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A generalized transfer-matrix method is used to model nonlinear pulse propagation in a binary long-period
fiber grating (LPFG). Two interface matrices are used to describe power coupling at the heterointerfaces, as
in the linear case. Nonlinear phase shifts and pulse dispersion through the two basic regions are modeled by
coupled nonlinear Schrödinger equations. Based on the generalized transfer-matrix model, a local intensity-
dependent detuning parameter is introduced with which we investigate the general conditions for complete
switching. Nonlinear switching in a quasi-periodic Fibonacci LPFG is also studied, and it is shown that com-
plete switching can be achieved in such a quasi-periodic grating. © 2002 Optical Society of America
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1. INTRODUCTION
Optical fibers are ideal for use in nonlinear interactions
because they provide strong beam confinement over long
propagation distances. Inasmuch as most optical fiber
materials are subject to inversion symmetry, the nonlin-
ear operation of devices made from such materials often
utilizes the much weaker third-order Kerr-type
nonlinearity.1 A number of interesting phenomena have
been observed and explored in both counterpropagating
and copropagating waveguide configurations. Optical
bistability2,3 and Bragg grating solitons4,5 are observed in
nonlinear distributed-feedback structures. All-optical
switching is shown in codirectional coupling devices such
as nonlinear coherent directional couplers,6–8 grating
couplers,9 and rocking filters.10 Switching behaviors are
also observed in other fiber-based devices including those
with a Mach–Zehnder configuration11,12 and nonlinear-
optical loop mirrors.13,14 The switching behaviors exhibit
periodic variation with respect to input power because of
their special interferometric configurations.

A long-period fiber grating (LPFG) was originally pro-
posed for use as an all-fiber band-rejection filter.15 The
LPFG can couple light from the core mode to the copropa-
gating cladding modes when the phase-matching condi-
tion is satisfied. Recently, optical switching, pulse re-
shaping, and optical limiting phenomena were observed
in photoinduced LPFG’s at pulse intensities in a range of
several gigawatts per square centimeter.16

The nonlinear propagation of pulses with durations of a
few tens of picoseconds has also been analyzed in detail
by use of nonlinear coupled-mode equations.17 Two types
of typical intensity-dependent transmission were ob-
served. For the first type, the central frequency of the
pulse is adjusted to satisfy the linear phase-matching
point. The energy transfer from core mode to cladding
mode is almost complete when the input intensity is
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small. However, at high input intensity, the central in-
tense portion of the pulse becomes detuned off resonance
as a result of the Kerr effect and thus remains in core
mode. Only the low-intensity wings of the pulse are
coupled to the cladding mode. In this case the remainder
of the high-intensity pulse in the core mode is narrowed.
The second type, in which the central frequency of the
pulse is near the transmission node of a linear LPFG, is
the off-resonance case and is our main concern here. At
low intensities the pulse remains almost entirely in the
core mode. As the intensity is increased, the central
high-power part of the pulse becomes detuned toward the
phase-matching point and starts to couple to the cladding
mode. The transmission curve exhibits a limiting char-
acteristic at high input intensities. Such operation of the
LPFG can thus serve as an optical limiting device.
Based on these two basic operations, other schemes have
also been proposed. For example, through cross-phase
modulation a pump pulse can switch a weak signal
pulse.18 It was also shown that the intensity required for
all-optical switching can be reduced to the order of 100
MW/cm2 by the introduction of uniform phase-shifting re-
gions within two LPFGs.19

In this paper first we extend our previously proposed
transfer-matrix approach for the linear transmission
properties of a photoinduced binary LPFG20 to model non-
linear pulse propagation. The nonlinear transmission
curve of an ideal binary LPFG is compared with that of a
pure sinusoidal LPFG with the same grating strength.
Based on this formalism and for a quasi-continuous-wave
approximation, we introduce a local normalized detuning
parameter. This detuning parameter is intensity depen-
dent and plays a crucial role in the switching behavior of
a LPFG. The effects of self-phase modulation and of
cross-phase modulation on the nonlinear coupling of
pulses in a LPFG can be analytically studied by use of
2002 Optical Society of America
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such a parameter. We consider mainly the off-resonance
operation of a LPFG. Because nonlinear coupling is con-
trolled by the instantaneous intensity, high- and low-
intensity parts of the pulse will be directed into different
output modes, and this will result in pulse breakup and
degrade switching performance. The use of square
pulses to prevent pulse breakup in nonlinear switching
was proposed.21 It is also found that the switching ratio
in an LPFG can be greatly enhanced for a square pulse.
To prevent the unnecessary complexities that would be in-
troduced by the influence of pulse shape, we use a square
pulse in the studies. For a given input intensity of the
square pulse, we demonstrate that nonlinear transmis-
sion in a uniform LPFG can be equivalent to linear trans-
mission in a chirped LPFG. This equivalence is based on
the intensity-dependent local normalized detuning pa-
rameter and is a useful aid to understanding the switch-
ing behavior. General conditions of the detuning distri-
bution for complete switching are also discussed. We
apply the generalized transfer-matrix model to study the
nonlinear transmissions of pulses over a quasi-periodic
Fibonacci LPFG; almost complete switching is demon-
strated when a square pulse is used as the input. Be-
cause a quasi-periodic grating lacks short-ranged order
and the long-range order may be obscured by the intro-
duction of nonlinearity, the method of determining the ex-
istence of complete switching is rather interesting. The
evolution of power and local detuning is investigated and
compared with that of a periodic LPFG. After local aver-
aging, complete switching can be explained by the equiva-
lency of a chirped linear grating.

The paper is organized as follows: In Section 2 a gen-
eralized transfer-matrix model for nonlinear pulse propa-
gation in an ideal binary LPFG is developed. Also, pa-
rameters such as critical power and effective areas are
introduced. In Section 3 we consider a quasi-cw pulse
and introduce a local intensity-dependent detuning pa-
rameter that characterizes the in-phase superposition of
couplings through the interfaces of adjacent periods.
The nonlinear transmission of square pulses is also stud-
ied. Section 4 is devoted to analysis of nonlinear switch-
ing in a periodic LPFG. Through the analysis of the local
detuning parameter, the transmission characteristics of a
given intensity can be equivalent to those of a chirped
LPFG in the linear coupling regime. We also discuss the
general conditions of the slowly varying detuning param-
eter for the ideal complete switching. The nonlinear cou-
pling characteristics of a quasi-periodic LPFG are dis-
cussed in Section 5. By using the nonlinear transfer-
matrix model we demonstrate almost complete switching
in a quasi-periodic LPFG which can be concisely ex-
plained by investigation of the local detuning parameters.

2. MODELING OF NONLINEAR PULSE
PROPAGATION IN BINARY LONG-PERIOD
FIBER GRATINGS
A model of the linear transmission properties of a binary
LPFG was recently developed by Chern and Wang20 and
was based on the transfer-matrix method and mode per-
turbations. An ideal binary LPFG is composed of two ba-
sic regions, which we designate region 1 and region 0 in
what follows. Region 0 is the usual fiber structure,
whereas region 1 is exposed to UV irradiation and the
core refractive index is thus increased by an amount
DnUV . In the phase-matching condition, power cou-
plings between core mode and cladding modes can occur
in such a grating.20,22 We use conventions introduced in
Ref. 20 for quantities that belong to these two basic re-
gions. Quantities written with overbars belong to region
0; the unbarred quantities are of region 1. For example,
mode fields of the two regions are denoted (ēj ,h̄j) and
(ej ,hj), respectively, where the subscript j indicates the
mode order, e.g., LP01 for the fundamental core mode and
LP02 for the first cladding mode.23 In our previous mod-
eling of a binary LPFG we treated the mode fields of re-
gion 1 as perturbations of the unperturbed mode fields of
region 0 and related the perturbation expansion coeffi-
cients to the conventional coupling constants. Here we
shall assume that these mode fields satisfy the following
orthogonal relations and are normalized to carry unity
power:

1

2
E

A`

~ej 3 hk! • ẑdA 5 d jk , (1)

where d jk is the Kronecker delta function. Similar ex-
pressions hold for the mode fields in region 0. As dis-
cussed in Ref. 22, in an LPFG we may consider only
forward-propagating modes because the excited backward
modes are small. The electric fields of an optical pulse in
the two regions can be written as

E~r, t ! 5 (
j

Aj~z, t !exp@i~b jz 2 v0t !#ej , (2a)

Ē~r, t ! 5 (
j

Ā j~z, t !exp@i~ b̄ jz 2 v0t !#ēj , (2b)

where Aj(z, t) and Āj(z, t) are the slowly varying enve-
lopes of the pulse in mode j that belong to regions 1 and 0,
respectively. b j and b̄ j are the corresponding propaga-
tion constants, and v0 is the central frequency of pulse.
When such a pulse crosses the heterointerface between
the two regions, because of discontinuities in the guiding
structures, mode couplings occur at such interfaces. We
can derive the transmission coefficients by requiring con-
tinuity in the tangential electric and magnetic fields. Be-
cause this process is linear, the coupling between the
mode amplitudes can be described by a matrix. For ex-
ample, assume that a cw wave field with frequency v is
incident upon the heterointerface from region 0 to region
1; we may use the following matrix equation to describe
the changes in mode amplitude:

A~v! 5 F~1u0 !~v!Ā~v!. (3)

Here we have used column vectors A(v) 5 @A01
co (v),

A02
cl (v), A03

cl (v), ...#T to represent mode amplitudes of the
cw wave field in region 1. Here, superscripts co and cl
are used to denote core and cladding modes. The mode
amplitudes in region 0 are treated similarly. And the in-
terface matrix has the following form (the details of deri-
vation can be found in Ref. 20):
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F~1u0 !~v! 5 F 1 2 D01
co

k01–0n
co–cl

b01
co 2 b0n

cl

k0n –01
cl–co

b0n
cl 2 b01

co 1 2
D0n

cl

2

G , (4)

where D01
co and D0n

cl are defined in Appendix A of Ref. 20
and they are included to satisfy power conservation to the
second order in perturbation. k01–0n

co–cl is the conventional
coupling constant in coupled-mode theory and is defined
as22

k01–0n
co–cl ~v! 5

v«0nco

2
DnUV E

Aco

et01
co * ~v!et 0n

cl ~v!dA.

(5)

Note that the coupling constant is a function of fre-
quency v. In addition, all the coefficients D 5 D(v) and
b 5 b(v) in Eq. (4) are functions of frequency. Thus in
the time domain we may use the following response ma-
trix to describe the coupling of the pulse in the two modes:

A~t !exp~2iv0t ! 5 E
2`

t

F~1u0 !~t 2 t8!Ā~t8!exp~2iv0t8!dt8,

(6)

where A(t) 5 @A01
co (t), A02

cl (t), A03
cl (t), ...#T and F(1u0)(t) is

the Fourier transform of F(1u0)(v). However, if the dura-
tion of the pulse is tens of picoseconds, as in the descrip-
tions that follow, the spectra of the amplitudes
A(v)exp(2iv0 t) will be quite narrowly centered at v0 .
In such quasi-cw pulses we may use the following ap-
proximation for Eq. (6):

A~t ! > F~1u0 !~v0!Ā~t !. (7)

Similar expressions can be used for pulses that cross the
interfaces from region 1 to region 0, and the correspond-
ing interface matrix is

F~0u1 !~v! 5 F 1 2
D01

co

2

2k01–0n
co–cl

b01
co 2 b0n

cl

2 k0n –01
cl–co

b0n
cl 2 b01

co 1 2
D0n

cl

2

G . (8)

As for the propagation through the two regions, the
evolution of mode amplitudes may be described by the fol-
lowing coupled equations (here we take region 1 for
example)17,19,24
]A01
co

]z
1

i

2
b019

co
]2A01

co

]t 2

5 iS g01–01
co–co uA01

co u2 1 2 (
m

g01–0m
co–cl uA0m

cl u2DA01
co , (9)
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]z
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]

]t
DA0n

cl 1
i

2
b0n9cl

]2A0n
cl

]t 2

5 iS g0n –0n
cl–cl uA0n

cl u2 1 2g0n –01
cl–co uA01

co u2

1 2 (
mÞn

g0n –0m
cl–cl uA0m

cl u2DA0n
cl , (10)

where b j9 [ d2b j /dv2 is the second derivative of the
propagation constant with respect to frequency for mode
j. t [ t 2 (db01

co /dv)z is the retarded time for the core
mode. DVg,n is the group-velocity difference between
core and cladding modes LP0n

cl . And the nonlinear
phase-modulation coefficients are defined as

g jk 5
n2v0

c

E
A`

ueju2ueku2dA

E
A`

ueju2dA E
A`

ueku2dA

, (11)

where n2 is the nonlinear Kerr index. Note that to be
consistent with first-order perturbation treatment of in-
terface coupling coefficients there is no need to distin-
guish g jk between the two regions. The effective area of
mode j is related to the nonlinear phase-modulation coef-
ficient as

Aeff, j 5
n2v0

cg jj
. (12)

Equations (9) and (10) describe the propagation of the
pulses within regions 0 and 1 by taking into account the
effects of dispersion, self-phase modulation, and cross-
phase modulation. Combined with interface matrices (4)
and (8), these constitute the governing equations to de-
scribe the propagation of a nonlinear pulse in a binary
LPFG. In Fig. 1 we compare the transmission curves for
a binary and a uniform sinusoidal LPFG with equal
length and linear coupling strength. [Physically, the in-
dex modulations are chosen as DnUV (binary)
5 p/4DnUV (sinusoidal).] The modeling of a sinusoidal
LPFG is based on the combined equations of coupled-
mode theory and the nonlinear phase-modulation terms
on the right-hand sides of Eqs. (9) and (10) (cf. Refs. 17
and 19). The guiding structure has a step-index profile,
and the calculated modal properties can be found in detail
in Ref. 22. The fiber parameters are as follows: aco
5 2.625 mm, acl 5 70 mm, nco 5 1.456, and ncl 5 1.45.
The resonant cladding mode is chosen to be the LP04
mode. The linear coupling constant k01–0n

co–cl L used in cal-
culation is normalized as p/2N, where N is the number of
cells in a binary LPFG, so complete linear switching can
be achieved at the resonant wavelength. The nonlinear
phase-modulation coefficients are gco–co 5 n2v0 /cAeff,co ,
with Aeff,co 5 48.2 mm2, gco-cl 5 8.67 3 1023n2v0 /c, and
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gcl–cl 5 6.574 3 1023n2v0 /c. The central wavelength of
the pulse is l0 5 1.55 mm and corresponds to off-resonant
operation. The initial pulse is a transform-limited
Gaussian pulse with half-width 60 ps. Besides, we nor-
malize the input power by the critical power Pc that was
introduced by Jensen for nonlinear coherent directional
couplers of cw couplings6 and is redefined in our case as

Pc 5
4k01–0n

co–cl

g01–01
co–co 2 2g01–0n

co–cl . (13)

For Fig. 1(a) the number of cells is 120 (Lg
5 69.5 mm). At this length the transmission curves of
the two gratings are barely distinguishable in the linear
limit and in higher-intensity regions where the pulse is
detuned from the resonance. Little deviation is found at
the power ;1 Pc at which nonlinear phase modulations
bring the pulse into resonance. This deviation can be at-
tributed to the difference in interplay between linear cou-
plings and nonlinear phase modulations of the two grat-
ings. For a sinusoidal LPFG, both processes are
distributed along the grating, whereas, for a binary

Fig. 1. Core energy transmitted through a binary and a uniform
sinusoidal LPFG as a function of normalized input peak power.
The number of unit cells is (a) 120 and (b) 15 in each grating. Ec
is defined as the total energy of the pulse with input peak power
Pc .
LPFG, couplings take place only at heterointerfaces be-
tween regions 0 and 1. However, when many fewer num-
ber of cells are compared, as for the case shown in Fig.
1(b), where N 5 15 (Lg 5 8.7 mm), a larger deviation at
the critical power is observed, while two gratings remain
similar in the linear limit and higher-intensity regions.
This result implies that, as the number of periods de-
creases, the nonlinear coupling behaviors that are due to
these two different mechanisms near the critical power
are more distinct. However, at the intensity region
where the pulse is detuned, these two gratings are almost
the same.

3. QUASI-CONTINUOUS-WAVE
APPROXIMATION AND INTENSITY-
DEPENDENT DETUNING PARAMETERS
In this section we consider the quasi-cw approximation,
which is mathematically equivalent to neglecting the dis-
persion terms in Eqs. (9) and (10). When the group-
velocity difference is assumed small,17 the solution to
these two equations is that the mode amplitudes acquire
an additional nonlinear phase shift as

A01
co ~z, t! 5 A01

co ~0, t!exp$if01
co @A~0, t!#z%,

A0n
cl ~z, t! 5 A0n

cl ~0, t!exp$if0n
cl @A~0, t!#z%, (14)

and the phase shifts per unit length are

f01
co 5 Fg01–01

co–co uA01
co ~0, t!u2 1 2 (

m
g01–0m

co–cl uA0m
cl ~0, t!u2G ,

f0n
cl 5 Fg0n –0n

cl–cl uA0n
cl ~0, t!u2 1 2g0n –01

cl–co uA01
co ~0, t!u2

1 2 (
mÞn

g0n –0m
cl–cl uA0m

cl ~0, t!u2G . (15)

Based on this result, the propagation of the quasi-cw
pulse through region r can be described with the following
matrix equation:

A@L~r !,t# 5 P~r !@A~0, t!#A~0, t!. (16)

Here z 5 0 is assumed to be the beginning of region r.
When the phase shifts that are due to propagation con-
stants are taken into account, the intensity-dependent
phase-shift matrix is given by

P~1 !

5 Fexp$i@b01
co 1 f01

co ~A!#L~1 !% 0

0 exp$i@b0n
cl 1 f0n

cl ~A!#L~1 !%
G,

(17a)
and similarly for region 0:

P~0 !

5 Fexp$i@b̄01
co 1 f̄01

co ~Ā!#L~0 !% 0

0 exp$i@b̄0n
cl 1 f̄0n

cl ~Ā!#L~0 !%
G,

(17b)
where L (1) and L (0) are the lengths of regions 1 and 0, re-
spectively. Let us denote by An(t) the mode amplitudes
at the beginning of region 1 in the nth period of the grat-
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ing. Then, by using interface transfer matrices (4) and
(8), we can express the transmission of the quasi-cw pulse
through a unit period by the following matrix equation:

An11~t! 5 F ~1u0 !~v0!P~0 !~Ān!F~0u1 !~v0!P~1 !~An!An~t!.
(18)

We now consider resonance between the core mode and a
specific cladding mode LP0n . The phase differences be-
tween rays coupled from core to cladding modes in the
front and rear interfaces of regions 1 and 0 are just the
differences in the arguments of the exponentials in Eq.
(17):

D~1 ! [ ~b01
co 2 b0n

cl !L~1 ! 1 @ f01
co ~A! 2 f0n

cl ~A!#L~1 !, (19a)

D~0 ! [ ~b̄01
co 2 b̄0n

cl !L~0 ! 1 @f̄01
co ~Ā! 2 f̄0n

cl ~Ā!#L~0 !. (19b)

From Eqs. (4) and (8), because the cross-coupling coeffi-
cients from region 0 to region 1 and from region 1 to re-
gion 0 differ by a factor of 21, in-phase coupling of the
pulse through these two interfaces occurs when D (1) 5 p
and D (0) 5 p. We define the intensity-dependent phase-
mismatch parameter of the nth period to be

jn
~1 !~An! 5 Dn

~1 ! 2 p, (20a)

jn
~0 !~Ān! 5 Dn

~0 ! 2 p. (20b)

Assume that the duty ratio of each period is 0.5 and that
in most cases the nonlinear phase-modulation coefficients
satisfy gco–co @ gco–cl, gcl–cl; then the normalized detuning
parameter within the nth period can be approximated as

jn~An! > g01–01
co–co LnuA01,n

co u2 1 dnLn , (21)

where dn is the conventional definition of a linear detun-
ing parameter with period Ln :

dn 5 ~b01
co 2 b0n

cl ! 2
2p

Ln
. (22)

From Eq. (22) we can see that efficient couplings, say, in-
phase couplings, of the pulse occur at time components
such that j > 0, and it is clear how the nonlinear phase
modulations modify the resonance conditions.

For a nonlinear pulse propagating in a uniform LPFG,
because of the intensity-dependent nonlinear phase
modulation the coupling behavior is different for low- and
high-intensity parts of the pulse. This difference results
in eventual pulse breakup and incomplete switching.
Because nonlinear complete switching can be realized
through a dual-core fiber coupler by use of a square
pulse,21 here we investigate the transmission of a square
pulse through a uniform LPFG. Figure 2 depicts the
relative transmission curve for an almost ideal square
pulse (FWHM, 75 ps), where the relative transmission is
defined as the ratio of the integrated output power to the
initial power and the input peak power is normalized to
Pc . The input pulse’s profile is shown schematically in
the inset. The resonance cladding mode is chosen to be
LP04 , as used in the simulation of Fig. 1. The central
wavelength of the pulse is set to 1.55 mm, which corre-
sponds to off-resonance operation. Grating strength
DnUV 5 2.51 3 1024 and the length of the LPFG are cho-
sen to produce complete linear coupling at lres
5 1.541 mm. It can be seen that the best switching ratio
for the square pulse is more than 95% at the input peak
power of ;1.52 Pc . As was the case for Ref. 21, such an
increased switching ratio for the square pulse is due to
the breakup of the depressed pulse.

Figure 3 shows the evolution of normalized transmitted
power along the LPFG with respect to the almost com-
plete switching input peak power 1.52 Pc for the square
pulse. In Section 4 we shall explore the complete cou-
pling behavior by investigating the distribution of local
detunings.

4. EQUIVALENCE OF NONLINEAR
GRATING WITH CHIRPED LINEAR
GRATING AND CONDITIONS FOR
COMPLETE SWITCHING
From Eqs. (19) it can be seen that the phase differences
between rays coupled from two adjacent interfaces of re-
gion 1 and 0 are intensity dependent. For a given inten-
sity, the nonlinear phase modulation that contributes to
the phase differences within a period can be regarded as
an additional phase shift for linear coupling, i.e., the
lengths of regions 1 and 0 are enlarged. Thus we can re-
write Eqs. (19) as

D~1 ! 5 ~b01
co 2 b0n

cl !Leff
~1 !~A!, (23a)

Fig. 2. Fraction of the output power emerging from the core
plotted versus normalized input peak power for a 75-ps square
pulse as input. Inset, normalized input pulse profile. This
pulse profile is also used in Figs. 3, 4, and 6 below.

Fig. 3. Evolution of the normalized transmitted core power
through a uniform LPFG with respect to input peak power P in
5 1.52 Pc of the square pulse.
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D~0 ! 5 ~ b̄01
co 2 b̄0n

cl !Leff
~0 !~Ā!. (23b)

Here we have defined the effective periods, Leff
(1) and Leff

(0) ,
of the two basic regions. These effective periods depend
on the intensity of the wave fields inside the correspond-
ing regions; the explicit dependence can be found from
Eqs. (19) and (23) as

Leff
~1 !~A! 5 F1 1

f01
co ~A! 2 f0n

cl ~A!

b01
co 2 b0n

cl GL~1 !, (24a)

Leff
~0 !~Ā! 5 F1 1

f̄01
co ~Ā! 2 f̄0n

cl ~Ā!

b̄01
co 2 b̄0n

cl GL~0 !. (24b)

As the optical power is coupled between the core and the
cladding along a uniform LPFG, an equivalent LPFG
composed of chirped effective periods for linear coupling
results. However, it is worth noting that the model of an
equivalent chirped LPFG, which is designated for a spe-
cific intensity, favors square pulses rather than bell-
shaped pulses to prevent the appearance of complexities
introduced by the pulse shape. Such an equivalence is
similar to the linear effective waveguide of spatial soli-
tons proposed by Snyder et al.25 Thus by using a square
pulse of a certain intensity one can obtain the linear
transmission spectrum of the equivalent chirped LPFG.
With such a corresponding linear spectrum, we can ex-
plicitly show the intensity-dependent resonance shifts for
nonlinear switching. To demonstrate this, we take the
square pulse in Fig. 2 as an example. The central wave-
length of the square pulse is 1.55 mm, which is that for
off-resonance operation, and the parameters of the LPFG
are the same as those discussed in Section 3. Figure 4(a)
shows the spectra of the equivalent chirped LPFGs with
input peak powers P in 5 1024, 1.52, 2.25 Pc ; and their
corresponding effective periods derived from Eqs. (24) are
shown in Fig. 4(b). It can be seen that when the input
power is in the linear limit, as it is for P in 5 1024 Pc , the
spectrum of the equivalent chirped LPFG is almost the
same as the spectrum for linear transmission. This is so
because the nonlinear phase-shift terms in Eqs. (24) can
be neglected at such low intensity and thus the effective
periods are almost unchanged. The pulse energy trans-
ferred from the core mode to the cladding mode is almost
zero in this case. However, as the input peak power is
increased, the spectrum of the equivalent chirped LPFG
composed of effectively lengthened periods is shifted to
longer wavelengths, and the transmission of the pulse
starts to degrade from unity. Particularly at the power
P in 5 1.52 Pc , the dip in transmission loss of the equiva-
lent spectrum is just shifted to the central wavelength of
the pulse, which is clearly consistent with the best switch-
ing contrast in Fig. 2. The decreasing effective periods
along the LPFG shown in Fig. 4(b) manifest the process of
continuing energy transfer from core mode to cladding
mode. If the power is further increased, as can be seen
for P in 5 2.25 Pc , even longer effective periods once again
detune the transmission of the square pulse and result in
worse switching behavior. This situation corresponds to
the rising part of the relative transmission curve in the
higher intensity region illustrated in Fig. 2.
As we mentioned above, nonlinear coupling in a uni-
form LPFG for a square pulse of a chosen intensity can be
regarded as linear coupling in an equivalent chirped
LPFG. Additionally, we demonstrated in Section 3 that
complete switching can be achieved for a square pulse
with a specific intensity through a uniform LPFG. In
contrast to complete linear switching in a uniform LPFG
for which in-phase coupling, say, j 5 0, is always
satisfied,22 nonlinear coupling implies that complete
switching still occurs even if in-phase coupling is not
maintained throughout the grating, whether for linear or
nonlinear coupling. From the definition of the local de-
tuning parameter in relation (21), the lengths of period
and nonlinear phase modulation are the two factors that
influence the variation of the detuning parameter along
the grating. In what follows, we investigate the distribu-
tion of this parameter in several interesting cases, such
as for complete linear switching in nonuniform binary
LPFGs and for complete nonlinear switching in uniform
LPFGs.

For simplicity, we first consider linear coupling in three
typical nonuniform LPFGs whose spectra are depicted in
Figs. 5(a), 5(c), and 5(e). These gratings correspond to a
linear chirped grating, two uniform parts with different

Fig. 4. (a) Transmission spectra of the equivalent chirped grat-
ings for various input peak powers of the square pulse. The
wavelength marked by the arrow is the center wavelength of the
input pulse. (b) Effective periods of the equivalent chirped grat-
ings for various input peak powers of the square pulse.
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Fig. 5. (a), (c), (e) Transmission spectra of the three typical nonuniform LPFGs. Note that in each grating complete linear coupling
occurs at wavelength l0 . (b), (d), (f ) Evolution of the normalized detuning parameters for wavelength l0 in the three nonuniform
LPFGs that correspond to transmission spectra (a), (c), and (e), respectively.
grating periods, and a quadratic chirped grating, respec-
tively. In each grating the existence of complete linear
coupling at a certain wavelength l0 can be demonstrated
by use of the generalized transfer-matrix method pro-
posed in Section 2. Then, to show clearly the linear cou-
pling process for wavelength l0 in three gratings, we plot
the respective evolutions of normalized detuning param-
eter j in Figs. 5(b), 5(d), and 5(f). Assume that the total
period numbers of LPFGs are the same as N; for these
cases we find that there is a common feature: The distri-
bution of j is halved and antisymmetrical with the grat-
ing center. Thus we have the following relation for the
two halves (assume that N 5 2M in what follows):

jM2m 5 2jM1m11 , m 5 0, 1, 2,..., M 2 1. (25)

Here jn is the normalized local detuning parameter of the
nth period. Using this parameter, we can express the
unit transfer matrix as follows20:
F~j! [ F~1u0 !P~0 !F~0u1 !P~1 !

5 F2d 2 exp~2ij! 1 g2 2dg@1 1 exp~ij!#

dg@1 1 exp~2ij!# 2d 2 exp~ij! 1 g2 G .
(26)

The same notation as in Ref. 20 is used here and is not to
be confused with the normalized detuning and nonlinear
coupling coefficients. d represents the self-coupling coef-
ficient through the heterointerface, and we assume that
this parameter is the same for core and cladding modes
for ideal two-mode coupling.20 g is the cross-coupling co-
efficient of the core and cladding modes through the het-
erointerface. Inasmuch as the grating strength is kept
constant, the unit transfer matrix of the nth period is ex-
clusively a function of the corresponding local normalized
detuning parameter; thus we have Fn 5 F(jn), where the
dependence F(j) is given in Eq. (26). The total transfer
matrices of the front and rear halves are
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Ffront 5 F~jM!F~jM21!...F~j2!F~j1!, (27)

Frear 5 F~2j1!F~2j2!...F~2jM21!F~2jM!. (28)

Here we have utilized the antisymmetric distribution of
the normalized detuning parameter [Eq. (25)]. In addi-
tion, from Eq. (26) it can be seen that, if jn is replaced
with 2jn , the unit transfer matrix satisfies the following
relation:

F~2jn! 5 @F~jn!#* . (29)

Thus the transfer matrix of the rear half can be further
written as

Frear 5 @F~j1!#* @F~j2!#* ...@F~jM21!#* @F~jM!#* . (30)

However, because the unit transfer matrix in Eq. (26) is a
unitary matrix, we may express the total transfer matrix
of the front half, Ffront in Eq. (27), as

Ffront 5 F a b

2b* a* G . (31)

Under the approximation of smooth coupling evolution
that is applicable to general cases, it can be demonstrated
that the Frear in Eq. (30) has the following form (the ex-
plicit derivation can be found in Appendix A):

Frear 5 F a* b

2b* a
G . (32)

Thus, combining Eqs. (32) and (33), we have the total
N-period transfer matrix:

Ftot 5 FrearFfront 5 F uau2 2 ubu2 2a* b

22ab* uau2 2 ubu2G . (33)

Assume that the input power is guided as a core mode
and that the cladding mode is initially zero. From Eq.
(33) note that, if uau 5 ubu, complete switching for the dis-
tribution of j in the form described by Eq. (25) can be
achieved. Thus the magnitudes of the core mode and the
cladding mode are the same at the half-length of the
LPFG for complete switching.

Now we apply the above analysis to survey the com-
plete switching of nonlinear coupling for a binary LPFG.
Because the grating is uniform, the variation of detuning
parameter j is due to the nonlinear phase shifts and is de-
pendent on the evolution of the power in the core and the
cladding modes. We plot in Fig. 6 the evolution of j along
the grating. The input peak power is chosen for the best
switching ratio of the square pulse shown in Fig. 2. The
total number of periods for this LPFG is 150. One can
find that the distribution of j approximately satisfies the
general conditions outlined above, and this corresponds to
the equivalent linear LPFG with negatively chirped peri-
ods [dashed curve in Fig. 4(b)]. In addition, as can be
seen from Fig. 3, the evolution of the normalized trans-
mitted power decreases smoothly and approaches 0.5 as
the wave field passes through the midpoint of the LPFG.
Thus the half-power-splitting condition described above is
satisfied. However, also note that in Fig. 6 the antisym-
metry relation is not exactly satisfied for the distribution
of j, which explains why the switching is not complete as
it is for the ideal case.
5. NONLINEAR SWITCHING IN A
QUASI-PERIODIC LONG-PERIOD GRATING
Recently, the transfer-matrix method based on perturba-
tion expansion was used to study the transmission spec-
trum of a quasi-periodic LPFG.20 In this section we fur-
ther apply the generalized transfer-matrix method to
modeling the nonlinear transmission in a Fibonacci
LPFG. As demonstrated in Ref. 20, cladding mode reso-
nances occur when the difference in the propagation con-
stants matches the intrinsic Fourier peaks of the struc-
ture of the quasi-periodic grating. The resonance
conditions are characterized by two independent integers
that correspond to the underlying two incommensurate
periods. We first show that the linear transmission prop-
erties of a quasi-periodic Fibonacci LPFG near a trans-
mission dip is equivalent to a periodic LPFG of equal
length with a prescribed grating period. This equiva-
lence is important in the following analysis of the nonlin-
ear coupling. By applying the nonlinear transfer matrix
model developed in Sections 2 and 3 to a quasi-periodic
Fibonacci grating, we demonstrate intensity-dependent
switching. In addition, when a square pulse is used as
input, almost complete switching can be found. From
analysis of the evolution of optical power and the distri-
bution of the local detuning parameters, the nonlinear
switching can be qualitatively explained.

In general, a quasi-periodic grating is defined by the
underlying of Bravais lattices. After the Bravais points
are defined, each point is placed on a diffractor, which
may be a simple region 1 with length L (1). One can de-
rive the resonance condition by evaluating the structure
of an infinite grating. The corresponding Bravais lattice
and the structure of a quasi-periodic Fibonacci grating
were introduced in Ref. 20. As has been demonstrated,
the Fibonacci grating can also be constructed in a recur-
sive way, and the equivalence is also confirmed.26 We
first define two basic blocks, designated block A and block
B. A common definition for the fundamental blocks is as
follows: Block A is composed of region 1 with length L (1)

and region 0 with length LA 2 L (1), and block B is com-
posed of region 1 with length L (1) and region 0 with
length LB 2 L (1). The total lengths of the two blocks are
thus LA and LB , respectively. The Fibonacci multilayer
of order j is defined recursively as S @ j# 5 S @ j21#uS @ j22# for

Fig. 6. Evolution of the normalized detuning parameters
through a uniform LPFG with respect to input peak power P in
5 1.52 Pc of the square pulse.
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j > 2, with S @0# 5 A and S @1# 5 AB. From this defini-
tion, it is clear that the total grating length satisfies the
Fibonacci relation L @ j# 5 L @ j21# 1 L @ j22#. From the
structure factor, the resonance condition is

b01
co 2 b0n

cl 5
m~t 2 1 !t8 1 nt8

tt8 1 1

2p

LB
, (34)

where m and n are two independent integers, t 5 (1
1 A5)/2 is the golden mean, and 1 1 1/t8 5 LA /LB is
the ratio of the two fundamental blocks. In Eq. (34) the
contribution of the self-coupling term has been neglected
for simplicity of the following discussion. That equation
can be simplified to the following form when t8 5 t:

b01
co 2 b0n

cl 2 ~m 1 nt!
2p

L̄
5 0, (35)

where L̄ 5 (t 2 1 1)LB 5 tLA 1 LB is the averaged
grating period. The physical meaning of the resonance
condition can be further explored by use of the previously
introduced normalized detuning parameters. We define
the following normalized detuning parameters that corre-
spond to a specific resonance (m, n) for the two fundamen-
tal blocks as

jA 5 DA 2 2np 5 ~b01
co 2 b0n

cl !LA 2 2np, (36a)

jB 5 DB 2 2mp 5 ~b01
co 2 b0n

cl !LB 2 2mp. (36b)

Because for a Fibonacci sequence the number of blocks A
is t times that of block B,26 we define the averaged detun-
ing parameter j̄ for a Fibonacci grating as

j̄ [
t

1 1 t
jA 1

1

1 1 t
jB . (37)

Then phase-matching condition (34) can be rewritten as

j̄ 5 0 or tjA 1 jB 5 0. (38)

The phase-matching condition corresponds to vanishing
of the averaged normalized detuning parameter. The
transmission spectrum of a Fibonacci LPFG is obtained
by the transfer-matrix method as shown in Ref. 20. We
have pointed out several features of this condition. First,
a single cladding mode will contribute to several
transmission-loss dips. Second, the transmission dips
are grouped according to the resonance condition (m, n).
In other words, a Fibonacci LPFG provides a mechanism
that makes several cladding modes that belong to differ-
ent groups overlap in a wavelength range. This phenom-
enon is quite different from the behavior of a uniform
LPFG.

We now show that at an appropriate linear coupling
strength a quasi-periodic Fibonacci LPFG near a reso-
nance dip is actually equivalent to a periodic grating with
equal length and a corresponding normalized detuning
parameter. The equivalence is based on the identity of
overall transfer matrices. Let us denote the transfer ma-
trix of a periodic LPFG with normalized detuning param-
eter jP and total length L FP(jP , L), and similarly that of
a Fibonacci LPFG FFb( j̄, L). The demonstration is
based on mathematical induction. We assume that the
equivalence between these two matrices is valid for
Fibonacci sequences of orders j 2 2 and j 2 1, i.e.,
FFb

@k#( j̄, L @k#) > FP(jP 5 j̄, L @k#) for k , j. From the re-
cursive construction of the Fibonacci multilayer, we have
FFb

@ j# 5 F
Fb
@ j21#F

Fb
@ j22# . By substituting the inductive as-

sumption, we obtain FFb
@ j#(L @ j#) > FP(L @ j21#)FP(L @ j22#)

5 FP(L @ j21# 1 L @ j22#) 5 FP(L @ j#), where the recursive
definition of the Fibonacci sequence is used. Thus the
identity also holds for order j. And the inductive as-
sumption is verified in our numerical calculations. In
summary, we have the following equivalence:

FFb~ j̄, L ! > FP~jP 5 j̄, L !. (39)

This equivalence accounts for the similarity of the trans-
mission spectra near a resonance dip of a Fibonacci LPFG
to a periodic spectrum and is important to the analysis of
the switching behavior of the Fibonacci grating that we
describe in what follows.

Next, to investigate the nonlinear switching in a Fi-
bonacci LPFG we consider mainly the coupling of a pulse
between the core mode and a specific cladding mode.
Thus we prevent multicladding modes from overlapping
near the wavelength of the pulse. Adjusting three basic
parameters of a Fibonacci LPFG, namely, LA , LB , and
L (1), results in the transmission spectrum of the grating
that we designed for nonlinear application, as shown in
Fig. 7. Grating strength DnUV is 3.3 3 1024, and param-
eter t8 is set to the golden mean. The average period of
grating L̄ is 1050 mm, and length L (1) is 200 mm. The
number of periods is 144, which corresponds to the 10th
Fibonacci sequence. As shown in Fig. 7, we label each
dip with a different cladding mode number and use ar-
rows of different styles to indicate the corresponding
groups. Note that the n 5 9 cladding mode that belongs
to resonance condition (1, 1) is a good candidate for our
nonlinear study because of its isolation and complete lin-
ear coupling. Even though optical power is also coupled
from the core mode to several cladding modes that belong
to different groups near this wavelength region, the non-
linear effect of these cladding modes can be neglected be-
cause the couplings are weak. Then we assume two-
mode nonlinear coupling between the core mode and the

Fig. 7. Transmission spectrum of a quasi-periodic Fibonacci
LPFG. The transmission dips are grouped according to reso-
nance conditions (m, n). The first group corresponds to (1, 2),
the second to (1, 1), and the third to (0, 1).
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LP06 cladding mode, and linear coupling for those weak
cladding modes. The central wavelength of the input
square pulse is set to 1.539 mm for off-resonance opera-
tion, which corresponds to the maximum transmission in
the long-wavelength side of the LP06 cladding mode. For
a 50-ps square input pulse the relative transmission
curve is as shown in Fig. 8. Except for a little degraded
linear transmission that is due to coupling to several
weak cladding modes at this wavelength, the figure shows
the existence of intensity-dependent switching for the Fi-
bonacci LPFG, just as for a uniform LPFG. And com-
plete switching is almost achieved at the input peak
power of P in 5 1.15 Pc . To understand the local coupling
behavior in the Fibonacci LPFG, we chose the input peak
power P in 5 1.15 Pc as an example because it had the
best switching ratio. Figure 9 shows the evolution of the
normalized transmitted power. It can be found that, ex-
cept for a little fluctuation along the length of the Fi-
bonacci LPFG, the evolution curve is similar to that
shown in Fig. 3. Accordingly, to investigate such a local
coupling process we plot the evolution of the intensity-
dependent detuning parameter in Fig. 10(a). It can be
observed that the distribution of the detuning parameter
separates into two curves that belong to variations of
blocks A and B and that the parameter jumps between
these two curves locally. However, the averaged normal-

Fig. 8. Relative transmission of a square pulse in a Fibonacci
LPFG as a function of normalized input peak power. Note that
almost complete switching occurs at 1.15 Pc .

Fig. 9. Evolution of the normalized transmitted core power
through a Fibonacci LPFG with respect to input peak power
P in 5 1.15 Pc of a square pulse.
ized detuning parameter, which can be clearly seen in Fig.
10(b), lies on a smooth curve similar to the one discussed
in Section 4 for complete switching, i.e., the antisymmet-
ric distribution. Thus the almost complete nonlinear
switching behavior can be understood from the equiva-
lence between the Fibonacci and the periodic LPFG with
an adiabatically varying normalized detuning parameter
in expression (39).

6. CONCLUSIONS
The utilization of a transfer-matrix method to model non-
linear pulse propagation in a binary LPFG has been ex-
tended by inclusion of nonlinear phase modulations and
dispersion. In contrast to those in a sinusoidal LPFG,
power couplings in a binary LPFG take place only at the
heterointerfaces between regions 0 and 1, and the effects
of dispersion and nonlinear phase modulation occur only
within regions 0 and 1. At the quasi-cw approximation
the effect of dispersion can be neglected. Thus mode
propagation through regions 0 and 1 can be found by use
of intensity-dependent matrix equations. We then intro-
duced an intensity-dependent normalized detuning pa-
rameter with which to evaluate the phase mismatch
within a period. This parameter provides a physical in-

Fig. 10. (a) Filled circles, evolution of the normalized detuning
parameters in a Fibonacci LPFG with respect to input peak
power P in 5 1.15 Pc of a square pulse. Solid curve represents
the corresponding evolution of the averaged normalized detuning
parameters. (b) Illustration of the evolution of the averaged
normalized detuning parameters.



Chern et al. Vol. 19, No. 7 /July 2002 /J. Opt. Soc. Am. B 1507
sight into the reason that the nonlinear phase modulation
influences the local coupling. When a binary LPFG is
compared to a uniform sinusoidal LPFG with equal
length and linear coupling strength, the deviations be-
tween two gratings owing to nonlinear phase modulation
are found at the intensity when the pulse is brought into
resonance. Moreover, as a shorter grating length is cho-
sen, these deviations are shown to become larger.

Because pulse breakup in LPFGs results in a limited
switching ratio for a conventional bell-shaped pulse, we
have demonstrated that the switching contrast is in-
creased significantly by use of a square pulse as input.
Complete switching can be achieved for an ideal square
pulse if the input power is carefully controlled. By using
a square pulse, we show the equivalence of the nonlinear
coupling in a uniform LPFG and the linear coupling in a
chirped LPFG. Thus the intensity-dependent spectrum
composed of equivalent chirped periods can be obtained.
It is also shown that an antisymmetric distribution of the
normalized detuning parameters can result in complete
switching. By analyzing the distribution of the normal-
ized detuning parameter we can understand the coupling
in a chirped linear grating and the switching in a nonlin-
ear phase-modulated grating in a unified way. Finally,
we utilized the generalized transfer-matrix method to
study nonlinear switching in a Fibonacci LPFG. The
phase-matching condition for a Fibonacci LPFG was for-
mulated by use of the normalized detuning parameters,
and the equivalence of the Fibonacci LPFG to a periodic
grating with equal length and normalized detuning pa-
rameter has been demonstrated. The existence of non-
linear switching in a Fibonacci LPFG was demonstrated
for the first time to our knowledge, and the local power
evolution and distribution of a normalized detuning pa-
rameter were also studied to assist in our understanding
of nonlinear switching behavior.

APPENDIX A. DISTRIBUTIONS OF
DETUNING FOR COMPLETE SWITCHING
We prove a general condition of the detuning distribution
for complete power switching. The variation of detuning
parameter may be caused by period chirping or nonlinear-
ity. As discussed in Section 4, if the distribution of the
detuning parameter is antisymmetric with respect to the
center of a binary grating, then complete switching can be
achieved, provided that the power splitting ratio of the
front half-grating is 0.5. In what follows, we demon-
strate this property by using the transfer matrices. Let
us express the transfer matrix of a unit period as

F 5 P~0 !F~0u1 !P~1 !F~1u0 !. (A1)

Then the transpose can be expressed as

FT 5 @F~1u0 !#TP~1 !@F~0u1 !#TP~0 !

5 F~0u1 !P~1 !F~1u0 !P~0 !. (A2)

From Eq. (30) for the transfer matrix of the rear half-
grating we have
Frear
1 5 FM

T FM21
T ...F1

T 5 )
k5M

1

Fk
T

5 )
k5M

1

F~0u1 !Pk
~1 !F~1u0 !Pk

~0 !

5 @PM
~0 !#21H )

k5M

1

Pk
~0 !F~0u1 !Pk

~1 !F~1u0 !J P1
~0 !

5 @PM
~0 !#21 )

k5M

1

FkP1
~0 !

5 @PM
~0 !#21FfrontP1

~0 ! . (A3)

Thus we have derived the relation of the transfer matri-
ces between the front and the rear halves of a binary grat-
ing. As the grating is assumed to be lossless, transfer
matrix Ffront may be written as

Ffront 5 F a b

2b* a* G . (A4)

And, for wavelengths close to resonance, both phase ma-
trices PM

(0) and P1
(0) may be approximated as diag(1,

21); then, from Eq. (A3), the transfer matrix of the rear
half is

Frear 5 F a* b

2b* a
G . (A5)
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