
Uniqueness in inverse problems for an elasticity system with residual stress by a single

measurement

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2003 Inverse Problems 19 807

(http://iopscience.iop.org/0266-5611/19/4/301)

Download details:

IP Address: 140.112.113.225

The article was downloaded on 23/06/2009 at 12:53

Please note that terms and conditions apply.

The Table of Contents and more related content is available

HOME | SEARCH | PACS & MSC | JOURNALS | ABOUT | CONTACT US

http://www.iop.org/Terms_&_Conditions
http://iopscience.iop.org/0266-5611/19/4
http://iopscience.iop.org/0266-5611/19/4/301/related
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/pacs
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact


INSTITUTE OF PHYSICS PUBLISHING INVERSE PROBLEMS

Inverse Problems 19 (2003) 807–820 PII: S0266-5611(03)55638-6

Uniqueness in inverse problems for an elasticity
system with residual stress by a single measurement

Ching-Lung Lin1 and Jenn-Nan Wang2

1 Department of Mathematics, National Cheng-Kung University, Tainan 701, Taiwan
2 Department of Mathematics, National Taiwan University, Taipei 106, Taiwan

E-mail: jllin@math.ncku.edu.tw and jnwang@math.ntu.edu.tw

Received 5 November 2002, in final form 3 April 2003
Published 30 May 2003
Online at stacks.iop.org/IP/19/807

Abstract
In this paper we consider an elasticity system with residual stress. The
constitutive equation of this elasticity system differs from that of the isotropic
elasticity system by R + (∇u)R, where R is the residual stress tensor. This
system is not isotropic due to the existence of the residual stress R. Thus, it is not
possible to reduce the principal part of the system to uncoupled wave operators
as we have for the isotropic elasticity system. Here we investigate inverse
problems of identifying the force term or the density by a single measurement
of the lateral boundary. We establish uniqueness results by means of Carleman
estimates when the residual stress is small.

1. Introduction

We consider a linear elasticity system with non-vanishing residual stress in this paper. Before
describing the system, we want to define some notation which will be used throughout
the paper. Let Q be a cylindrical domain (−T, T ) × � in R × R

3, where � is an open
bounded domain in R

3. Throughout we assume 0 ∈ � and set ω = supx∈� |x |. Use the
notation � = (−T, T ) × ∂�. Let (t, x) = (t, x1, x2, x3) be the coordinates in R × R

3 and
∂α = ∂

α0
t ∂

α1
1 ∂

α2
2 ∂

α3
3 for any multi-index α = (α0, α1, α2, α3). Here ∂ j = ∂

∂x j
, j = 1, 2, 3.

Also, we will set α′ = (0, α1, α2, α3). Unless otherwise indicated, we will use ∇, ∇·, ∇×,
and � to denote the gradient, divergence, curl, and Laplacian with respect to x-variables,
respectively. All Latin indices are set to be from 1 to 3 whenever we do not specify their
ranges. All Sobolev norms ‖ · ‖s not indicating the domain of integration are assumed to be
integrating over R

4. The letter C stands for a generic constant whose value may vary from
line to line.

The residual stress is modelled by a symmetric second-rank tensor R(x) = (r jk(x)) ∈
C1(Q) satisfying

∇ · R = 0 in Q,
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where ∇ · R is a vector with components given by

(∇ · R) j =
∑

k

∂kr jk,

and

Rν =
∑

k

r jkνk = 0 on �,

where ν = t (ν1, ν2, ν3) is the unit outer vector normal to ∂�. Let u(t, x) = t(u1, u2, u3) :
Q → R

3 be the displacement vector; then the first Piola–Kirchhoff stress is

S(u) = R + (∇u)R + λ̃(tr ε)I + 2µ̃ε + β1(tr ε)(tr R)I + β2(tr R)ε

+ β3((tr ε)R + tr(εR)I ) + β4(εR + Rε), (1.1)

where λ̃(x), µ̃(x) are the Lamé moduli, β1(x) · · ·β4(x) are material parameters, and

ε = 1
2 (∇u + t∇u)

is the strain tensor and (∇u) jk = (∂ku j ) (see [13]). In this paper we assume that β3 = β4 = 0,
i.e.

S(u) = λ(tr ε)I + 2µε + R + (∇u)R, (1.2)

where

λ = λ̃ + β1(tr R), µ = µ̃ + 1
2β2(tr R).

We interrupt the exposition here to say a few words on the residual stress model. The
constitutive equation (1.2) is close to the one considered by Robertson in [16] where he used
the form

S(u) = λ̃(tr ε)I + 2µ̃ε + R + (∇u)R

to investigate the boundary determination of the residual stress by the Dirichlet-to-Neumann
map. Hoger [4] also considered an elasticity system with residual stress where she used the
constitutive equation

S(u) = R + (∇u)R − 1
2 (εR + Rε) + λ̃(tr ε)I + 2µ̃ε

in her study. Based on Hartig’s law, Man [13] argued that the constitutive equation of a
realistic isotropic medium with residual stress should be given by (1.1) which describes a
prestressed polycrystalline aggregate whose constituting crystallites are randomly oriented.
Here we choose the constitutive equation (1.2) for studying related inverse problems for two
reasons. On one hand, it is close to the realistic model as pointed out by Man. On the other
hand, some basic properties for the elasticity system with the constitutive equation (1.2) have
been established, especially Carleman estimates which lead to the uniqueness and stability of
the Cauchy problem [9]. Those Carleman estimates play an important role in the study of
some related inverse problems.

Henceforth, we denote

Lu = ∇ · S(u)

= (λ + µ)∇(∇ · u) + µ�u − (∇ · u)∇λ− (∇u + t (∇u))∇µ− ∇ · ((∇u)R)). (1.3)

Now let y be a solution to the following initial boundary value problem

ρ∂2
t y − Ly = 0 in Q,

y(t, x) = ϕ(t, x) on �,

y(0, x) = a(x) in �,

(1.4)

where ρ(x) > 0 is the density of the medium. In this paper, we are concerned with the inverse
problem of determining the density ρ(x) by measuring the traction of y on �.
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Problem 1.1. Assume that coefficients λ̃, µ̃, β1, β2, and R are given. Can one uniquely
determine ρ(x) in � by measuring S(y)ν|�? In other words, let y and ỹ be solutions of (1.4)
associated with densities ρ and ρ̃. Does S(y)ν|� = S(ỹ)ν|� imply ρ(x) = ρ̃(x) in �?

Using the standard technique, see [11] for example, we can see that problem 1.1 is closely
related to an inverse source problem. To be precise, let u(t, x) be a solution solving

ρ∂2
t u − Lu = f (x)g(t, x) in Q,

u(t, x) = 0 on �,

u(0, x) = 0 in �,

(1.5)

where f (x) is a scalar function in � and g(t, x) = t(g1(t, x), g2(t, x), g3(t, x)) is a vector
function in Q. Then we consider the following inverse problem.

Problem 1.2. Let an appropriate T > 0 be given. Does S(u)ν|� = 0 imply f (x) = 0 in �?

Notice that in (1.4) and (1.5), we do not provide ∂t y(0, x) and ∂t u(0, x) since they can
also be determined in the related inverse problem (see [7, 11]).

The proofs of uniqueness in problems 1.1 and 1.2 rely on Carleman estimates. The basic
idea originated from Bukhgeim and Klibanov’s paper [2]. After their paper, the uniqueness
of similar inverse problems for hyperbolic equations based on Carleman estimates has been
investigated—see, for example, [1, 6, 7, 10–12, 17].

The aforementioned results all dealt with a single hyperbolic equation. There were only a
few attempts on systems of equations. For the isotropic elasticity system, an attempt has been
made by Isakov [8] where he proved the Carleman estimate and established the uniqueness for
the inverse source problem. It should be noted that in [8] Isakov transformed the principal part
of the isotropic elasticity system to a composition of two scalar wave operators. For Maxwell’s
system, we mention Yamamoto’s result in [18].

Our work is motivated by [5] in which Ikehata et al considered the isotropic elasticity
system with variable coefficients. They used a different way to diagonalize the system.
That is, they introduced an auxiliary function ∇ · u and transformed the principal part of
the elasticity system to a diagonal system with wave operators as its diagonal components.
The elasticity system that we consider here is not isotropic due to the existence of the residual
stress. Therefore, the principal part cannot be reduced to uncoupled wave operators as we have
for the isotropic elasticity system. Nevertheless, by introducing two auxiliary functions ∇ · u
and ∇ ×u, we can transform the principal part to uncoupled wave operators plus second-order
operators in x-variables acting only on u with coefficients involving first derivatives of the
residual stress. When the residual stress is assumed to be small, to take care of the additional
second-order derivatives of u, we merely need a Carleman estimate for the Laplacian (see
similar arguments in [9]).

One the other hand, for the determination of the density in problem 1.1,we only require one
single measurement provided that the initial displacement satisfies an appropriate condition
(see theorem 4.2). We would like to point out that for the inverse problem of identifying the
density in [5], three measurements are needed in the three-dimensional case. We also want to
compare our result with a result of Isakov [8] where he proved the uniqueness in determining
the density by using four measurements in the three-dimensional case.

Finally, we would like to make some remarks on other related results in the parameter
identification problem for the elasticity system. The first general result in this direction was
proved by Nakamura and Uhlmann [14] in which they showed that two Lamé coefficients
are uniquely determined by the static Dirichlet-to-Neumann map. In the dynamic setting,
Rachele [15] proved that the finite-time Dirichlet-to-Neumann map uniquely determines
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the speeds of compressional and shear waves. Rachele’s result implies that if one of the
parameters, namely, the density function, with its Lamé coefficients, is known, then the other
two parameters can be uniquely determined by the boundary map. It should be noted that
results in [14, 15] require infinitely many boundary measurements. On the practical side,
the unique determination of Lamé coefficients or Lamé coefficients plus density by means of
finitely many boundary measurements has not been solved yet. Starting from this paper, we
hope to pursue other interesting inverse problems of identifying parameters in the elasticity
system by means of finitely many boundary measurements, even including the identification
of residual stress.

The paper is organized as follows. In section 2, we transform the system in (1.5) to a larger
system by introducing auxiliary functions v = ∇ ·u andw = ∇ ×u. Since the system in (1.5)
contains non-homogeneousterms, it is important to keep track of how non-homogeneousterms
change in the process. Another key ingredient in solving problems 1.1 and 1.2 is the Carleman
estimate. We will derive several useful Carleman estimates in section 3. In section 4, we will
prove two theorems which will give definite answers to problems 1.1 and 1.2.

2. Derivation of a new system

Now, we suppose u(t, x) is a solution of (1.5) and then rewrite ∇ · {(∇u)R} in (1.3) as

∇ · {(∇u)R} =
∑

jk

r jk∂
2
jku + ∇u(∇ · R) =

∑
jk

r jk∂
2
jku,

since ∇ · R = 0. Dividing both sides of the first equation in (1.5) by ρ yields

∂2
t u −

∑
jk

r jk∂
2
jku/ρ − (λ + µ)/ρ∇(∇ · u)− µ/ρ�u − (∇ · u)∇λ/ρ

− (∇u + t(∇u))∇µ/ρ = ( f/ρ)g. (2.1)

Let us introduce two auxiliary functions v = ∇ · u and w = ∇ × u. Then we have from (2.1)
that

∂2
t u −

∑
jk

r jk∂
2
jku/ρ − µ/ρ�u − (λ + µ)/ρ∇v − ∇λ/ρv − (∇u + t (∇u))∇µ/ρ

= ( f/ρ)g. (2.2)

Taking the divergence on (2.2) yields

∂2
t v −

∑
jk

r jk∂
2
jkv/ρ − (λ + 2µ)/ρ�v −

∑
jk

∇(r jk/ρ) · ∂2
jku − (∇(µ/ρ) + ∇µ/ρ)�u

− {∇((λ + µ)/ρ) + (∇λ + ∇µ)/ρ} · ∇v − {∇ · (∇λ/ρ)}v
= ( f/ρ)(∇ · g) + ∇( f/ρ) · g. (2.3)

By making the replacement

�u = ∇(∇ · u)− ∇ × (∇ × u) = ∇v − ∇ × w (2.4)

in (2.3), we get that

∂2
t v −

∑
jk

r jk∂
2
jkv/ρ − (λ + 2µ)/ρ�v −

∑
jk

∇(r jk/ρ) · ∂2
jku − (∇(µ/ρ) + ∇µ/ρ)

× (∇v − ∇ × w)− {∇((λ + µ)/ρ) + (∇λ + ∇µ)/ρ} · ∇v − ∇ · (∇λ/ρ)v
= ( f/ρ)(∇ · g) + ∇( f/ρ) · g. (2.5)
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Similarly, taking the curl of (2.2) and using the identities ∇ × (hu) = h∇ × u + ∇h × u
and (2.4), we have that

∂2
t w −

∑
jk

r jk∂
2
jkw/ρ − µ/ρ�w −

∑
jk

∇(r jk/ρ)× ∂2
jku − ∇(µ/ρ)× (∇v − ∇ × w)

− ∇((λ + µ)/ρ)× ∇v − ∇ × (∇λ/ρ)v − ∇v × (∇λ/ρ)
−

∑
j

(∂ jµ/ρ∂ jw + ∇(∂ jµ/ρ)× (∂ j u + ∇u j))

= ( f/ρ)∇ × g + ∇( f/ρ)× g. (2.6)

Combining (2.2), (2.5), and (2.6) leads to the new system of equations

�̃rsu + A1;1(u, v) = ( f/ρ)g,

�̃rpv −
∑

jk

∇(r jk/ρ) · ∂2
jku + A2;1(u, v,w) = ( f/ρ)(∇ · g) + ∇( f/ρ) · g,

�̃rsw −
∑

jk

∇(r jk/ρ)× ∂2
jku + A3;1(u, v,w) = ( f/ρ)∇ × g + ∇( f/ρ) × g,

(2.7)

where �̃rs = ∂2
t − ∑

jk(r jk +µδ jk)/ρ∂
2
jk , �̃rp = ∂2

t − ∑
jk(r jk + (λ + 2µ)δ jk)/ρ∂

2
jk , and A j;1

are first-order differential operators. In other words, we have proved the following proposition.

Proposition 2.1. Assume that λ,µ, β1, β2, R belong to C2(�̄), f and ρ are in C1(�̄), and
g(t, ·) belongs to C1(�̄) for any t ∈ (−T, T ). Let u ∈ H 2(Q) satisfy the first equation in (1.5)
and v = ∇ · u and w = ∇ × u. Then t(u, v,w) satisfies the system of equations (2.7) and all
first-order differential operators A j;1 have bounded coefficients in Q.

In fact, to use the system (2.7) in our proofs, we need to express them in a more concrete
form. Let us set U = t (u, v,w), which is a seven-dimensional vector function,

�̃2(x, ∂x, ∂t ) = diag(�̃rs, �̃rs, �̃rs , �̃rp, �̃rs, �̃rs, �̃rs),

R2(x, ∂x)u = t

(
0, 0, 0,

∑
jk

∇(r jk/ρ) · ∂2
jku,

∑
jk

∇(r jk/ρ)× ∂2
jku

)
,

C1(x, ∂x)U = t (A1;1(x, ∂x)(u, v), A2;1(x, ∂x)(u, v,w), A3;1(x, ∂x)(u, v,w)),

F(x) = t( f/ρ, ∂1( f/ρ), ∂2( f/ρ), ∂3( f/ρ), 0, 0, 0),

and

G(t, x) =




g1 0 0 0 0 0 1
g2 0 0 0 0 1 0
g3 0 0 0 0 0 0

∂1g1 + ∂2g2 + ∂3g3 g1 g2 g3 0 0 0
∂2g3 − ∂3g2 0 g3 −g2 0 0 0
∂3g1 − ∂1g3 −g3 0 g1 0 0 0
∂1g2 − ∂2g1 g2 −g1 0 1 0 0




;

then the system of equations (2.7) can be written as

�̃2U − R2u + C1U = G F. (2.8)

It should be noted that the first four columns of G are determined by the right-hand side of (2.7).
Here we extend G into a 7 × 7 square matrix by adding the last three columns. Of course,
they can be arbitrary since the last three components of F are zero. The reason for choosing
these three columns in the above form is that we can compute the determinant of G explicitly.
Indeed, by direct computations, we get that

det G(t, x) = g3(t, x)2|g(t, x)|2 = g3(t, x)2(g1(t, x)2 + g2(t, x)2 + g3(t, x)2).
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Therefore, if we assume

g3(0, x)2 > 0 x ∈ �̄ (2.9)

and g ∈ C1(Q̄), then there exists a positive constant ζ such that the inverse matrix G−1(t, x)
of G(t, x) exists and det G(t, x) > 0 for x ∈ �̄ and |t| � ζ .

Remark 2.1. By playing with the last three columns of G(t, x), the condition (2.9) can be
replaced by g1(0, x)2 > 0 or g2(0, x)2 > 0. We thank the referee for pointing out this feature
to us.

3. Carleman estimates

Our idea for solving problems 1.1 and 1.2 is based on Carleman estimates. In this section, we
would like to derive appropriate Carleman estimates for the wave and Laplacian operators. To
begin, let P(y, Dy) be an mth-order differential operator with real coefficients having principal
symbol p(y, ξ).

Definition 3.1. A C2-function φ(y) is called strongly pseudo-convex with respect to P on �
at y0 if it satisfies

{p−τ , pτ }/τ i � C(|ξ |2 + τ 2) f or some constant C > 0

on {pτ (y0, ξ) = 0, (y0, ξ) ∈ �, τ � 0, (ξ, τ ) �= 0}, (3.1)

where {·, ·} is the Poisson bracket, pτ (y0, ξ) = p(y0, ξ + iτ∇yφ(y0)), and � is a subset of
T ∗

y0
R

n.

Here we will consider the operator Pc(t, x, ∂t , ∂x) = ∂2
t − ∑

jk(r jk/ρ + cδ jk)∂
2
jk for

c = µ/ρ or c = (λ + 2µ)/ρ. We assume that the residual stress satisfies∑
jk

∥∥∥∥r jk

ρ

∥∥∥∥
C1

< ε (3.2)

for some constant 0 < ε < 1. By assuming the ellipticity condition on the Lamé parameters
λ̃ and µ̃, i.e.

µ̃ > 0 and λ̃ + 2µ̃ > 0 for all (t, x) ∈ Q̄,

we can get that

µ > 0 and λ + 2µ > 0 for all (t, x) ∈ Q̄, (3.3)

provided that ε is sufficiently small. Introducing the weight function

φ(t, x) = exp((σ/2)ψ(t, x)),

where

ψ(t, x) = x2
1 + x2

2 + x2
3 − θ t2.

Denote Qδ = Q ∩ {ψ > δ}, where δ > 0. In what follows we will prove that φ(t, x) is
strongly pseudo-convex with respect to Pc on R

4 in Qδ for large σ and small ε when c satisfies
some restrictions.

Proposition 3.1. Assume that (r jk) satisfies the estimate (3.2). Let c(x) ∈ C1 satisfy

θc + θ
√

c|t∇c| + 1
2 c∇c · x < c2 + 1

2θ t (∂t c) + 1
2 cb(∂3c) (3.4)

and

0 < θc−1 � 1 − (
min

Q̄
c
)−1
ε (3.5)

for (t, x) ∈ Q̄. Then φ(t, x) is strongly pseudo-convex with respect to Pc on R
4 in Qδ provided

that σ is sufficiently large and ε is small enough.
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Proof. A thorough proof of the proposition was given in [9] (see the proof of proposition 3.1
in [9]). So we omit it here. �

Having derived the pseudo-convexity condition for the weight function φ(t, x), we can
discuss the corresponding Carleman estimate for �̃rs/rp . The following form is adopted
from [9] and it can be proved by the same arguments as in [3] (see the proof of theorem 1.3
in [3]).

Theorem 3.1. Let µ ∈ C1(Q̄) (or λ,µ ∈ C1(Q̄)) and ρ, R = (r jk) ∈ C1(Q̄). Assume that
µ/ρ(or (λ + 2µ)/ρ) satisfies (3.4) and (3.5). Then we can find a small constant ε0 > 0 such
that if R satisfies (3.2) with ε < ε0, then there exist constants C(ε0, δ) and C0(ε0, δ, σ ) such
that

‖η 3
2 −|α|eτφ∂αu‖0 � C‖eτφ�̃rs/rpu‖0 (3.6)

for all u ∈ C∞
0 (Qδ) provided |α| � 1, σ � C, and τ � C0. Here η = τσφ and the small

constant ε0 depends on C1-norms of coefficients λ, µ, and ρ.

In the following we will need a Carleman estimate for � in terms of the weight function
φ. This result has been proved in [3] (see theorem 1.1 in [3]).

Theorem 3.2. There exist constants C(δ) and C0(δ, σ ) such that
√
σ‖η 3

2 −|α′ |eτφ∂α
′
u‖0 � C‖eτφ�u‖0 (3.7)

for any u ∈ C∞
0 (Qδ) provided that |α′| � 2, σ � C, and τ � C0.

Remark 3.1. It is readily seen that the Carleman estimates (3.6) and (3.7) are valid for
u ∈ H 2

0 (Qδ).

4. Main results

We will solve problems 1.1 and 1.2 in this section. We first study problem 1.2 and
prove theorem 4.1 below. Having solved problem 1.2, the solution to problem 1.1 follows
immediately by the standard argument.

Theorem 4.1. Suppose that all coefficients λ̃, µ̃, β1, β2 are in C2(Q̄)and R, ρ, g are in C3(Q̄).
Let µ/ρ and (λ + 2µ)/ρ satisfy conditions (3.4) and (3.5). Let g satisfy (2.9), i.e.

g3(0, x)2 > 0 x ∈ �̄.
Assume that� ⊂ B(0,

√
θT ) and S(u)(t, x)ν = 0 on �. Then there exists an ε0 > 0 such that

if R satisfies (3.2) with ε < ε0, then for the solution u ∈ C3(Q̄) to (1.5), one has f (x) = 0 in
� and u(x, t) = 0 in Q0.

Proof. As described in section 2, we transform the first equation in (1.5) to the system (2.8).
By virtue of (2.9), we know that G−1(t, x) exists for x ∈ �̄, |t| � ζ , with sufficiently small ζ .
Therefore, multiplying both sides of (2.8) by G−1 yields

G−1(t, x)�̃2(x, ∂x, ∂t )U − G−1(t, x)R2(x, ∂x)u + G−1(t, x)C1(x, ∂x)U = F(x) (4.1)

or x ∈ �̄, |t| � ζ . Note that the right-hand side of (4.1) is independent of t . So differentiating
both sides of (4.1) with respect to t gives

(∂t G
−1(t, x))�̃2(x, ∂x , ∂t)U + G−1(t, x)�̃2(x, ∂x, ∂t )∂tU − (∂t G

−1(t, x))R2(x, ∂x)u

− G−1(t, x)R2(x, ∂x)∂t u + (∂t G
−1(t, x))C1(x, ∂x)U

+ G−1(x, t)C1(x, ∂x)∂tU = 0. (4.2)



814 C-L Lin and J-N Wang

Now, multiplying both sides of (4.2) by G(t, x) and denoting A(t, x) = G(t, x)∂t G−1(t, x),
we get that

�̃2∂tU + A�̃2U − R2∂t u − AR2u + C1∂t U + AC1U = 0. (4.3)

It follows from (4.3) that

�̃2(∂tU + AU) = R2∂t u + AR2u − C1(∂tU + AU)− [A, �̃2]U − [A,C1]U

or

�̃2(NU) = R2∂t u + AR2u − C1(NU) − [A, �̃2]U − [A,C1]U, (4.4)

where NU = ∂t U + AU and [·, ·] is the commutator notation.
By direct computations and lemma A.2 in the appendix, we have that

‖eτφ[A, �̃2]U + eτφ[A,C1]U‖0(Q̃δ) � C
∑
|α|�1

‖eτφ∂αU‖0(Q̃δ)

� C
∑

|α′ |�1

‖eτφ∂α
′
(NU)‖0(Q̃δ), (4.5)

where Q̃δ = Qω2−θζ 2+δ with δ > 0 sufficiently small. Recall that ω = supx∈� |x | and
α′ = (0, α1, α2, α3). It should be noted that the commutator [A, �̃2] is of order one.

Now we are going to apply the Carleman estimates (3.6) and (3.7) to NU and ∂n
t u, n = 0, 1,

respectively. However, we cannot directly work on NU and ∂n
t u since they may not satisfy

the support condition. To overcome this difficulty, we want to introduce a suitable cut-off
function. Let χ ∈ C∞(Q) be a cut-off function with 0 � χ � 1 and

χ =
{

1, in Qω2−θζ 2+δ,

0, in Q\Q(ω2−θζ 2); (4.6)

then we need to show that χNU ∈ H 2
0 (Q̃0) and χ∂n

t u ∈ H 2
0 (Q̃0), n = 0, 1. To verify these

properties, it suffices to prove ∂αNU |� = ∂α∂n
t u|� = 0 for |α| � 1 and n = 0, 1. To do so,

we will make use of lemma A.1 in the appendix. Thus, what we should do is to check whether
ρ∂2

t u − Lu = 0 on �. The condition clearly holds if we show that f (x) = 0 on ∂�. In fact,
by virtue of the zero Dirichlet data and u ∈ C3(Q̄), we have that

−Lu = f (x)g(t, x) on �. (4.7)

Consequently, setting t = 0 in (4.7), the zero initial condition in (1.5) and the assumption on
g(t, x) (see (2.9)) imply that f (x) = 0 on ∂�.

Since both µ/ρ and (λ + 2µ)/ρ satisfy (3.4) and (3.5), we can apply the estimate (3.6) to
χNU as long as the residual stress is small in the sense of (3.2). Here and below, in using (3.6)
and (3.7) it suffices to take σ to be sufficiently large and then fixed. In view of (4.4) and (4.5),
we hence obtain that for large τ ,∑
|α|�1

τ
3
2 −|α|‖eτφ∂α(NU)‖0(Q̃δ) �

∑
|α|�1

τ
3
2 −|α|‖eτφ∂α(χNU)‖0(Q̃0)

� ‖eτφ�̃2(χNU)‖0(Q̃0)

� Cε
∑

|α′|=2

‖eτφ∂α
′
(∂t u)‖0(Q̃0) + Cε

∑
|α′|=2

‖eτφ∂α
′
u‖0(Q̃0)

+ C
∑
|α|�1

‖eτφ∂α(NU)‖0(Q̃0) + C
∑
|α|�1

‖eτφ∂αU‖0(Q̃0)

� Cε
∑

|α′|=2

‖eτφ∂α
′
(∂t u)‖0(Q̃δ) + Cε

∑
|α′|=2

‖eτφ∂α
′
u‖0(Q̃δ)
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+ C
∑
|α|�1

‖eτφ∂α(NU)‖0(Q̃δ)+Cε
∑

|α′ |=2

(‖eτφ∂α
′
(∂t u)‖0(Q̃

c
δ)+‖eτφ∂α

′
u‖0(Q̃

c
δ))

+ C
∑
|α|�1

(‖eτφ∂α(NU)‖0(Q̃
c
δ) + ‖eτφ∂αU‖0(Q̃

c
δ))

� Cε
∑

|α′|=2

‖eτφ∂α
′
(∂t u)‖0(Q̃δ) + Cε

∑
|α′|=2

‖eτφ∂α
′
u‖0(Q̃δ)

+ Cε
∑

|α′ |=2

(‖eτφ∂α
′
(∂t u)‖0(Q̃

c
δ) + ‖eτφ∂α

′
u‖0(Q̃

c
δ))

+ C
∑
|α|�1

(‖eτφ∂α(NU)‖0(Q̃
c
δ) + ‖eτφ∂αU‖0(Q̃

c
δ)), (4.8)

where Q̃0 = Qω2−θζ 2 and Q̃c
δ = Qω2−θζ 2\Qω2−θζ 2+δ . Here the integral of the zeroth and first

derivative terms of NU over Q̃δ has been absorbed into the left-hand side of the inequality by
taking τ large enough.

Now we want to take care of the second derivatives of ∂t u and u on the right-hand side
of (4.8). We first consider the term with ∂t u. By virtue of the Carleman estimate (3.7) and the
obvious vector identity�(∂t u) = ∇(∂tv)− ∇ × (∂tw), we have that∑
|α′ |=2

‖eτφ∂α
′
(∂t u)‖0(Q̃δ) �

∑
|α′ |=2

‖eτφ∂α
′
(χ∂t u)‖0(Q̃0) � Cτ 1/2‖eτφ�(χ∂t u)‖0(Q̃0)

� Cτ 1/2‖eτφ�(∂t u)‖0(Q̃δ) + Cτ 1/2‖eτφ�(χ∂t u)‖0(Q̃
c
δ)

� Cτ 1/2‖eτφ∇(∂tv)‖0(Q̃δ) + Cτ 1/2‖eτφ∇ × (∂tw)‖0(Q̃δ)

+ Cτ 1/2‖eτφ�(χ∂t u)‖0(Q̃
c
δ)

� Cτ 1/2
∑

|α′ |�1

‖eτφ∂α
′
(∂tU)‖0(Q̃δ) + Cτ 1/2‖eτφ�(χ∂t u)‖0(Q̃

c
δ)

� Cτ 1/2
∑

|α′ |�1

‖eτφ∂α
′
(NU)‖0(Q̃δ) + Cτ 1/2

∑
|α′|�1

‖eτφ∂α
′
U‖0(Q̃δ)

+ Cτ 1/2‖eτφ�(χ∂t u)‖0(Q̃
c
δ)

� Cτ 1/2
∑

|α′ |�1

‖eτφ∂α
′
(NU)‖0(Q̃δ) + Cτ 1/2‖eτφ�(χ∂t u)‖0(Q̃

c
δ). (4.9)

Note that for getting the last two inequalities of (4.9) we have used the definition of NU and
the estimate (4.5). Going over the same arguments, we can obtain that∑
|α′ |=2

‖eτφ∂α
′
u‖0(Q̃δ) � Cτ 1/2

∑
|α′|�1

‖eτφ∂α
′
(NU)‖0(Q̃δ) + Cτ 1/2‖eτφ�(χu)‖0(Q̃

c
δ). (4.10)

Combining (4.8), (4.9), (4.10) and taking ε sufficiently small, we obtain that∑
|α|�1

τ
3
2 −|α|‖eτφ∂α(NU)‖0(Q̃δ) � Cετ 1/2‖eτφ�(χu)‖0(Q̃

c
δ)

+ Cετ 1/2‖eτφ�(χ∂t u)‖0(Q̃
c
δ) + Cε

∑
|α′|=2

(‖eτφ∂α
′
(∂t u)‖0

+ ‖eτφ∂α
′
u‖0)(Q̃

c
δ) + C

∑
|α|�1

(‖eτφ∂α(NU)‖0 + ‖eτφ∂αU‖0)(Q̃
c
δ). (4.11)

Now we observe that φ > eσ (ω
2−θζ 2+δ)/2 on Q̃δ and φ � eσ (ω

2−θζ 2+δ)/2 on Q̃c
δ . Thus,

replacing φ on the left- and right-hand sides of (4.11) by its minimum and maximum values
over the corresponding domains of integration and dividing both sides by exp(τeσ (ω

2−θζ 2+δ)/2)

leads to
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τ
3
2 ‖NU‖0(Q̃δ) � Cετ 1/2‖�(χu)‖0(Q̃

c
δ) + Cετ 1/2‖�(χ∂t u)‖0(Q̃

c
δ)

+ Cε
∑

|α′ |=2

(‖∂α′
(∂t u)‖0 + ‖∂α′

u‖0)(Q̃
c
δ)

+ C
∑
|α|�1

(‖∂α(NU)‖0 + ‖∂αU‖0)(Q̃
c
δ). (4.12)

Dividing both sides of (4.12) by τ 3/2 and letting τ → ∞, we immediately have that NU = 0
in Qω2−θζ 2+δ . From NU = 0 we get ∂t(G−1U) = 0 in Qω2−θζ 2+δ. Taking into account the
zero initial condition in (1.5), we conclude that u = 0 in Qω2−θζ 2+δ. Since δ > 0 is arbitrarily
small, we obtain

u(t, x) = 0, (t, x) ∈ Qω2−θζ 2 ,

f (x) = 0,
√
ω2 − θζ 2 � |x | � ω.

Next we will expand the domain where the uniqueness holds. To do this, we want to
extend G in t to G̃ so that G̃−1 exists in this larger domain and equation (2.8) holds with G
being replaced by G̃. We define a function κ(t) ∈ C∞(R) satisfying 0 � κ(t) � 1 and

κ(t) =
{

0, in |t| � ζ ,

1, in |t| > γζ ,

where γ > 1 and is very close to 1. Use the notation G̃(t, x) = (1−κ(t))G(t, x)+κ(t)G(0, x),
i.e.

G̃(t, x) =
{

G(t, x), if |t| � ζ ,

G(0, x), if |t| > γζ .
(4.13)

Now for |t| � γ ζ we can see that

‖G̃(t, x)− G(t, x)‖ = ‖κ(t)(G(0, x)− G(t, x))‖ � ‖∂t G‖L∞(Q̄)(γ ζ ).

Therefore, we can choose ζ > 0 such that (2.9) holds,

det G̃(t, x) > 0 x ∈ �̄, |t| � γ ζ,

and

ζ = T√
m

for some m ∈ N. (4.14)

On the other hand, one can easily check that if (t, x) ∈ Qω2−2θζ 2 ∩{(t, x) : |x | �
√
ω2 − θζ 2},

then |t| � ζ . This implies that

G̃ F = G F in Qω2−2θζ 2 ∩
{
(t, x) : |x | �

√
ω2 − θζ 2

}
.

Furthermore, we know that f (x) = 0 for
√
ω2 − θζ 2 � |x | � ω, which leads to

G̃ F = G F = 0 in Qω2−2θζ 2 ∩
{
(t, x) :

√
ω2 − θζ 2 � |x | � ω

}
.

Therefore, we can see that

G̃ F = G F in Qω2−2θζ 2 ∩ {(t, x) : |x | � ω} = Qω2−2θζ 2 .

Recall that ω = supx∈� |x |. In other words, we obtain from (2.8) that

�̃2U − R2u + C1U = G̃ F, (t, x) ∈ Qω2−2θζ 2 ,

u(t, x) = 0, S(u)ν(t, x) = 0 on ∂Qω2−2θζ 2 ∩ �,
u(0, x) = 0 in �
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and G̃−1(t, x) exists in Q̄ω2−2θζ 2 . Hence, we can repeat the above argument and get that

u(t, x) = 0, (t, x) ∈ Qω2−2θζ 2 ,

f (x) = 0,
√
ω2 − 2θζ 2 � |x | � ω.

By repeating the above argument m times, we have that

u(t, x) = 0, (x, t) ∈ Qω2−mθζ 2 ,

f (x) = 0,
√
ω2 − mθζ 2 � |x | � ω.

It follows from (4.14) thatω2 −mθζ 2 = ω2 −θT 2 < 0 since �̄ ⊂ B(0,
√
θT ). Consequently,

we have that f (x) = 0 for x ∈ � and u(t, x) = 0 for (t, x) ∈ Q0. �
Theorem 4.2. Suppose that all coefficients λ̃, µ̃, β1, β2 are in C2(Q̄)and R, ρ, ρ̃ are in C3(Q̄).
Let y and ỹ be solutions of (1.4) corresponding to density functions ρ and ρ̃, respectively.
Assume that µ/ρ and (λ + 2µ)/ρ satisfy conditions (3.4), (3.5), and� ⊂ B(0,

√
θT ). Let the

initial condition a(x) satisfy

L3(a)
2 > 0 in �̄, (4.15)

where L3(a) denotes the third component of the vector L(a). Then there exists an ε0 > 0 such
that if R satisfies (3.2) with ε < ε0 and S(y)ν|� = S(ỹ)ν|� , then one has ρ(x) = ρ̃(x) in �
and y(t, x) = ỹ(t, x) in Q0.

Proof. Let u = y − ỹ, f (x) = ρ̃(x)−ρ(x)
ρ̃(x) and g(t, x) = ρ̃(x)∂2

t ỹ(t, x); then we can get that

ρ∂2
t u − L(u) = f (x)g(t, x) in Q,

u(t, x) = 0, S(u)(t, x)ν(x) = 0 on �,

u(0, x) = 0 in �.

Also, one can check that

g(0, x) = ρ̃(x)∂2
t ỹ(0, x) = L(u(0, x)) = L(a).

Thus, equation (4.15) implies (2.9). Now theorem 4.2 follows directly from theorem 4.1. �
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Appendix

Lemma A.1. Let u ∈ C3(Q̄) satisfy

ρ∂2
t u − Lu = u(t, x) = S(u)ν(t, x) = 0 on �

and ‖R‖C0 (Q̄) = r � 1; then

∂u

∂xk
= ∂2u

∂x j∂xi
= 0 on �.

Therefore,

U = (u, v,w) = (u,∇ · u,∇ × u) = NU = ∂(NU)

∂ν
= 0 on �,

where NU = ∂t U − A(x, t)U.
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Proof. Recall that S(u) = λ(tr ε)I + 2µε + R + (∇u)R and Rν = 0 on �. Since u(t, x) = 0
on �, it is clear that

∇ui = ∂ui

∂ν
ν on �.

Componentwise, we have that

∂ui

∂x j
= ∂ui

∂ν
ν j on �.

By direct computations, we get for (t, x) ∈ � that

0 = (∇u)ν · S(u)ν

= λ(tr ε)2 + µ(tr ε)2 + µ(�i‖∇ui‖2)

= (λ + 2µ)(tr ε)2 + µ(�i‖∇ui‖2 − (tr ε)2).

The ellipticity condition (3.3) and �3
i=1‖∇ui‖2 − (tr ε)2 � 0 imply

tr ε = 0 and ∇ui = 0 ∀i.

Thus, ∂ui
∂xk

= 0 on � for all i, k. As above, we find that

∇
(
∂ui

∂x j

)
= ∂2ui

∂ν∂x j
ν on �.

Componentwise, we have

∂2ui

∂x j∂xk
= ν jνk

∂2ui

∂ν2
on �. (A.1)

For convenience, we denote bi = ∂2ui
∂ν2 and b = (b1, b2, b3). Since u(t, x) = ∂ui

∂xk
= 0 on � and

R satisfies (3.2), we get for (t, x) ∈ � that

0 = b · Lu

� (λ + µ)(b · ν)2 + µ‖b‖2 − r‖b‖2

= (λ + 2µ− r)(b · ν)2 + (µ− r)(‖b‖2 − (b · ν)2).
Now the ellipticity condition (3.3) and r � 1 imply that

b · ν = 0 and bi = 0 ∀i.

In view of (A.1), we have that ∂2ui
∂x j ∂xi

= 0 on � for all i, j, k and, therefore, U = NU =
∂(NU)
∂ν

= 0 on �. Note that ∂t U = 0 on � is obvious. �

Lemma A.2. Let A(t, x) be a 7 × 7 matrix with A(t, x) ∈ C2([−ζ, ζ ] × �) and V (t, x) ∈
C1([−ζ, ζ ] ×�) satisfying V (0, x) = 0; then we have the following estimate:∑

|α|�1

‖eτφ∂α(V )‖0(Q̃δ) � C
∑

|α′ |�1

‖eτφ∂α
′
(NV )‖0(Q̃δ),

where Q̃δ and the operator N are defined as in the proof of theorem 4.1.

Proof. This lemma was essentially proved in [5]. We reproduce the proof here for the sake of
completeness. Recall that

∂t V + AV = NV . (A.2)
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Let the matrix function K (s, t, x) ∈ C2({(s, t, x) : (t, x) ∈ Q̃δ, 0 < s < t}) be the
fundamental solution of the differential equation (A.2) in t such that

V (t, x) =
∫ t

0
K (s, t, x)(NV )(s, x) ds, (t, x) ∈ Q̃δ. (A.3)

From (A.3) we get that

∂xi V (t, x) =
∫ t

0
∂xi K (s, t, x)(NV )(s, x) ds +

∫ t

0
K (s, t, x)∂xi (NV )(s, x) ds,

(t, x) ∈ Q̃δ

and

∂t V (t, x) = −A(t, x)V (t, x) + (NV )(t, x)

= (NV )(t, x)−
∫ t

0
A(t, x)K (s, t, x)(NV )(s, x) ds, (t, x) ∈ Q̃δ.

Therefore, we have that, for all (t, x) ∈ Q̃δ ,∑
|α|�1

|∂αV (t, x)| � C|(NV )(t, x)| + C
∑

|α′|�1

∫ t

0
|∂α′

(NV )(s, x)| ds.

Thus,∑
|α|�1

‖eτφ∂α(V )‖0(Q̃δ) � C‖eτφ(NV )‖0(Q̃δ) + C
∑

|α′|�1

∥∥∥∥eτφ
∫ t

0
|∂α′

(NV )(s, x)| ds

∥∥∥∥
0

(Q̃δ).

(A.4)

Now, we recall the following estimate proved in [5] (see [5, appendix]):∑
|α′ |�1

∥∥∥∥eτφ
∫ t

0
|∂α′

(NV )(s, x)| ds

∥∥∥∥
0

(Q̃δ) � C
∑

|α′|�1

‖eτφ∂α
′
(NV )‖0(Q̃δ). (A.5)

The proof is now completed if we replace the last term of (A.4) by (A.5). �
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