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Abstract

In this paper we give a reconstruction procedure for the Taylor series of a Riemannian metric on
the boundary in boundary normal coordinates from the localized boundary distance function.
0 2003 Elsevier Inc. All rights reserved.

1. Introduction

Let (M, g) be a Riemannian manifold with smooth bounddry= 0 M. Define the
boundary distance function

de(x,y)=dist(x,y) forx,yel’

which is the geodesic distance between boundary points. An interesting inverse problem is
whether one can determigdrom its associated boundary distance functigritis easy to

see that uniqueness is not possible. Indeed; lef — M be a diffeomorphism that leaves

I’ invariant, i.e.,|r =1d, thendy+, = d,. Therefore, the inverse problem one would

like to address is whether this is the only obstruction to uniqueness. This problem arose
in geophysics in attempting to determine the inner structure of the Earth. The boundary
distance function measures the travel times of seismic waves going through the Earth
and the metric is the index of refraction [1,5]. This problem is also called the boundary
rigidity problem in Riemannian geometry [2,3,9]. The boundary rigidity problem has been
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extensively studied in the last three decades. The reader is referred to the article [12] for a
recent survey.

In this paper we would like to look at this rigidity problem from the boundary
perspective. That is, we want to investigate what informatiopiof I" can be determined
from d,. As indicated above, unique determinationgof is not possible. Nevertheless,
in this article we are able to show that one can reconstruct the Taylor series of the metric
g on I' in suitable coordinates from tHecalizedboundary distance function. Precisely,
we prove that for any € I all derivatives ofg atx in boundary normal coordinates can
be determined from the knowledge&f(x, y) for all y € I" sufficiently close tox. More
importantly, we will give explicit formulas for all the normal derivatives. To state the Main
Theorem, we first introduce the notion of convexity. We say that the bourdd&yocally
convex atp € I if there exists an open neighborho®dof p such that for any two points
x,ye ONT,x #y,thereis a unique geodesic joinirgandy and all inner points of this
geodesic lie entirely ir0. Also, M is said to be extendible nearif we can extendV to
another smooth manifoltf > M acrossO N I".

Main Theorem. Let (M, g) be a Riemannian manifold of dimensianwith smooth
boundaryr". Let p € I' and I be locally convex there. Assume thats smooth up to
I" near p and alsoM is extendible neap. Let {x1,..., x"} be the boundary normal
coordinates neap. Then we can reconstruéf g(p) for all |y| > 0 from the knowledge
ofdg(q,r) for all ¢, r € I' sufficiently neamp.

Previous results on the boundary determination of the Taylor seriggrom d, have
been given in [9] (up to order 2), [10] (infinite order but= 2) and recently in [7] (general
case). But, none of these papers gave reconstruction formulas. The main tool of this
paper is an identity which relates the metgi¢o the lengths of geodesics. This identity
is similar to the one derived by Stefanov and Uhlmann in [11]. It should be noted that
the identity derived in [11] relies on the hypotheses that two unknown metrics coincide
with the Euclidean one up to certain order near the boundary and have the same boundary
distance function. Since we are dealing with the reconstruction problem here, we have
only one unknown metric with no boundary information available. To utilize Stefanov and
Uhlmann’s arguments, we therefore need to choose an appropriate reference metric to go
with the unknown metric (see Section 2). With the key identity at hand, we are able to
get the boundary information of the metric by differentiating the identity and letting the
boundary distance go to zero (see Section 3).

For the readers’ convenience, we now outline the reconstruction procedure. It should be
noted that we are working in boundary normal coordinates near any boundary point, say
p (e I'), throughout the whole reconstruction.

Step 1. Using Michel’'s arguments [9], we can determigig) in the tangential directions.

Step 2. Differentiating the key identity (2.5), where the reference megtids given in
(3.5), leads to a new formula whose one side is solely determined.tb/e construct the
first normal derivativeg—?* at p by takingd, — 0 in the new formula. Therefore, we can
recover the first normal derivative gfat p.
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Step 3. Inductively, by further differentiating the identity (2.5) and repeating the arguments
in Step 2, we can determine all normal derivativeg @t p.

We remark that the result here is the pointwise boundary reconstruction of the metric
by the knowledge of the boundary distance function. This problem is somehow related
to the inverse problem of determining the metric by boundary measurements from the
Dirichlet-to-Neumann map associated with the Laplace—Beltrami opefatolt is well
known that the Dirichlet-to-Neumann map is a pseudo-differential operator of order one.
By computing its full symbol (and this requires knowledge only of the local Dirichlet-to-
Neumann map), one can determine the boundary value of the metric up to any order in
boundary normal coordinates [8]. For another approach see [6].

2. Key identity

In this section we will derive an identity which plays a key role in the proof of the Main
Theorem. LetH, denote a Hamiltonian related goand Hy (x, &) = %(er'l,jzl giEE; — 1)
in local coordinates, wherg'/) = (g,'.,')_l. Here we are interested in the integral curves
associated with the Hamiltonian vector field induced By. The projection of these
integral curves are geodesics. Lé? e I" and{0O, x} be a local chart near®. Assume
that I" is locally convex atx® and the Riemannian manifoldM, g) satisfies the
assumptions near® as in the Main Theorem. L&t? € 7%, M satisfy

v(x(o)) ~g_1(x(0))§(0) <0 (2.1)
and
S(O) . g_l(x(o))é(o) =1, (2.2)

wherev(x(©@) is the unit outer normal (co)vector (relativego?) to I" atx?. Considered
in this local coordinategx!, ..., x"} nearx©, let x,(s, x©,&©@) and &, (s, x©@, @)
solve the Hamiltonian system

dxm n ) 0
KZngjfj, xls:0=x( ),
j=1
o, L agij i m=1,...,n. (2.3)
E:_E 8x—’"§i§j’ "§|s=0=§(),
i,j=1

Note thatx,(s) is the geodesic with initial conditiotx @, g=1(x(@)£©) ands in (2.3)
is the arc length parameter. Dendté® = (x©, £©@) andr := (X @) the length of the
geodesic issued fro¥ @ with endpoint on® N I". Here we choosé© appropriately

such that all inner points of, (s) lie entirely in 0. This requirement is obviously true if
£ is taken so that is sufficiently small.
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Now let us fix anX©@ satisfying (2.1) and (2.2). Assume thgg is a Riemannian
metric in M such that (2.1) holds ax @ with g being replaced byg. Notice that we
do not require tha (@ satisfies (2.2) with respect . In the coordinate chaf®, x},
we let (xgo(s, x@, 6Oy £, (s, x©, £©)) be the solution to the Hamiltonian system (2.3)
with respect tago having initial dataX©. It is readily seen that (s, x@, £©) c O for
0 < s <t provided that is small. Denot&X = (x, ). The solutions to (2.3) related ¢oand
g0 can be written aX (s, X©) = X, (s, x@, £0) and X, (x, X©) = X4, (5, x@, £O),
respectively. LeF (s) = X, (1 — 5, X, (s, X@)), then

t
/ F'(s)ds = F(t) — F(0) = X (0, Xgo(t, X@)) — X¢ (1, X0(0, X))
0
= Xgo(t, X©) — X, (1, X?). (2.4)

It should be noted that component o may not be inD. In order to make sense &f, we

can extend; smoothly toM. Thus,M becomes a Riemannian manifold carrying a metric
which is a smooth extension gf Nevertheless, the integral in (2.4) is independent of the
extension ofg. It is shown in [11] that

X
F'(s)= W(go)(t =S, Xgo(sﬂ X(O)))(Vgo - Vg)(Xgo(S’ X(O)))’

whereVy, = (0 Hg, /05, —0 Hyy/dx) andV, is defined similarly. In conclusion, we obtain
that

t
X

/ 3X(g) (f =5 Xgo s, X(O)))(Vgo — Vo) (Xgos, X(O))) ds

0

= Xgo (1, X9) = Xg (1, X9). (2.5)

Before leaving this section, we want to remark that the right-hand side of (2.5) is solely
determined by/, nearx©. This property will be verified in the following section.

3. Proof of Main Theorem

Assume thatM, g) satisfies the assumptlons of Main Theorem né&=0¢ I'. Let
4] be an open neighborhood of 0 M and the metricg has been extended smoothly
in O, still denoted byg. We now introduce the boundary exponential map,expp) =
exp,(sp(p)) near 0, wherep € ONTr and w(p)eT, M is the unit inner normal ta”
with respect tag. It is clear that exp is a d|ffeomorph|sm i is small. By virtue of this
map, we can introduce coordinates, still denotedby ..., x"~1, x"}, in O such that®
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is mapped onto an open neighborhdoof 0 and the boundary is determined by =0
andx" > 0 in O N M. Moreover, in this coordinate system, the mepris given by

0 0

: 8 :

= 8ap ‘| and g7l= 8 :
§ 0 § 0
0 .- 0 1 0 .- 01

Hereafter the indices andg run from 1 ton — 1.

First, we want to determing(0). Clearly, in boundary normal coordinates, it is enough
to determineg (v, v)|x—o for any tangent vector. We use here the following argument of
Michel’s paper [9]. Denote,, theath standard basis d&”. Let us define a set of vectors
V = {vag, @ < B}, Wherevy, = e, andvgg = ey +eg fora < . Letc:[0,e) — U be
a curve on{x" = 0} with ¢(0) = 0 andc’(0) = v, wherev is an element of/. Here we
chooses small enough so that all geodesics joining 0 atd for 0 < t < ¢ lie entirely in
Ut ={xeU: x, > 0} except for the two endpoints. It is easy to see that

jim 22Dy = g, 02,
—0 T

Now by repeating the arguments for alle V, we can determing,g(0) for all o, 8

and hencez(0). Clearly, using the same method, we can fgid’, 0) for |x'| < § with

8 sufficiently small, where’ = (x1, ..., x"1).

Having foundg on s := {(x’, 0): |x’| < 8} for smalls, we can determine the right-hand
side of (2.5) by knowingl,(p, g) for all p, g € I';. This can be seen, using the notation
of the previous section, by observing thatis the generating function of the canonical
relation obtained by projecting the g @, X, (r, X@)} onto T*I" x T*I". This set is
called the scattering relation in [4]. A more differential geometric way to see this is via the
formula derived in [9]

o @), (3.1)

V' (t(p. @) =ix(Vit(p. @) — \/1— Ivit(p.q)

wherey is the geodesic issued fromand parametrized by the arc length/s — U is the
inclusion map and’’ is the gradient operator on the boundafy= 0. Let& @ (p, ¢) and

& (t(p,q), O, q)) =: &, (p, ) be the initial and final covectors related to the geodesic
connectingp, ¢ € I's. Reinterpreting (3.1) in the covector setting, we can see that for the
geodesic joining andgq, p # q, £ (p, ¢) and&,(p, q) satisfy

£9(p.q) =g(P)ix(V)t (p.q)) — \/ 1— | Ve(p. @) |7 2(PI(P) (3.2)

and

(P, @) =8@ix(Vyt(p, @) — \/1 — | Vit(p. @) ,-z*g g@)n(q). (3.3)
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Next we would like to determine all derivatives gfat 0. Sinceg—1g = I, it suffices to
determine all derivatives of 1 at 0. Letv € V and defing(r), 0< v < &, be a curve on
{x" = 0} with ¢(0) = 0 andé’(0) = g~ 1(0)n, wheren = v(v - g~ 1(0)v) /2. As before, we
choose sufficiently small so that all geodesics joining 0 aftd) for 0 < t < ¢ lie entirely
in U™ except for the two endpoints. Now we are at the position to choose our reference
Riemannian metrigp in M. The goal here is to choosega such that (0) - gal(O)n <0,
ie.,

> g/ Ov; >0 (3.4)
j=1

forall v=(v1,...,v,) € V. One possible choice is thggl is of the form

Al

el ok (35)
An—1

M o Apa 1

wherel, 1 is the identity matrix of siza — 1 andx,, > 0. Since de(‘ggal) =1- Zg;i Ag,

we can choosg,, sufficiently small for allx to guarantee the positive—definitenesg@f.

Here we want to point out thatdoes not satisfy the incoming direction (2.1) with respect
to g, but it satisfies (2.1) in terms @p. In fact, we can see tha{0) - g~1(0)y = 0. With

this choice ofgg, we obtain that the solution to the Hamiltonian system (2.3) with respect

to go can be written explicitly as
(50(5:0.60). 5.0, 69)) = (5856, £@),

where the initial(0, £ @) satisfies (2.1) in terms afo. Note that the curve,,(s, 0,©)
lies entirely inU ™ for all smalls.

Now consider the geodesic (relative 0 connecting 0 and(z) for 0 < 7 < &. In
view of the formulas (3.2) and (3.3), it is readily seen that giwér) we can determine
£O =£O(r) and X,(t(r), X©(r)) = X,(r) from the boundary distance function
dq(0, &(1)) =t (7). Notice that ift (r) is sufficiently small (i.e.z is small), thers © () is
close ton and(0, £ @ (1)) satisfies the incoming condition (2.1) relate¢;go Furthermore,
we can see that@(r) — n ast — 0. Expressing every variable in the identity (2.5) in
terms oft, we have that

t(t)
0X
/ 210 (1) = 5. Xy (5. X)) (Ve = Vi) (Xgo (5. X O (1)) s

9x©
0

= Xgo(1) — Xo (1) = (t(1) g5 6 Q1) — x4(1), £ Q1) — £, (1)). (3.6)

Differentiating both sides of (3.6) in yields
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X,

) (0, X (£ (1), XO(1))) (Vgo — Vi) (X go (1 (1), X (1))t (1)

t(t)
d|[adX
v a{ax—fé»(rm =5 Xiols: X)) (Vo = Vi) (X X“”(r)))} ds
0

= (1'(0)gy &P (1) +1(1)gg @ (r) — xy (1), £V (r) — £}(D)). (3.7)

Takingt — 01in (3.7), we obtain that

X,
X0
= Ionx2n - (Vg — Vo) (0.1 (0) = (' (00 gy ™0 — x,(0). £ 9"(0) — £;(0)).  (3.8)

(0. X5(0. X©(0))) (Vo — Vi) (X40(0. X©(0)))' (0)

wherelz,«2, is the identity matrix of size2 It has been shown previously thaf0) =
¢’ (0)|l, = 1. Writing out the formula (3.8), we conclude that

g O =gy (O —1'(0)gg ' — x;,(0) (3.9)
and
1
51 0xg~ O =£©"(0) — £,(0). (3.10)

It should be noted that we do not use (3.9) as the reconstruction formwéXosince we
need to choose the curédefore proceedings with the arguments. The cdrlias already
used the informatiog(0). It follows from (3.10) that

v-d:g MO =2(v- g HOw)(£7(0) — £,(0)). (3.12)

By repeating the above arguments for each one element afe can derive (3.11) for
all ve V. In turn we are able to determirig g~1(0). Using the same method, we can
find 8,g~1(x’, 0) for (x’, 0) near 0. ThusjX. . g~1(0) is also determined for all positive
integerk.

To continue the proof, we differentiate (3.7)drand setr = 0. To end, we get that

Tonxan 8 (Veo — Vi) (g51); (£/(0))?
j=1

= (I"(0)gp 1 + 2 (0045 159" (0) = x} (0. 60" (0) — £, (0) + ¥, (3.12)
Where(ggln)j is the jth component oggln andv is a Zu vector which consists of terms

containing onlyg—1(0) andd,g~1(0). Therefore¥ is a known vector-valued function. It
is easily observed that only the lastomponents 0p >}_; 9, (Vo — Vg)(ggln)j contain
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the second derivatives gf-* at 0. Moreover, since we have fouigkd,»g~1(0), the only
term yet to be determined &, g~1(0). Singling out the last component of (3.12), we have

1 n
SN [Z 8,081 (0) (897 M) ,}n = (£97(0) - £/(0), + )2

j=1

from which we get that

{v . 83,1g_1(0)v} (galv)n

n—1
=2(v- g_l(O)v)3/2{n : [Z Dy 8xng_1(0)(g5177)a]77

a=1

+ (970 -£/), + (Ll/)zz,. (3.13)

Since(galv),, is not zero (see (3.4)), we can determine?)f,,g*l(O)v from (3.13). Once
again, repeating the arguments foral V and noting tha(gglv)n is never zero for any
v € V, we can determine- 82, ¢ ~(0)v for all v € V and hence? ¢~*(0). Using the same
procedure, we can determiagd, g ~1(x’, 0) for |x’| < § with § sufficiently small. In turn
we can find 92, ¢~*(0) for any multi-indexc’.
Inductively, assume that we have determin{é;c’da)’cng—l(O) with 0 </ < ¢ and

arbitraryo’. Now by differentiating (3.6Y times int and settingr = 0, we single out
the term containing’, ¢ ~1(0) and find that

{v-0be 20w} (gp M) =R, (3.14)

whereR is a known value which is determined by the induction assumption. Deriving
(3.14) for eachv € V and noting that(gglv),, is never zero, we can determine-

3%gX(Oyv for all v e V and thereforaé’, g=1(0).
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