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Abstract

In this paper we give in two and three dimensions a reconstruction formula for determining cracks
buried in an inhomogeneous anisotropic elastic body by making elastic displacement and traction
measurements at the boundary. The information is encoded in the local Neumann-to-Dirichlet map.
With the help of the Runge property, the local Neumann-to-Dirichlet map is connected to the so-
called indicator function. This function can be expressed as an energy integral involving some special
solutions, called reflected solutions. The heart of our method lies in analyzing the blow-up behavior
at the crack of the indicator function, which is by no means an easy task for the inhomogeneous
anisotropic elasticity system. To overcome the difficulties, we construct suitable approximations of
the reflected solutions that capture their singularities. The indicator function is then analyzed by the
Plancherel formula.

O 2003 Editions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Dans cet article, nous donnons, en deux et trois dimensions, une formule qui permet de
déterminer des fissures localisées a l'intérieur d’'un objet élastique, anisotrope et inhomogene, a
partir des mesures du champ des déplacements et des contraintes imposés sur le bord de cet objet.
L'information est contenue dans I'opérateur de Neumann-Dirichlet local. En utilisant la propriété de
Runge, nous constatons que I'opérateur de Neumann-Dirichlet local est relié a ce qu'on appelle
la fonction indicatrice. Cette fonction peut étre exprimée comme une intégrale d'énergie faisant
intervenir des solutions particuliéres, dites solutions réfléchies. Le coeur de notre méthode consiste a
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analyser I'explosion prés de la fissure de la fonction indicatrice. Ceci n’est pas simple a réaliser pour
le systéme d’élasticité anisotrope inhomogéne. Afin de surmonter les difficultés rencontrées dans
cette direction, nous construisons des approximations appropiées des solutions réfléchies qui mettent
en évidence leurs singularités. La fonction indicatrice est ainsi analysée par la formule de Plancherel.
O 2003 Editions scientifiques et médicales Elsevier SAS. All rights reserved.
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1. Introduction and statement of the results

In this paper we give a reconstruction formula in two and three dimensions for
determining cracks embedded in an inhomogeneous anisotropic elastic body by making
traction and displacement measurements on an open subset of the boundary of the medium.
This information is encoded in the local Neumann-to-Dirichlet map. We describe below
more precisely the problem and our main result.

Let B be an anisotropic elastic body and the reference configuratiols dfe
2, a bounded connected domain R, n = 2, 3, with C! boundaryI". Denote by
C(x) = (Ciju(x)) € C1(£2) the elastic tensor. Here and below, all Latin indices are set to
be from 1 ton (n = 2 or 3). We assume that the elastic tenScatisfies the full symmetry
properties:

Cijki = Cjikt = Criij, Vi, j, k.1, (1.1)
and the strong convexity condition, i.e., there exists a constar such that
C(x)E - E > 8|E|)? (1.2)

for any symmetric matriE and allx € £2. Here we have used the conventions

(CG)ij=) Ciyugu and G-H=Ygjhi,
K ij

where G = (g;;) and H = (h;;) are real matrices. Lett = "(u1,...,u,) be the
displacement vector, then the equation of equilibrium, when there are no exterior forces
acting on the domain, is given by [7]

Lcu=V-ocw)=0 ing2, (1.3)

where(V - G); = Zj d;gi; for any matrix functionG = (g;;) andoc(u) = CVu. Itis
evident thab¢ (1) = Ce(u) with e(u) = SymVu = %(’Vu + Vu) if C satisfies (1.1). Here
the superscript denotes the transpose of vectors or matrices.

Throughout the paper we use the following notations and assumptionX betan
open submanifold of a manifold. If F is a space of distributions in, we set:

F(X):={fIx: feF}, F(X):={feF:suppf) C X},
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where f|x is the restriction off to X. These notations will be used for some Sobolev
spaces defined iX and whenX, Y and the boundarg X have sufficient regularities.
Assume thatS C £ is a C? closed Jordan curve:(= 2) or closed connected surface
(n=3)andX c S is an open curve or surface. Wher= 3 we suppose that the boundary
3% of ¥ is C2. Here ¥ will be considered as a crack. We can have several number of
cracks. For this case our theory also works without any essential chang®._Lké the
open subset of? with boundarys and$2, := 2\ £2_. The trace operator t is denoted
by y and those fron12.. to S is denoted byy+. The directions of the unit normalto I
ands are directed int®” \ £ and$2,, respectively.

In our problem, we tak&X = ¥, k € R (with |k| < 1), and define the Sobolev spaces
H*(x) and H*(Z), which are subspaces &f*(S). Also, we denoteH*(X)* the dual
space ofH*(X). For 1/2 < s < 1, we defineH* (2 \ X) by:

H'(2\ 2):={ueD (2): us :=ulg, € H(24); [ul:=ysuy —y-u_=00ns\ X}

with the norm||u||HS(_Q\);) = ”MJF”ITIS(QQ + ||u,||ﬁs(97).
To study different types of boundary measurements, we divideto two parts:

FZIT'DUFN, I'pN Iy =0,

wherel'p, I'v C I" are open subsets withi! boundarie$)I'p, dI'y. One of I'p and I'y
will be considered as the place where we perform the measurements. Note that we do not
exclude the cas€p =@ or I'y = 0.

We will give several mixed type boundary conditions. For example, fixing Dirichlet
data on one part of the boundary, we measure the corresponding Dirichlet data on the
other part of the boundary for given Neumann data on the same part of the boundary. By
changing the fixed data, given data and measured data we obtain another type of traction
and displacement measurements at the boundary. More precisely we consider two types of
boundary value problems as direct problems.

Typel. For anyg Hgl/z(l“) :={g e HY2I): [pg- (0o + Wx)ds =0}, where
o is a constantz-vector andW is a skew-symmetria: x n matrix, find a solution
ue Hy(2\2):={ue H(2\ 2): [puds=0, Skew[,. Vuds =0} to

Lcu=0 in 2 \f,
ocw)r=0 onx, (1.4)
oc(u)yv=g onrl,

where @ is the line or surface element and SkwVu ds is the skew symmetric part of
[r Vuds. Hereo + W is usually called amfinitesimal rigid displacemer{see [19]).

Type2. Assumel’p # . For any givenf € HY?(I'p) and g € H-Y?(I'y), find a
solutionu € H1(£2\ X) to

Lcu=0 inQ\f,

oc(w)v=0 onX, 15
u=f onlp, (1.5)
oc(u)yv=g only.
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In Section 2 (see Theorem 2.1) we prove that the corresponding boundary prob-
lems (1.4) and (1.5) are well posed. The local Neumann-to-Dirichlet map is defined by:

Definition 1.1. (i) For Type 1 direct problem, we defines : H~Y2(I") - H~Y2(I") by:

Axg=ul|r,

whereu € H}(£2 \ ¥) is the solution to (1.4) witlg € H~Y2(I").
(ii) For Type 2 direct problem, we definés : H~Y2(I'y) — HY?(I'y) by:

Axg=ulry,

whereu € HY(£2 \ X) is the solution to (1.5) witly € H~Y/2(I'y).
(iii) For both types of direct problems, we denate: by Ay if X =0.

In this paper we are concerned with reconstructthdrom Ay. In fact, we present
a reconstruction formula along the lines of the probe method [11]. This method has
similarities with the point source method [18]. The probe method relies on the indicator
function defined by:

I(t,r):= /leoo (gj, (A — Ap)g;). (1.6)

where(-, -) is the pairing betwee®? ~Y/2(I'y) and HY2(T" ). By make an appropriate
choice of the Neumann daga to search for the location of the crack. In order to construct
this data we impose the technical assumption that the elasticity system posseBsewjne
property with constraints

Assumption 1.1.Suppose that/ is an open subset a with €1 boundary such that
U c 2 and2 \ U is connected. LeX be the set of all functions| satisfyingu € H* in
an open neighborhood &f and thereinCcu = 0; let Y denote the set of all functionsy
satisfyingv € HX(£2) and£Lcv = 0 in 2 with supgv) C I, wherel is any fixed open
subset off". ThenY is dense inX with respect to theZ* topology.

It is well known that the Runge property with constraints is an easy consequence of
the unique continuation property. When the elastic medium is homogeneous or analytic,
the unique continuation property is obvious. Recently, the first and third authors proved
the unique continuation property for a generic class of two-dimensional inhomogeneous
anisotropic elasticity systems [17]. The unique continuation property for three-dimensional
inhomogeneous anisotropic elasticity systems is still an open problem. We would like
to emphasize that our method is valid in greater generality than the unique continuation
property; we only need the Runge property. Therefore, in the two-dimensional case,
our method works for any inhomogeneous anisotropic elasticity system satisfying some
generic conditions (see [17] for the precise conditions).

Now we state the main result of the paper.
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Main Theorem. Let Assumptiori.1 hold. Then there is a reconstruction formula for
identifying X’ from A 5.

We will summarize the reconstruction formula of our method at the end of the last
section.

In the paper we only consider a single crack. Nevertheless, the same method works
without any change for multiple cracks. A similar problem is considered in [13] of
determination of crack embedded in an inhomogeneous isotropic conductive medium.
There are several difficulties in generalizing the approach to the case of anisotropic elastic
medium. The analysis of the blow-up behavior of the indicator function at the crack is
considerably more complicated. The indicator function, although is defined in terms of
boundary measurements, can be expressed as an integral which contains a special solution
for the cracked domain (see (3.10)). This special solution is cediéetted solutionThe
construction of the reflected solution and the analysis of the behavior of the indicator
function become extremely complicated in the case of an inhomogeneous anisotropic
medium. We construct the reflected solution by suitable change of local coordinates near
the crack, freezing the elastic coefficients, and the Fourier transform method which is based
on a factorization of the elasticity system (see Section 4). Then we analyze the behavior of
the indicator function by the Plancherel formula and the form of the reflected solution. In
Section 3 we outline the proof and the steps in the reconstruction method. In Section 4 we
give the details of the proofs.

In addition to the recent paper [13], there are several related results on crack
determination in different contexts. We mention Bryan and Vogelius [6], Kress [16], Ben
Abda et al. [1-3], Brihl et al. [5]. Ben Abda et al. assumed the non-vanishing of the stress
intensity factor for a surface breaking crack in a two-dimensional medium and the non-
vanishing of the displacement gap across a two-dimensional crack in a plane and used the
reciprocity gap principle to reconstruct the crack. Briihl et al. used Kirsch’s linear sampling
method (see [15]). Others’ results reduce the problems to some optimization problems and
use a Newton type algorithm to solve these.

2. The direct problem

In the following theorem we prove the well posedness for the Type 1 and Type 2 mixed
boundary value problem stated in the introduction including the £ase @.

Theorem 2.1.For any givenp € H Y2(X), f € HY%(I'p) andg € HY2(I'y), there
exists a unique solutiome H(£2 \ X) to

Lcu=0 inQ\Z,

oc(w)v=p onx,

u=f onlp, (2.1)
oc(u)v=g only.

Moreover it satisfies the estimate
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”u”Hl(_Q\Z) < C(”P”ﬁ—l/z(x) N ||f||ﬁl/2(rD) + ||g||ﬁfl/2(rN))v (2.2)

where, hereafter; denotes a general positive constant. In the case wligre= ¢, we
assume € H, /*(I') and takeu € HX(2 \ X).

Proof. The same theorem for the conductivity equation was proved in [13]. Here we
modify their arguments to handle the elasticity system. We first consider thd page/.

By virtue of the definitionHY/2(I'p), there exists an extensiohe HY/2(I") of f such
that || 1l a2y < I1f Il gv2( ) Letuo € H(82) be the solution to

Ecuo~= 0 ing,
up=f onrl,

then we can easily show thag satisfies:
luoll g1y < cll flrzery  and oc@olv|gvapy, < cllf gz

Now let x € C®(£2) satisfy suppyx) N X =@ andx = 1 nearI". Defineuy :=u — xuo.
We obtain from (2.1) that; solves:

Lcui=F inQ\f,

oc(up)v=p onx, (2.3)
u1=0 onlp,

oc(upn)v=h only,

where
F=-V-(Cuo® Vx)) — (CVug)Vx € HY(2\ £)* and
h=g— xoc(uo)v e H Y*(I'y).

Here the tensor product of two vectarsandb is defined aga ® b);; = a;b;. We now
formulate (2.3) in a variational form, namely, finding solving

f Ce(ug) -e(v)dx = — / F-vdx~|—fh-vds—fp-[v]ds (2.4)

o\x o\x Ty b
foranyv e V:={ve HY{(2\X): v=00nIp}. Notethalv] = y;vy — y_v_ € HY%(Z)

andyv € HY2(T' y). Also, we can see thatl "Y2(I'y) = HY2(T y)*. Therefore, to
prove (2.4) has a unique solution¥hwith the estimate:

lull gro\ sy < C(”F”Hl(g\z)* + ||h||ﬁl/2(rN) + ||P||frl/2(2))a (2.5)
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by the Lax—Milgram theorem, it suffices to establish the coercive estimate:

a(v,v) = f Ce(v) -e(v)dx >
o\F

clolig s YveV. (2.6)

It is obvious that (2.5) implies (2.2). In view of the strong convexity condition (1.2),
to prove (2.6), we only need to show that”i[l(g\x) anda(v) := [p 5 le(v)|?dx are
equivalent norms iV. It is easy to see that(v) = 0 if and only if v is an infinitesimal
rigid displacement, i.ey =0+ Wx. Sincev=00nIp,v=0in £ \ X. In other words,
a(-) defines a norm oW. To prove that| - ||2 anda(-) are equivalent, it is enough

HY(2\X)
to show:

a(v) > YveV (2.7)

CHUHEZ(_Q\E)

due to Korn’s inequality

2
/|g(v)| dx + f |v|2dX>C”U”ill(Q\2)‘
2\F 2\x

The estimate (2.7) can be proved by standard contradiction arguments as in [8, Theo-
rem 3.3]. So we omit the details here.

WhenIp =0, the existence and uniqueness of soluticio (2.1) can be shown using
a similar variational formulation. Note that in this case we teke H&(Q \X). O

3. Proof of Main Theorem

Here we will only prove the theorem for Type 2 problem. The same proof works for
Type 1 problem. As mentioned above, we will design our reconstruction formula based on
the probe method.

To begin, letr := {r(t) € 2: 0 <t < 1} be a non-selfintersecting continuous curve
joining r(0), r(1) € I with () € 2 for 0 < ¢ < 1. This curver is called a needle. Define:

T(r,X) ::Sup{t: O<t<1 r(s)¢ Xfor0O<s <t}.

Physically,T (r, ) can be interpreted as the first hitting time of the needle X. It is
clear that if7(r, ) = 1 then the needle does not touch the crack. For any given
needler, we would like to find a characterization ©fr, X). To do this, as indicated in the
introduction, we define the indicator functidiy, r) by:

I(t,r) = /leoo (gj. (Ax — Ap)g;), (3.1)
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where herd-, -) is the pairing betwee® ~Y/?(I'y) and HY/?(T ). The Neumann datg;
requires further explanations. Left v}’ e HY(2) (j € N) be defined as follows!’ is the
solution to

Lcv' =0 in $2,
vV=Ff onlp, (3.2)
oc(@)rv=0 onrly

and v}/ satisfy

ﬁcv}/ =0 in $2,
supf(v}) C I, (3.3)

v/ = G(-,r() (= o0)in Hi (2 \r),
wherely is a fixed open subset dfy and
ry = {r(s): O<s< t}.
Here the distributiorG (-, x0) in x0 € £ satisfies:
ECG(- , xo) + 8(x — xo)b =0

and

(G(-.x%) — E(-.x%)b) o, isboundedin'(s2), (3.4)
where 0+ b € C and the distributiorE (x, x%) in x0 € R” satisfies:

EC(XO)E(x, xo) + 8(x — xo) I, =0. (3.5

Note thatC(x%) is a homogeneous elastic tensor wittir) = C (x%) for all x € 22 and1,
the identity matrix. The existenaéj( is guaranteed by the Runge property with constraints

(Assumption 1.1). The proof for the existence®fx, x% can be found in [12]. To deal
with the inverse problem here, we will give an explicit constructiof afi the next section.
Now we define:

v;=v+ v;/ and g =ocv)viny.
To relate the indicator functioh(z, ) to T (r, X'), we define the quantity:

t(r,X) = Sup{0< t<1: sup |I(s,r)| < oo}

O<s<r

Our aim now is to show that

tir,X2)=T(r, X)) frnX#09, (3.6)



G. Nakamura et al. / J. Math. Pures Appl. 82 (2003) 1251-1276 1259

namely, the indicator functiofi(z, ) will become unbounded once the tip of the needle
touches the crack. Proving (3.6) requires some delicate analysis. It is the main technical
part of the proof.

First of all, we would like to rewrite the indicator functiai(z, r) which involves the
so-calledreflected solutiomlefined as follows. Let ; € H($2\ X) be the solution of

Lcuj=0 inR\ %,
oc(uj)v=0 onkx,
uj=f onlp,

oc(uj)v=g; only
andw; =u; —v; € HY(£2\ ¥); then we can show:

Lemma 3.1 (reflected solution)lf r, N X =@, thenw; — w’ in HY(£2 \ ) and
w' € HY(£2 \ X) satisfies

Lew' =0 in2\ %,
ocwv=—oc(v'+G(-.r(1))v onx, (3.7)
w' =0 on/rp,

oc(w)v=0 only.

Proof. In view of the definitions ob; andu ;, we obtain that

Lew; =0 inR\ X,

oc(wj)v=—oc(vj)v onx,

w;j=0 onlp, (3:8)
oc(w;)v=0 only.

Applying Theorem 2.1 to (3.8) yields:
lwj = wellgae\x) < efloc @) = vov] gz s = cloc (V] = v)vz-125) (39)

Now let D be a bounded domain witi* boundary suchthaf ¢ D ¢ D c £2\r,. We can
see that)}/ —v/ € HY(D) andﬁc(v}/ —v!)=0inD. So by the trace theorem (Lemma A.2
in Appendix A), we have that

”‘70 (U;'/ - v,’{/)vH H12(3) S CHU;‘/ — vy “ HY(D)"
Thus, this lemma is proved using (3.3) and (3.9
With the reflected solutiomw, we can give another form of the indicatbir, r).

Lemma 3.2.Assume; N ¥ = @. Then we have

I(t,r)= f oc(w’)-g(u7)dx+/foc(u7)vds. (3.10)
I'p

2\x
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Proof. Inview of Lemma 3.1 and the definition @fz, r), it suffices to show that
(gj. Az — Apgj)= f oc(wj) - e(wy) dx + / foc(wj)vds. (3.11)
o\x Ip

The derivation of (3.11) is based on Green’s formula (A.1) in Lemma A.3. By means of
(A.1) or usual Green’s formula, we have that

/ oc(vj)-S(W)dxzflﬁac(vj)vds=ffac(vj)vds—|—<gj,Aggj > (3.12)
2\ r Ip
Similarly, it follows from (A.1) that
/ ac(vj)~8(u_j)dx=/?ac(vj)vds+<gj,A2gj)—/u_jac(vj)vds, (3.13)
\XY I'p PN
where
/u_jac(vj)vds :=/y+(u_jac(vj)v)ds—/)/,(u_jac(vj)v)ds
pIS 2+ DI

= /(V+W[UC(U/')V] + [iujly—oc (vj)v)ds
)

= [imy-ocwvas.
b

Combining (3.12) and (3.13) yields:

(gj, (Ax — Ap)gj)= / ac(vj)-e(w—,-)dx+fu—jac(vj)vds. (3.14)
o2\X Xy

On the other hand, using Green’s formula (A.1) again, we can compute:

/ oc(v)) - o) de = / £(v)) - oc (i) dr

2\z \x
=/vjac(uﬁ)vds—l—/vjac(uTj)vds—/vjoc(uTj)vds
I'p I'y pIAE

= [ roc@pds - [wiy-ocqmyds
I'p X
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=/foc(u7)vds. (3.15)
I'p

Finally, in view of Green’s formula, we obtain that

/u_jac(vj)vds=—/uTjac(wj)vds= / oc(wj) - e(w;)dx. (3.16)

b b>i 2\F
Substituting (3.15) and (3.16) into (3.14) immediately yields (3.11).

By virtue of Lemma 3.2, we can show a distinct featurd 6f r) whenr N X £ @.
Theorem 3.1.If »(T'(r, X)) € X, then|I(¢,r)| > o0 ast — T (r, X).

By Theorem 3.1, we can prove (3.6) in the same way as [14]. The proof of Theorem 3.1
relies on the analysis of behavior of the reflected solutide= w’(x, r(r)). We will give
its proof in the next section. We end this section by giving the reconstruction algorithm of
our method.

Reconstruction Algorithm.
Stepl. Given a needle = {r(r): 0<r <1} and consider the domai@ \ r;.
Step2. Solve (3.2) forn’ and find a sequence of functiou(]é satisfying (3.3).

Step3. Computeg; = oc (v’ + v}/)l)h“N and evaluate the indicator function
I(t,r):= Ii;_n (gj. (Az — Apg;).

Step4. Increase and search for where|(r, )| becomes very large. Denote thipy
ty(r, 2).

Step5. Choose many needlesand repeat all previous steps. Draw some surfage
which is close enough to the pointgr, X) for theser. X, is gives an approximation
of X.

4. Blow-up behavior of the indicator function

This section is devoted to the proof of Theorem 3.1. The analysis here is different from
thatin [13]. There the authors worked in the space coordinates. Here we will use the inverse
Fourier transform which is more flexible and can be applied to several other equations.

The main step in proving Theorem 3.1 is to analyze the behavior of the reflected solu-
tion w’(x, r(¢)) nearr(¢) which is sufficiently close to the crack. It turns out the behavior
of |I(¢,r)| ast — T (r, X) is determined by the local property of (x, r(t)) nearr(t). To
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proceed the analysis, lef = (1) € 2 \ T anda = x(T(r, X)). Assume thax? is suffi-
ciently close taz, denoted by® ~ a. Lety = (y1, ..., yp) = (y1(x, x9), ..., v (x, x9) be
the boundary normal coordinates neasuch that

dy(x, x°
y(a) =0, M =1I,, and £2_={y1<0} neara.

ox r=x0

Let J (x) = 269 — (g, (x)) andx = x(y(x, x9)). Denote:

X
Corni= 1| " Cijuazay.  C=Cp fori<ijki<n,
and
u(y) = u(x (y, xo)), yO= y(xo, xo) with y(l) > 0.
Then we can see that

@iy C(y) e Clneary=0;

(i) 1717 Leu = Lz neary =0;
(i) viz=e1=(10,...,0) neary =0;
(V) 8(x(y,x) —x9 =580y —»9.

In view of this choice of the coordinatéss, . .., y,}, we have that

~

Ci]ki(yo) =Ci]ki(x0) and Ei]kf(y)zgkfi](y) Vi, j. kL. (4.1)

We now adopt a definition introduced in [13] to simplify some expressions in our
arguments below.

Definition 4.1. Let X be a function space defined in an open subs@&'ofnd{® (-, x%)},
{¥ (-, x9)} be family of distributions defined in this open set depending:®r- a. We
denote® (-, x%) ~ ¥ (-, x% in X if {&(-,x% — ¥ (-,x9: xO~ a4} is bounded inX.

We use this definition even for distributions defined in terms of the boundary normal
coordinates = y(x, x9). In this caser® ~ « changes ta° ~ 0.

Let V c R"” be a small open neighborhood ¢f= 0 with ¢! boundary. Define

Vi :=V NR]L. Assume thapt, Bo are open subsets of the boundary, of Vi such
that

dVe=PBrUPBo, PrNPo=0, B+ CRL, andfo C {y1=0}.
Now let E(y, y°) satisfy:

Le(0E (%) +8(y =) 1 =0.
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It turns out the distributiotE (y, y°) plays an important role in the analysis of the indicator
function! (¢, r). Here, we would like to construct a particul&ty, y°) which will meet our
needs. In what follows, to simply the notation, the homogeneous té?(s(?b is denoted
by C. Also, we denote’ = (y2, ..., y,) andy? (y2, e yn)

Lemma 4.1. Assume thay® € R” and E4(y, y°) € C¥({£(1 — y)) > 0}, D’ (R )
satisfy

L&E+=0 in £ (yl — y?) >0,

E+| - E*'ylzy:?—o =0, (42)

og(Ep)erl, 0,0 —0g(E-)erly, 0 o= —8(y' = y%) ..

y1=y{+0

Let E be defined hy

then
LEE+8(y— yO)In =0 IinR".

Proof. Without loss of generality, we take’ = 0. For allp € ©D(R"), we have:

(E,ﬁg(p)=/E+£5g0dy+/E_£5(pdxy.
R” R"
For further computations, we introduce some notations:

1,..., )
Q(é)-(Zc,,klssz, T ”n> = (.. En),

= 1,...

o~ 2 , , ,
R(s’)=(§ Gty | "n) AE) = RE)+'RE),
2

o llkl’k—>1,...,n )
Then we can see that

L&=T +A@®)01+ Q1)

which immediately gives:
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<E,£5s0>=/E(T812+A81)¢dy+/Edey
Rll

Rn
=— / TE+31(pdy/|y1:+0—|— / TE_81<pdy’|y1:_0—/T31E31<pdy
Rn—-1

Rn—-1 R"Jr
_/T81E81(pdy— / ELApdy'|y—y0 + / E_A@dy'|,,——0
R™ RrRn—1 Rr—1
—/alEA(pdy—/alEAgody—i—/EQ(pdy—i-/EQ(pdy
R" R" R" R"
= [ ToaEed o~ [ THEGAY 0+ [ ToREGG
Rr—1 Rr-1 ]R’i
+/T812E(pdy+/A81Ecpdy+/A81E<pdy+/QE(pdy
R" R R" R"
+ / QEgdy
R™

= | (T01E|y,=+0— T E|y,=—0)9(0,y)dy + /(£5E+)</> dy
Ri-1 R

+ / (LEE )pdy
R"

(THEly,=+0— T01E|y,=—0)9(0, y) dy’
Rr—1

=—¢(0),

where the last equality follows from the facts that

o (Ex) = (To1+"R(")Ex,
"R(D)E4|yy=—+0="R()VE_|y,——o0,

and

0
oz(Evenly 010 = oG (E-)etl, 0 o=—8(y' = ") -
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Therefore, we obtain that
LEE+8(y—y%)1,=0. O

Now let M (&) := Télz + A&+ 0(&), i.e., the symbol oLz, thenM admits the
factorization:

M (&) = (61— B+(8)")T (51— B+(§)),

-1
Bi(E) = ( f Mg, s’)‘ld;)( f M, é’)_ld;“)
{4 s

andf, c Cy (or¢_ c C_)is aC' Jordan closed curves enclosing all roots ofdet 0
in & with positive (or negative) imaginary parts (see [10]). As defined in [4],

where

Z4(E) :=Fi(TBL(E) +'R(ED)

is called the surface impedance tensor for the half s@gceAlso, it is known thatZ .. (¢")
are positive Hermitian matrices. It is not difficult to show that

Lemma 4.2.() B, (§") = B_(§');
(i) Z4 (&) =2Z_(&).

Taking advantage of the surface impedance tensor, we can give an explicit representa-
tion of E in terms of the oscillatory integral.

Lemma 4.3.Let EL(y, y°) satisfy(4.2), thenE(y, y°) can be written as

Ei(y.y°) = Os / ei(y/yo/)‘s/ei(yl,Vg)Bi(S/)( %)(Re@)l de’
(£(1—»9) >0), (4.3)
whereds’ = (27)~ "D dg’.
We use the notation Os—to refer to an oscillatory integral.
Remark. Note that R& . is invertible sinceZ, is positive Hermitian.

Proof. For simplicity, we lety®” = 0. In view of the factorization oM, it is clear thate .
defined in (4.3) satisfy:

LEE+=0 in+ (yl—y(l)) > 0.
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So we only need to check jump conditions. We first note that

E4l E_|

y1=y3+0 = F=ly=y0 -0

Next we observe that
oz (Ex)etl, 0 0= Os- / & Fi(TBLE) +'RE) (%) (Rez;(¢)) e’
=Os- f & (—21)) (%) (Rez(¢)) *de’
and
oz (E-)eil,,_,0_o=Os- / ¥ N(TB_(E) +'RE)) (%) (ReZ..(¢)) " de’
- 03-/ eiy"s’(z(g’))(%)(ReA(g’))1dg’.
Thus, from (ii) of Lemma 4.2 we have that
og(E)erly, 0,0 —0F(E-)ealy, 0 o
= Os- / & (D (Z+ )+ Z-©)) (%) (Rez (¢)) *de’
= Os- / &€ (~1)(2ReZ4 (&) (%) (ReZ, (£)) " de’
=-8(y). O
For a constant vectdre R" \ {0}, we definewi satisfying:

L&) =0 inRY,
oz (09)er=—oz(E_(y,y%)b)ex on{y1=0}.

Then we can show the:

Lemma 4.4.9 can be given by
59(y.y°) = £0s / O YO dy1Be(n) g-iyYB-(n)

1 _
X (§>Zi(n’)1Z—(n’)(ReZ+(n’)) Yban'.
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Proof. It suffices to verify the boundary condition. Note that

~ H 7/_ /. ! _'7 ! 1 ’ I\ —
oz (W2)e1]y,—0 = Os- f g0’ 'e '>?B<">(i)<§)<¢>zi(n)zi(n> 1
x Z(n)(ReZ (1)) b dy

H ! ’ ! H ! 1 —
_ Os_f g0/ =)0 o=1yPB- (1) <—§>Z_ ) (ReZ (1)) 1 dn.

On the other hand, we have:

oz (E—(y, yo)b)61|y1=0 = Os-/ g0/ giviB-(n) <%)Z(n/)(ReZ+(n/))lb dn’.

So this lemmais proved.O

To avoid confusion, we would like to point out thAt. is defined fort-(y; — y?) >0
while w7 is defined forty; > 0. Let VT/i solve:

Ly We = =Ly -g (@ + E(v,Y0)b)  in Ve,
0%y Wader = —og, (B2 + E(y, y%)b)er  on fo, (4.4)
Wy =0 onpB4.

We would like to show thatV.. ~ 0 in H1(V4). To verify this, it is enough to prove:
01—y (B2 + E(y.y°)b) ~0 in LA(Vy)

and
ag(y)(wg + E(y,y%)b)er~0 in H-Y2(o).

We first observe that

T2 (y,y°) + E(y, y°)b = 0° (v, y°) + E_(y,y°)b ~0 in HY(V),

which impliesﬁ/_ ~0in H(V_). So we only need to check that
o (@S + E(y.y°)b) ~ 0 in L(Vy)

and

05 (B +E(y.y%)b)er~0  in L2(Bo).
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Lemma 4.5.(i) oz (,)_& (@) ~ 0in LA(V,);
(i) (- (E (. y9b) ~ 0in LA(V,);
(ii)) oG, (@ + E(y, yO)b)er ~ 0in H=2(Bo).

Proof. (i) It suffices to prove thagy; — y;?)g(wg) ~0in L2(V,) for 1< j < n. Without
loss of generality, we choosé” = 0. Note thatB. (') and Z (') are homogeneous of
degree onein’. We will estimates () by the Plancherel formula and the way to estimate
them is essentially the same as estimating

A(3.59) = Os- [ & e eling by ay (4.5)

wherea(n’) e C*®(R"~1\ {0}) is homogeneous of degree zerojnande is a positive
constant. Notice that is related to inflm¢: ¢ € SpedB.()|n'| ™D} (= —sugime¢:
¢ € Spe€B_(n)|n'|™H)}). Let s > 0 such that O< y; < 8 for all y = (y1,...,y,) € Vy
ande (') € C*°(R"1) so that 0< ¢ () < 1 with

noJ1 i<

Let A(y, y°) be decomposed intd = A1 + A, with

A1(y. y°) :=Os- / & el gl )a ') dyf
(4.6)
:/eiy/"l/e*am/\,\’le*a\U’\ygqs(n/)a(n/) dn’

and
Aa(y, yo) = OS-/ v’ gl lyrgaln'ly] (1—o®"))a(n’dn'. 4.7)

Itis clear that

)
/I — ) Ax(y. )P dy < cf / e 20 g 211242 (') | a ()| >’ dys
0

Rr—1

<oo (uniformlyin y?~0), (4.8)

forl<j<n.
Next we observe that

((yl —? ) —a|n'lyrg—aln’ \yl) < 2(yf+ (y(l))z)e_zal”,')’le_za""\yi’
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and
o
/Yfefz‘x'”/‘”dm:2(20lln’l)73~
0

Thus, we can find that

fl(yl—y?)AZ(yayo)fdy
Vi

o0

< / /(yl_ y](-))zefzam/lylefzaln/‘y]?(1_(p(n/))2|a(n/)|2dyldn/

RrRr-1 0

<ec / (ln/|—3+(yi))zm/l—l)e—Zozln'l)’gdn’.
121

We now check the right-hand side of (4.9) term by term. It is obvious that

o
/14,0
/ In'|~3e~ 2" hidy’ < C/ 535" 2 ds < o0,
1

=1
sincen = 2, 3. Furthermore, we note that
()* / | te 2 bl dy 0 asy? 0.
121
Combining (4.9), (4.10) and (4.11) yields:
/ |(y1 — y?)Az(y, y0)|2dy < oo uniformlyin y? ~0.
Vi

Finally, for j # 1 we have:

yjA2(y, y°) = Os- / yj& M ealnlvig=elnh? (1 g (y'))a(y') dn’

— Os-i / &5, [e e (1 g ())a()) d'

Itis readily seen that

1269

(4.9)

(4.10)

(4.11)

(4.12)
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|y, {1 e bR (1 — p())ar) ]
< C(yl + y? + |n/|fl)efa\n’lylefaln/\yg(1 _ ¢(77/)) + Ce*aln’\yle*aln’lyﬂanj (1- ¢)|,

Therefore, carrying out the same arguments as above, we can show that

/ |y Aa(y, y%)[>dy < 0o uniformly in y9 ~ 0. (4.13)
Vi

The estimates (4.8), (4.12) and (4.13) immediately lead to the result (i).
(i) Using the same idea, we can see that the way to estiatatey, y0)b) is essentially
the same as estimating

Bl(y, yo) = OS-/ eiy/'”/e_“(yl_yg)‘”/la(n’) dn’ for (yl — y(l)) >0

and
Ba(y, y0) :=Os- | &g 0l ydy  f —y9) <0
y.y) = a(nydn' for (y1— y7) <O,

wherea anda(n’) are defined as in (4.5). Now it is easy to compute

o o
/(yl _ yg)zefZa(yry?)ln’\ dy; = / yfefZah\n’\ dyy = 2(201|77/|)73 (4.14)
0
Y1

and
y? y? 00
2 _ 0_ / I N, T ’ - I Y / -
/(yg)_yl) e 2a0] yl)mldylzfyfe 2ay1|n|dy1< /yfe Zozyllnldy1 4.15)
0 0 0 '
=3
= 2(2a|n |) .

By virtue of (4.14) and (4.15) and using the same arguments in (i), we can prove that
(v1 — yDe(E(y, y%)b) belongs toL?(Vy) uniformly in y? ~ 0. Additionally, the same
estimates can be obtained fofe (E (y, yO)b) (j # 1) by the similar derivations.

_ (iii) Observe thabg (@9 + E(y. yO)b)er = 015, ¢ (@2 + E(y. y©)b)ez on{y1 = 0}
since

oz (@2 + E(y, y°)b)er = 0z (02 + E_(y, y%)b)er=0 on{y1=0}.

Argued as above, to derive the estimate, it suffices to estimate:

viA(Y. ) = OS'/ v €Y e Gy dy for j=2,3,
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where a(y’) and « are defined similarly. Here we also sef’ = 0. Decompose
y]A y]Al + y]Az as in (4.6) and (4.7). They]Al clearly satisfies the estimate, i.e.,
yjA1~0in H-Y2(fo). Fory; A, we observe that

yjAa(y,y%) = Os- f v @ e DY (1 g ))a) dyf
- Os-i/ &7, {e 2 (1= ¢ (n))a(n)} dn’
and
|6, (&2 (L— )}
<+ I ™)e T (1— g (r)) + ce P23, (1 ¢)].

Obviously, we have that‘é””"y?w,]j (1— )| € L2R""Y) uniformly in y9 ~ 0. By virtue
of the inequality

_1\2 2 _
G2+ 1171 <209) + 219172
and the estimate

(¥9)? / e 2bY dy’ < 0o uniformly in y? ~ 0,

In'I=1

to get the estimate (iii), it remains to compute:

-1/2 _2 _ )
/(1+|n’|2) 12, |22 158 gy

n'[>21
o
< / (1+ In/lz)_l/zln/l_zdn’ < c/s_ss”_2 ds < oo uniformly in y9 ~ 0. ]
7121 1

The results in Lemma 4.5 justify the estima¥e ~ 0in HY(Vy), whereW,. are defined
in (4.4). Now we set:

Wy = (W + Ws) — (Eb — Eb). (4.16)
By a straightforward computation, we can easily find that

Ly, Br=0 in Vi,

0F () (W)er = =05y, (E(y, yO)b)er on fo.
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Now let 0< x e C3°(£2) satisfy x =1 in a sufficiently small neighborhood afand be
supported near such that supfy) NS c X. Recall thatS is the closed hypersurface where
the crack lies. We then definee H(2 \ X) by:

'l’EJr(y(X,XO), yO) in QJrﬂsung)v

/ H /
w=xwy Withwyg=1{ _ ) (4.17)
w_(y(x,xo),yo) in £2_ Nsuppx).
It follows from (3.7) thatw := w’ — w satisfies:
Lew=—-V-(C(wy® Vyx)) — (CVwy)Vx in2\ X,
oc(W)v =—oc(v'+ G — Eb)v — B(x, Vy,v)w
+ (x — Doc(Eb)v onx, (4.18)

=0 onlp,
oc(w)v=0 only,

where B(x, Vy,v) = (Z./J Cijkid;xv;). Note thatVy and B(x, Vy,v) are supported
away froma. Therefore, by taking into account of (3.4), we obtain that~ O in
HY(£2\ X). In other words, the behavior of the reflected solutignas xo approaching
to a is determined by that ab.

Now we are ready to prove Theorem 3.1. To begin, we note that the second term
frD foc(w')vds stays bounded as— T (r, X). Thus, we only need to deal with the first
term of I (z, r). By the strong convexity condition (1.2), we know that the “inversetof
exists, which is called the compliance tensor, satisfies the same condition. Therefore, to get
the blow-up behavior of (r, t), it suffices to consider the integral

f |ac(w’)|2dx. (4.19)
2\z

Based on the previous analysis, we can replace the reflected sahition(4.19) by the
localized functionw defined in (4.17) near = T (r, X'). Working in the local coordinates
y=(y1,...,yn) Neara as described before, we aim to show that

/Q|Gg(ﬁi)|2dy — 00 aSyi) — 0, (4.20)

R

whereo(y) = x (x(v, x9) which is supported near= 0. In view of the definition oy
(see (4.16)), proving (4.20) is equivalent to showing that

/Q|05(ﬁi)|2dy — 00 aSyg — 0. (4.21)

n
R:t

To this end, we first prove the following estimate:
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Lemma 4.6.

/ |05(ﬁ0i)|2dy — 00 aSy(l) — 0,

RNV
whereVs :={y € R": |y1] < §} such thatsupge) N Vs g suppo).
Proof. Clearly,
~0\ (2 ~0 2
loz(@)|"dy = [ |oz(@5)ea| "dy.
RNV RENVs

In the proof of Lemma 4.4, we note that

oz (i3 )er = Os- / s <'”(i)< )(:F)zim)zi(n) !

x Z_(n)(ReZ+(n)) ‘bay

— Os-/ Oy dy1B () g=iy)B-(n) (_ 1

§>Z(n’)(ReZ+(n’))_lb dn’.

SinceZ_(n") and ReZ (') are homogeneous of degree oneg'irand nonsingular for all
n' # 0, we can deduce that

1Z_ () (ReZy (")) *b| = clb| with ¢ >0, Vo' #0.
On the other hand, let
B :=sup{Im¢: ¢ € Spe¢BL(n)ln'| )}

(= —inf{lm¢: ¢ € Spe¢B_(1)|n'|~H}) then we can get that

+6
~ N 0y,,/
/ o (02 ) ea]* dy > ¢ / /eﬁﬁyl‘”‘e 203311 dlyy dly'
R'iﬂvls RrR2-1 0

Itis enough compute:

//—Zﬂy1|n|e—2ﬂ)1|n\dyld,7_/(1_e—Zﬂé\rﬂ)(25|n/|)—1e—2ﬂyi’m’|dn/

Re-1 0 Rn—1

o
> / (1— e 280)e 2Pl =3,
0
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Thus, whem = 3, we have:

1 1
0 0
2By 2B(y1{ +9)

(e.¢]
/(1 — e‘zﬁap)e_zﬁyg" do = — 00 aSyi) — 0.
0

On the other hand, for = 2, we see that

o0
/ p (1 e 2)e 280 gy
0

¢ (e.¢]
/p—l(l_ e—Zﬁap)e—Zﬁy?ﬂ dp +/p—1(1_ e—Zﬂﬁp)e—Zﬂy:?p d,O

&

o0
c + / ,0_1(1 - e—2ﬂ5p)e—2ﬂyfp dp

&

o0
=c + / pfl(l—ef(a/y?)p)efpdp%oo a5y8—>0.

28 y:?a

Consequently, we conclude that

$
/ /e—zlsylm’\e—z/syi’wdyldn/_) 00 asy?— 0
R2-1 0

and the proof of the lemma is completet

By virtue of Lemma 4.6, we can arrive at the conclusion (4.21) if we can show that the

integralfRiw‘s (1 - 0)loz(@2)|2dy stays bounded as) — 0.

Lemma4.7.

/ (1—0)|oz(#3)|*dy < o uniformly iny? ~ 0.
RENVs

Proof. Notice that

| a-olc@Per< [ lee@)Pe
RLNVs {ly|>&, £y1>0}NV;
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for some small positive numbérLet D4 o, ..., D+ , be open domains iR"” defined by:
Dy ; ={ye]R": +y1>0, |y >§/2}, j=2,...,n.
Itis clear that{|y| > &, +y1>0}NVs CU,;_p  ,(D+,j N Vs). Now we observe that
~0 2 ~ ~0 2
[ lee@Par<@e [ |oe@)d.
Di.jﬂV(s ]R”imvg

Repeating the arguments in the proof of Lemma 4.4 (see the part (i)), we can derive that
for2<j<n

~01|2
[ Iyjoe@)fdy <o
RENVs

uniformly in y? ~ 0. So the lemma is proved and the proof of Theorem 3.1 is now
complete. O
Appendix A

In this appendix, we state a trace theorem and Green’s formula in an elastic medium
with a crack. These results can be proved along the same lines of Eller’s paper [9] where
he consider the Laplace equation. Let us define:

C®(2) = {u: uy € C¥(R24), u— € C®(2-), y43°u=y-3"uons\ X Yo}

and
EL,2\X)= {u IS Hl(Q \X): dhe LZ(Q) such that

/ac(u)-s(go)dxz—fh-(pdx, V(pe@([)\f)}.

Q 2
Lemma A.1[9, Lemma 2.8]The spac& ™ (£2) is dense inE (L, 2 \ X).
Lemma A.2[9, Lemma 2.9]The mapping

u— {yoc@)v, [oc@)v], y—oc@)v}

which is defined o€ (£2) hqs a unigue extension to an operator fr&c, 2 \ X) into
HY2302) x HY2(x) x (HY2(Z))*.
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_ Note that Eller used the notatiqﬁl/zLE) in his paper [9], which is nothing but
HY2(X). Also, it is easily seen thatd /2(X))* = H~1/2(x).

Lemma A.3[9, Lemma 2.10]Letu € E(£, 2\ ) andv e H1(22\ X), then

/vﬁcudx~|— / oc(u)-e(v)dx

o\x o\x
= <VGC (I/l)]), VU>H—1/2(8_(2)’H1/2(39) - ([GC (I/l)])], y"rv)Hfl/Z(E)’Hl/Z(E) (Al)

- <V—GC (v, [U]>y71/2(2)’[_'11/2(§)-
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