timeToCkp + ∆”. 

(2) cnS = cnMSS > cnD (Fig. 1(b)): MHD has to take a ckpt 
before processing m in order not to make m an orphan 
message. Since the timer of MHD is late compared to 
that of MSS2 (cnMSS > cnD), MHD then resets its 
timeToCkp to “m.timeToCkp + ∆”. 

 
From the above discussion, we can find that the 

receiver’s timer can be synchronized whenever a message 
is received. Since the synchronization information is 
piggybacked in every message, the sender’s timer can also 
be synchronized with its local MSS as soon as the sender 
receives the acknowledgement. 

In the next section, our checkpointing protocol requires 

that at the end of a checkpoint interval, none of the MH’s 
timers expires earlier than those of MSSs. To fulfill the 
requirement, we need to take the clock drifts of MHs and 
MSSs into account. The clock drift rates of the timers in 
MHs and MSSs are represented as ρMH and ρMSS 
respectively. In the system model we also mentioned that 
after the clock synchronization, there exists a maximum 
deviation σ between two MSSs. In the following lemma, 
we show how the requirement is achieved. 

 
Lemma 1: By setting ∆ = σ + 2ρMSS×T + ρMH×2T – tdmin 
in the algorithm, ∀ process that has received a message in 
Icn-1, its Icn+1 begins no earlier than that of a MSS. 

Proof: Assume a process is in Icn-1 and it receives a 
message. It is straightforward that the maximum time 
deviation between any two MSSs after a time period T, is 
σ + 2ρMSS×T. If receiving the message triggers a new ckpt 
to be taken immediately, the maximum time to the cn+1th 
ckpt is 2T. As a result, the maximum time deviation 
between the process and its MSS is ρMH×2T – tdmin from 
receiving the message to taking the cn+1th ckpt. By setting 
∆ = σ + 2ρMSS×T + ρMH×2T – tdmin, the adjustment of 
timeToCkp makes the local timer expire no earlier than 
that of a MSS for Icn. On the other hand, if receiving the 
message does not trigger a new ckpt immediately, the 
maximum time to the cn+1th ckpt is T. But multiplying 2T 
with ρMH in ∆ ensures that even if the process does not 
receive any message during Icn, the process’s Icn+1 will not 
begin earlier than that of a MSS. □ 
 
4. Time-based Checkpointing Protocol 
 

In this section, we present our time-based checkpointing 
protocol, which is applicable for mobile computing systems 
over Mobile IP. 
 
4.1. Notations and Data Structures 
 
• SoftCkptcn: The cnth soft checkpoint of a process, saved 

in the main memory of a MH. 
• PermCkptcn: The cnth permanent checkpoint of a process, 

saved in the stable storage of the process’ HA or FA. The 
system recovery line consists of N consistent permanent 
checkpoints, one from each process. 

• Cellk: The wireless cell served by MSSk. 
• Recvi: An array of N bits of process Pi maintained by 

Pi’s local MSS. In the beginning of every checkpoint 
interval, Recvi[j] is initialized to 0 for j = 1 to N, except 
that Recvi[i]=1. When Pi receives a message m from Pj, 
and the receipt of m is confirmed by Pi’s MSS, Recvi[j] 
is set to 1. 

• LastRecvi: The Recvi of the preceding checkpoint 
interval of process Pi, maintained by Pi’s local MSS. 
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• CkptNumi: The current checkpoint number of Pi in the 
local MSS’s knowledge. 

• RejectCPi: A variable that saves a checkpoint number 
of process Pi, maintained by Pi’s local MSS. When Pi is 
trying to transmit its soft checkpoint to the HA/FA, the 
local MSS rejects the transmission if the checkpoint 
number of the soft checkpoint equals RejectCPi. 

 
4.2. Checkpointing Protocol 
 
4.2.1. Checkpoint initiation. When the local timer 
expires, a process takes a soft checkpoint. More precisely, 
a soft checkpoint SoftCkptcn is taken at the beginning of 
Icn. After a soft checkpoint has been taken, the process 
resumes its computation. 

For simplicity, here we assume that only one of the N 
processes will play the role of the checkpoint initiator of a 
checkpoint interval. Let’s say process Pi decides to act as 
the initiator of the next checkpoint interval. In the 
algorithm, Pi has to send a checkpoint request to its local 
MSS during the current checkpoint interval. On receiving 
the checkpoint request, the MSS becomes the initiator 
MSS (denoted by MSSinit), which is responsible for 
collecting and calculating the dependency relationship 
between the initiator and all other processes in the next 
checkpoint interval. 

 
4.2.2. Maintaining dependency variables in MSSs. 
Since an MSS is responsible for forwarding messages for 
the processes in its cell, it is reasonable to use the MSS to 
maintain the dependency variables (Recv, LastRecv) for 
those processes as well. For example, process Pi in Cellk 
receives a message from Pj and then sends an ACK back 
to Pj via MSSk. By inspecting the ACK, MSSk knows that 
the message from Pj has been delivered, so MSSk sets 
Recvi[j] to 1. Note that the ACK is piggybacked with the 
checkpoint number of Pi as described in Section 3, which 
can be used by MSSk to tell whether Pi has entered the 
next checkpoint interval or not. As soon as MSSk finds that 
Pi has entered a new checkpoint interval, MSSk saves the 
current Recvi as LastRecvi, resets Recvi, and then modifies 
Recvi accordingly. At the same time, MSSk also updates 
CkptNumi for Pi. Note that the variable RejectCPi is also 
maintained in the MSS, but the explanation is left to 
Section 4.3.2. 
 
4.2.3. Determining the dependency relationship. As 
soon as the timer of MSSinit expires, MSSinit broadcasts a 
Recv_Request message to all MSSs. At Tdefer after 
receiving Recv_Request, each MSS sends to MSSinit the 
dependency vector (Recv or LastRecv) of every process in 
its cell. Here Tdefer is a tunable parameter that the last 
message sent by a process before the process’s timer 
expires is expected to arrive at the local MSS no later than 
Tdefer after the MSS’s timer expires. We can choose a 

proper Tdefer according to the QoS requirements of the 
wireless network: the better the QoS, the smaller the Tdefer. 
A reasonable upper bound of Tdefer can be one half of a 
checkpoint period (T/2), which is normally in the order of 
several minutes or more. 

After receiving all the dependency vectors, MSSinit 
constructs an N × N dependency matrix D with one row 
per process. We adopt the algorithm in [6] that by matrix 
multiplications, all the processes on which the initiator 
transitively depends can be calculated. In the following 
we call such processes initiator-depended processes. After 
finishing the calculation, the final dependency vector Dinit 
can be obtained, in which Dinit[i] = 1 represents that the 
initiator transitively depends on Pi in the preceding 
checkpoint interval. 

 
4.2.4. Discarding unnecessary soft checkpoints. A 
process can discard the newly taken soft checkpoint if the 
initiator does not transitively depend on the process in the 
preceding checkpoint interval. To do that, MSSinit obtains 
a set S_Discardcn from Dinit, which consists of any process 
Pi such that Dinit[i] = 0, and then MSSinit sends a 
notification DISCARDcn to the processes in S_Discardcn. 
If process Pj receives DISCARDcn, it deletes SoftCkptcn 
from its main memory, and the local MSS of Pj sets Recvj 
= (LastRecvj ∨ Recvj). 

On the other hand, if a process does not receive 
DISCARDcn until Tdecide after taking SoftCkptcn, it will send 
SoftCkptcn to a fixed host to make the checkpoint a 
permanent one. Here Tdecide is also a tunable parameter, 
which represents a reasonably long period of time from 
entering the current checkpoint interval to DISCARDcn 
should have been delivered to all the processes in 
S_Discardcn. 
 
4.2.5. Maintaining permanent checkpoints. In order to 
ensure the robustness of the recovery line, the soft 
checkpoints in a MH’s memory should be transmitted to 
the stable storage of a fixed host periodically. In a mobile 
computing system based on Mobile IP, the stable storage 
of the home agent (HA) or foreign agent (FA) is an ideal 
place to store the permanent checkpoints for the 
processes. When an HA/FA receives a soft checkpoint 
SoftCkptcn from process Pi, it saves SoftCkptcn in its stable 
storage as a permanent checkpoint PermCkptcn of Pi. If 
SoftCkptcn of a process is discarded, the process’s local 
MSS will inform the process’s HA/FA to renumber 
PermCkptcn-1 as PermCkptcn for the process. After the 
HA/FA has collected all the checkpoints it should have 
received, it then proposes to advance the recovery line to 
checkpoint number cn. By adopting any feasible total 
agreement protocol for distributed systems, the recovery 
line will be committed to be advanced. 
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4.2.6. Handling disconnections and handoffs. When an 
MH within its cnth checkpoint interval is about to 
disconnect with its local MSS (say MSSp), the processes on 
the MH are required to take a soft checkpoint with 
checkpoint cn+1, and then send these checkpoints to 
MSSp. Assume process Pi takes a soft checkpoint 
SoftCkptcn+1 and sends it to MSSp. On receiving 
SoftCkptcn+1, MSSp saves (i, SoftCkptcn+1) in the stable 
storage, but MSSp does not forward SoftCkptcn+1 to Pi’s 
HA/FA at the moment. The reason is that SoftCkptcn+1 may 
possibly be discarded later if Pi is in S_Discardcn+1. If 
MSSp finds that Pi is not in S_Discardcn+1, it sends 
SoftCkptcn+1 to Pi’s HA/FA on behalf of Pi. Note that if the 
MH is about to disconnect before Tdecide after entering the 
cnth checkpoint interval, Pi has to send SoftCkptcn along 
with SoftCkptcn+1 to MSSp. In this case, MSSp keeps 
SoftCkptcn for Pi until Tdecide after entering the cnth 
checkpoint interval: MSSp may either discard it or send it 
to Pi’s HA/FA, depending on Pi is in S_Discardcn or not. 

For a disconnected process, its dependency information 
(Recv, LastRecv, RejectCP, CkptNum) is still kept in the 
MSS. If the process reconnects with another MSS at a later 
time, the old MSS then sends the dependency information 
of the process to the new MSS. For the handoff of a MH, 
the old MSS also forwards the dependency information of 
all the processes in the MH to the new MSS. If the handoff 
involves a change of agents, the old agent forwards the 
permanent checkpoints of the processes in the MH to the 
new agent. 

In the following we present a formal description of our 
checkpointing algorithm: 

I. Action at the initiator Pj: 
01 send Checkpoint_Request to the local MSS; 

II. Actions at the MSSinit when the local timer expires: 
01 cn ← cn + 1; timeToCkp ← T; 
02 send Recv_Request to all MSSs; 
03 while (not receiving all Recvs from each MSS) 
04  if (timeToCkp = T - Tdecide) 
05   exit;  /* Abort checkpointing process for this time */ 
06 construct matrix D; 

07 Dinit ← calculate(Recvinit, D); /* Recvinit is Recv of the initiator */ 
08 S_Discard

cn
 ← φ; 

09 for each Pi: 

10  if (Dinit[i] = 0)  S_Discard
cn
 ← S_Discard

cn
 ∪ Pi; 

11 send DISCARD
cn
 to all processes ∈ S_Discardcn

; 

III. Actions at process Pi when Timeout_Event is 
triggered for Icn: 
01 if (SoftCkpt

cn
 has not been sent to HA/FA) 

02  save SoftCkpt
cn
 in the local disk; 

03 take SoftCkpt
cn+1

; 

04 cn ← cn + 1; timeToCkp ← nextTimeToCkp; 

IV. Actions executed at an MSS, say MSSk, in Icn: 
01 upon relaying message m from Pi ∈ Cellk to Pj: 
02  if (m.cni > CkptNumi) { 
03   CkptNumi ← m.cni; LastRecvi ← Recvi; reset Recvi; 
04   modify Recvi if necessary, then send m to Pj; 
05  }  

06  else if (m.cni = CkptNumi) 
07   modify Recvi if necessary, then send m to Pj; 
08  else  /* m.cni < CkptNumi , m is an out-of-sequence message */ 
09   send m to Pj; 
10 upon receiving Recv_Request from MSSinit: 
11  wait (Tdefer); 

12  for each i that Pi ∈ Cellk: 
13   if (CkptNumi = cn)  send LastRecvi to MSSinit; 

14   else /* CkptNumi < cn, and CkptNumi cannot be larger than cn */ { 
15    for any j that a message from Pj is unacknowledged: 
16     Recvi[j] ← 1; 

17    send Recvi to MSSinit; LastRecvi ← Recvi;  

18    reset Recvi; CkptNumi ← cn; 
19   } 
20 upon receiving DISCARD

cn
 for Pi in Cellk from MSSinit: 

21  if (Pi is disconnected)  discard SoftCkpt
cn
 of Pi; 

22  else  forward DISCARDcn to Pi; 
23  Recvi ← LastRecvi ∨ Recvi; 
24 upon receiving Disconnect_Request from MHq in Cellk: 
25  for each Pi in MHq: /* SoftCkptcn+1 is included in the request */ 
26   save SoftCkpt

cn+1
 of Pi in the local disk; 

27 upon receiving Handoff_Request from MHq in Cellk: 
28  for each Pi in MHq: 
29   send (Recvi, LastRecvi, CkptNumi, RejectCPi) to the  
    new MSS of Pi; 
30 upon Tdecide after entering the cn

th
 checkpoint interval: 

31  for any i such that DISCARD
cn
 for Pi ∈ Cellk is undelivered: 

32   RejectCPi ← cn; 

33 upon receiving ForwardCP_Request(cn) from Pi ∈ Cellk: 
34   if (RejectCPi ≠ cn)  
35    receive and then forward the ckpt to the HA/FA of Pi; 
36   else  reject the transmission; 
37 upon expiration of the local timer: 

38  cn ← cn + 1; timeToCkp ← T; 

V. Actions for any process Pi in Icn: 
01 upon sending SoftCkpt

cn
 to the HA or FA: 

02  send ForwardCP_Request(cn) to the local MSS; 
03  if (request not rejected)  send SoftCkpt

cn
 to the HA or FA; 

04 upon receiving DISCARD
cn
: 

05  discard SoftCkpt
cn
; 

06 upon expiration of the local timer: 

07  nextTimeToCkp � T; trigger Timeout_Event; 

08 upon receiving a message m from Pj: 
09  if (m.cnj = cn) { 
10   deliverMsgToProcess(m); 

11   if (m.cnMSS = m.cnj)  timeToCkp ← m.timeToCkp + ∆; 
12   else if (m.cnMSS > m.cnj) { 

13    cn ← m.cnMSS; nextTimeToCkp ← m.timeToCkp + ∆; 
14    trigger Timeout_Event;  /* A soft ckpt will be taken */ 
15   } 
16   else  /* m.cnMSS < m.cnj */ 
17    timeToCkp ← T + m.timeToCkp + ∆; 
18  } 
19  else if (m.cnj < cn) { 
20   deliverMsgToProcess(m); 

21   if (m.cnMSS = cn)  timeToCkp ← m.timeToCkp + ∆; 
22   else   timeToCkp ← T + m.timeToCkp + ∆; 
23  } 
24  else  /* m.cnj > cn */  { 
25   if (m.cnMSS = cn)  nextTimeToCkp ← T +timeToCkp+∆; 
26   else   /* m.cnMSS = m.cnj */ 
27    nextTimeToCkp ← m.timeToCkp + ∆; 
28   cn ← m.cnj;  
29   trigger Timeout_Event;  /* A soft ckpt will be taken now */ 
30   wait until SoftCkpt

cn
 is taken: 

31    deliverMsgToProcess (m); 
32  } 
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4.3. Handling Untimely Delayed Messages 
 

In this section we discuss the problem of untimely 
delayed messages in the network. Since there exists 
inherent uncertainty of message delivery time in the wired 
and wireless network, we have to deal with untimely 
delayed messages in the checkpointing algorithm carefully. 

 
4.3.1. Untimely delayed Recv vectors. When MSSinit is 
collecting the Recv vectors, it is possible that because of 
network congestions or link failures in the wired network, 
some of the Recv vectors have not been received until 
Tdecide after entering the current checkpoint interval. In this 
case, the checkpointing process for this time has to be 
aborted (see code II of the checkpointing algorithm, lines 
03-05). In effect, aborting the checkpointing process does 
not stop the progression of the recovery line since every 
process has taken a soft checkpoint, and these soft 
checkpoints will become permanent when they are sent to 
the HAs or FAs. 
 
4.3.2. Untimely delayed DISCARDcn notifications. An 
inconsistency situation may occur due to untimely delayed 
DISCARDcn notifications. Although we can choose a 
proper Tdecide value such that the untimely delayed 
notifications are very rare, our algorithm has to cope with 
the problem in order to ensure the consistency of the 
global checkpoints. Let’s demonstrate the problem as 
illustrated in Figure 2. 
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Figure 2. A possible scenario that the delivery of 
DISCARDcn for Pj is delayed. 

Assume Pi and Pj are both in S_Discardcn, but Pj does not 
receive DISCARDcn until Tdecide after entering Icn. For Pi, since 
its SoftCkptcn is discarded, its HA/FA will renumber Pi’s 
PermCkptcn-1 as PermCkptcn. For Pj, it will send its SoftCkptcn 
to its HA/FA in order to make the checkpoint permanent. 
However, if there exists a message m between Pi and Pj, m 
will be an orphan message with respect to Pi’s PermCkptcn 
and Pj’s PermCkptcn. To cope with the problem, we introduce 
the variable RejectCP of a process, which is also maintained 
by the local MSS of the process. In the above example, the 
local MSS of Pj is aware that DISCARDcn for Pj has not been 
delivered until Tdecide after entering Icn, so it sets RejectCPj to 
cn. Afterwards when Pj tries to send its SoftCkptcn to HA/FA, 
the MSS rejects the transmission because RejectCPj equals cn 

(see code IV, lines 30-36). Therefore, Pj’s PermCkptcn-1 will 
be renumbered as PermCkptcn so that the inconsistency no 
longer exists. On Pj’s part, if the transmission of its SoftCkptcn 
is rejected by the local MSS, Pj deletes SoftCkptcn. 

 
4.3.3. Untimely delayed acknowledgements. In our 
algorithm, the MSS maintains the dependency vectors 
Recv and LastRecv for a process by inspecting the 
piggybacked information in an ACK sent by the process, 
but an untimely delayed ACK could be a problem during 
the checkpointing process. Take Figure 3 as an example, 
when MSSk is about to send Recvi to MSSinit, ACK.m has 
not arrived so that MSSk cannot tell whether or not to 
include the receipt of m in Recvi at the instant. In our 
algorithm we take the following policy (refer to code IV, 
lines 14-19): when MSSk is about to send Recvi to MSSinit 
and it finds that such an unacknowledged message exists, 
Recvi[j] is set to 1. That is, MSSk presumes the case in 
Figure 3(a) always occurs. But if ACK.m finally arrives 
and shows that Figure 3(b) is true instead, the receipt of m 
is then included in Recvi of Icn. 
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Figure 3. The ACK of m arrives later than MSSk has sent 
Recvi to MSSinit (a) Receipt of m is in Icn-1 of Pi (b) Receipt 

of m is in Icn of Pi. 
 
4.4. Rollback Recovery 
 

When a failure occurs, all the processes roll back to the 
latest recovery line. Assume the latest recovery line is 
numbered as cn. For a non-faulty process, if its SoftCkptcn 
is still in the main memory and its RejectCP is not cn, it 
can roll back to the state of SoftCkptcn because the content 
of SoftCkptcn is identical to PermCkptcn. Otherwise, the 
process requests its PermCkptcn from the HA or FA. 

From the above description, we can see that with the 
help of local soft checkpoints, some of the processes can 
be recovered locally so that the recovery can be done 
efficiently. 
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4.5. Proofs of Correctness 
 
Lemma 2. If a process Pi receives a message from 
another process Pj during Icn-1 and Pj ∈ S_Discardcn, then 
Pi ∈ S_Discardcn. 

Proof: If Pi ∉ S_Discardcn, from the proposed algorithm, 
the initiator transitively depends on Pi during Icn-1. Since Pi 
depends on Pj, the initiator also transitively depends on Pj 
during Icn-1. From the proposed algorithm, Pj ∉ 
S_Discardcn. A contradiction.  □ 
 
Lemma 3. N permanent checkpoints with the same 
checkpoint number form a globally consistent checkpoint. 

Proof: We prove it by induction. In the beginning, the N 
permanent ckpts with ckpt number 0 obviously form a 
globally consistent ckpt. Assume there are N permanent 
ckpts with ckpt number k and they form a globally 
consistent ckpt. In the proposed algorithm, if a process Pi 
receives a message m from another process Pj during Ik, 
there are two possibilities:  
Case 1: If Pj ∈ S_Discardk+1, there are two possibilities 
for Pj: 

1.1 Pj does not receive DISCARDk+1 until Tdecide after 
entering Ik+1. From Section 4.3.2 we know Pj’s local 
MSS will set RejectCPj to k+1, so that Pj’s 
SoftCkptk+1 will not be saved as PermCkptk+1. It is 
Pj’s PermCkptk be renumbered as PermCkptk+1. 

1.2 Pj receives DISCARDk+1 before Tdecide after entering 
Ik+1. In this case, Pj discards SoftCkptk+1 and the 
preceding permanent ckpt PermCkptk of Pj is 
renumbered as PermCkptk+1. 

From Lemma 2 we know Pi ∈ S_Discardk+1. Through the 
above discussion, we know no matter if Pi receives 
DISCARDk+1 or not, the preceding permanent ckpt 
PermCkptk of Pi is renumbered as PermCkptk+1. Since the 
permanent ckpts with ckpt number k form a globally 
consistent ckpt, there is no orphan message between the 
k+1th permanent ckpt of Pi and the k+1th permanent ckpt 
of Pj. 
Case 2: If Pj ∉ S_Discardk+1, Pj does not receive 
DISCARDk+1 and its SoftCkptk+1 is sent to HA/FA and 
saved as PermCkptk+1. From the proposed algorithm, Pj 
must send m before it takes SoftCkptk+1. Otherwise, Pi will 
take SoftCkptk+1 before processing m, which makes m 
been received within Pi’s Ik+1. As a result, no matter Pi’s 
PermCkptk is renumbered as PermCkptk+1 or Pi’s 
SoftCkptk+1 is saved as PermCkptk+1, there is no orphan 
message between Pi’s PermCkptk+1 and Pj’s PermCkptk+1. 
Thus, if the N permanent checkpoints with ckpt number k 
form a globally consistent ckpt, there is no orphan 
message between the k+1th permanent ckpts of any two 
processes. That is, N permanent ckpts with ckpt number 
k+1 form a globally consistent ckpt.  □ 

Theorem. The proposed algorithm always creates a 
consistent global checkpoint. 

Proof: In the beginning there are N permanent ckpts with 
ckpt number 0, and they form the initial recovery line. 
Suppose there exists N permanent ckpts with the same 
ckpt number k. In the proposed algorithm, we advance the 
recovery line to ckpt number k+1 only when all processes’ 
permanent ckpts PermCkptk+1 are collected. From Lemma 
3, N permanent ckpts with the same ckpt number form a 
globally consistent ckpt. Therefore, there always exists a 
consistent global ckpt.  □ 
 
4.6. Performance Analysis 
 

In this section we discuss the performance of our 
checkpointing algorithm, including the blocking time, the 
number of permanent checkpoints, and the number of 
coordinating messages. Then we show the comparison 
with other protocols in a table. Here are the notations used 
in the following text: 

- Nmin: the number of processes that need to take 
checkpoints using the Koo-Toueg algorithm [1]. 

- Ndep: the average number of processes on which a 
process depends. (1 ≤ Ndep ≤ N – 1) 

- Cwireless: cost of sending a message in the wireless link. 
- Cwired: cost of sending a message in the wired link. 
- Cbroad: cost of broadcasting a message to all processes. 
- Tckpt: the checkpointing time, including the delays 

incurred in transferring a checkpoint from a MH to its 
MSS and saving the checkpoint in the stable storage in 
the MSS or a fixed host. 

 
4.6.1. Blocking time. It is very clear that the blocking 
time of our protocol is 0. 
 
4.6.2. Number of new permanent checkpoints. In 
Section 4.3.3, we described that if there is an 
unacknowledged message like the scenario depicted in 
Figure 3, the MSS presumes the case in Figure 3(a) always 
occurs. That is, the receipt of message m from Pj is included 
in the Recv vector of Pi’s Icn-1. If it turns out later that Figure 
3(b) is true instead, then there is a chance that Pj and 
Pj-depended processes should not have been included in the 
dependency with the initiator. The consequence is that there 
may be additional soft checkpoints been made permanent, 
so as to increase the number of new permanent checkpoints. 
If we choose a proper Tdefer such that the untimely delayed 
ACKs are very rare, the number of new permanent 
checkpoints is then close to minimum. 
 
4.6.3. Number of coordinating messages. In the 
algorithm, the only coordinating message transmitted in 
the wireless link is the discard notification to a process in 
the set S_Discardcn. The approximate number of discard 
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notifications is N – Nmin. Messages sent in the wired link 
are N Recv vectors from MSSs to MSSinit, and N – Nmin 
discard notifications from MSSinit to MSSs that serve the 
processes in S_Discardcn. 
 
4.6.4. Comparison with other algorithms. Table 1 
compares the performance of our algorithm with the 
algorithms in [1], [10], [12]. Compared to the 
Neves-Fuchs algorithm which is also time-based, our 
algorithm reduces the number of checkpoints to nearly 
minimum, so that the total number of checkpoints 
transmitted onto the fixed network is reduced. Fewer 
checkpoints transmitted also means less power 
consumption for mobile hosts. For a mobile computing 
system, it is also very critical to minimize the number and 
size of the messages transmitted in the wireless link. So, if 
we only consider the number of coordinating messages 
sent in the wireless link, our algorithm performs fairly 
well. For the size of the piggybacked information and the 
coordination message in the wireless link, our protocol 
outperforms Cao-Singhal algorithm with O(1) to O(N). On 
the other hand, the cost of transmitting a message in the 
wired link is far less than transmitting in the wireless link. 
So, although our protocol requires O(N) coordinating 
messages in the wired network, the cost is affordable for 
wired networks with high bandwidth. 

Table 1. Performance Comparison* 

Algorithm 
Blocking 

time 
# of 

ckpts 
# of messages 

Koo-Toueg 
[1] Nmin × Tckpt Nmin 3×Nmin×Ndep× (Cwired+Cwireless) 

Neves-Fuchs 
[12] 

σ + 2ρMHT 
- tdmin 

N 2×N×Cwireless 

Cao-Singhal 
[10] 

0 Nmin 
≈ 2×Nmin× (Cwired+Cwireless) +  
min(Nmin×(Cwired+Cwireless),Cbroad) 

Our 
algorithm 

0 ≈ 
Nmin 

≈ (N-Nmin) × (Cwired+Cwireless) + 
N × Cwired 

* The performance data of algorithms [1] and [10] are from [10]. 
 
5. Conclusions 
 

In this paper we have proposed a time-based 
checkpointing protocol for mobile computing systems 
over Mobile IP. Our protocol reduces the number of 
checkpoints compared to the traditional time-based 
protocols. We also make use of the accurate timers in the 
MSSs to adjust the timers in the MHs, so that our protocol 
is well suited to mobile computing systems with MHs 
spread across a wide area network. We also take 
advantage of the infrastructure provided by Mobile IP, so 
that the permanent checkpoints of the participating 
processes can be saved in the HA or FA depending on the 
process’s current location. Compared to other protocols, 

our protocol performs very well in the aspects of 
minimizing the number and size of messages transmitted 
in the wireless media. Tracking and computing the 
dependency relationship between processes are performed 
in the MSSs, so that MHs are free from additional tasks 
during checkpointing. 
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