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Abstract

In this paper we give a reconstruction procedure for the Taylor series of a Riemannian me
the boundary in boundary normal coordinates from the localized boundary distance function.
 2003 Elsevier Inc. All rights reserved.

1. Introduction

Let (M,g) be a Riemannian manifold with smooth boundaryΓ := ∂M. Define the
boundary distance function

dg(x, y) = dist(x, y) for x, y ∈ Γ

which is the geodesic distance between boundary points. An interesting inverse pro
whether one can determineg from its associated boundary distance functiondg. It is easy to
see that uniqueness is not possible. Indeed, letψ :M → M be a diffeomorphism that leave
Γ invariant, i.e.,ψ|Γ = Id, thendψ∗g = dg . Therefore, the inverse problem one wou
like to address is whether this is the only obstruction to uniqueness. This problem
in geophysics in attempting to determine the inner structure of the Earth. The bou
distance function measures the travel times of seismic waves going through the
and the metric is the index of refraction [1,5]. This problem is also called the boun
rigidity problem in Riemannian geometry [2,3,9]. The boundary rigidity problem has
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extensively studied in the last three decades. The reader is referred to the article [1
recent survey.

In this paper we would like to look at this rigidity problem from the bound
perspective. That is, we want to investigate what information ofg onΓ can be determine
from dg . As indicated above, unique determination ofg|Γ is not possible. Nevertheles
in this article we are able to show that one can reconstruct the Taylor series of the
g on Γ in suitable coordinates from thelocalizedboundary distance function. Precise
we prove that for anyx ∈ Γ all derivatives ofg at x in boundary normal coordinates ca
be determined from the knowledge ofdg(x, y) for all y ∈ Γ sufficiently close tox. More
importantly, we will give explicit formulas for all the normal derivatives. To state the M
Theorem, we first introduce the notion of convexity. We say that the boundaryΓ is locally
convex atp ∈ Γ if there exists an open neighborhoodO of p such that for any two point
x, y ∈ O ∩ Γ,x �= y, there is a unique geodesic joiningx andy and all inner points of this
geodesic lie entirely inO. Also,M is said to be extendible nearp if we can extendM to
another smooth manifold̃M ⊃ M acrossO ∩ Γ .

Main Theorem. Let (M,g) be a Riemannian manifold of dimensionn with smooth
boundaryΓ . Let p ∈ Γ and Γ be locally convex there. Assume thatg is smooth up to
Γ near p and alsoM is extendible nearp. Let {x1, . . . , xn} be the boundary norma
coordinates nearp. Then we can reconstruct∂γx g(p) for all |γ | � 0 from the knowledge
of dg(q, r) for all q, r ∈ Γ sufficiently nearp.

Previous results on the boundary determination of the Taylor series ofg from dg have
been given in [9] (up to order 2), [10] (infinite order butn = 2) and recently in [7] (genera
case). But, none of these papers gave reconstruction formulas. The main tool
paper is an identity which relates the metricg to the lengths of geodesics. This ident
is similar to the one derived by Stefanov and Uhlmann in [11]. It should be noted
the identity derived in [11] relies on the hypotheses that two unknown metrics coi
with the Euclidean one up to certain order near the boundary and have the same bo
distance function. Since we are dealing with the reconstruction problem here, we
only one unknown metric with no boundary information available. To utilize Stefanov
Uhlmann’s arguments, we therefore need to choose an appropriate reference metr
with the unknown metric (see Section 2). With the key identity at hand, we are ab
get the boundary information of the metric by differentiating the identity and letting
boundary distance go to zero (see Section 3).

For the readers’ convenience, we now outline the reconstruction procedure. It sho
noted that we are working in boundary normal coordinates near any boundary poi
p (∈ Γ ), throughout the whole reconstruction.

Step 1. Using Michel’s arguments [9], we can determineg(p) in the tangential directions

Step 2. Differentiating the key identity (2.5), where the reference metricg0 is given in
(3.5), leads to a new formula whose one side is solely determined bydg . We construct the
first normal derivativesg−1 atp by takingdg → 0 in the new formula. Therefore, we ca
recover the first normal derivative ofg atp.
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Step 3. Inductively, by further differentiating the identity (2.5) and repeating the argum
in Step 2, we can determine all normal derivatives ofg atp.

We remark that the result here is the pointwise boundary reconstruction of the
by the knowledge of the boundary distance function. This problem is somehow r
to the inverse problem of determining the metric by boundary measurements fro
Dirichlet-to-Neumann map associated with the Laplace–Beltrami operator�g . It is well
known that the Dirichlet-to-Neumann map is a pseudo-differential operator of orde
By computing its full symbol (and this requires knowledge only of the local Dirichle
Neumann map), one can determine the boundary value of the metric up to any o
boundary normal coordinates [8]. For another approach see [6].

2. Key identity

In this section we will derive an identity which plays a key role in the proof of the M
Theorem. LetHg denote a Hamiltonian related tog andHg(x, ξ) = 1

2(
∑n

i,j=1g
ij ξiξj − 1)

in local coordinates, where(gij ) = (gij )
−1. Here we are interested in the integral curv

associated with the Hamiltonian vector field induced byHg . The projection of thes
integral curves are geodesics. Letx(0) ∈ Γ and{O, x} be a local chart nearx(0). Assume
that Γ is locally convex atx(0) and the Riemannian manifold(M,g) satisfies the
assumptions nearx(0) as in the Main Theorem. Letξ(0) ∈ T ∗

x(0)
M satisfy

ν(x(0)) · g−1(x(0))ξ(0) < 0 (2.1)

and

ξ(0) · g−1(x(0))ξ(0) = 1, (2.2)

whereν(x(0)) is the unit outer normal (co)vector (relative tog−1) to Γ atx(0). Considered
in this local coordinates{x1, . . . , xn} nearx(0), let xg(s, x(0), ξ (0)) and ξg(s, x

(0), ξ (0))

solve the Hamiltonian system

dxm

ds
=

n∑
j=1

gmj ξj , x|s=0 = x(0),

dξm
ds

= −1

2

n∑
i,j=1

∂gij

∂xm
ξiξj , ξ |s=0 = ξ(0),

m = 1, . . . , n. (2.3)

Note thatxg(s) is the geodesic with initial condition(x(0), g−1(x(0))ξ (0)) ands in (2.3)
is the arc length parameter. DenoteX(0) = (x(0), ξ (0)) and t := t (X(0)) the length of the
geodesic issued fromX(0) with endpoint onO ∩ Γ . Here we chooseξ(0) appropriately
such that all inner points ofxg(s) lie entirely inO. This requirement is obviously true
ξ(0) is taken so thatt is sufficiently small.
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Now let us fix anX(0) satisfying (2.1) and (2.2). Assume thatg0 is a Riemannian
metric in M such that (2.1) holds atX(0) with g being replaced byg0. Notice that we
do not require thatX(0) satisfies (2.2) with respect tog0. In the coordinate chart{O, x},
we let(xg0(s, x

(0), ξ (0)), ξg0(s, x
(0), ξ (0))) be the solution to the Hamiltonian system (2

with respect tog0 having initial dataX(0). It is readily seen thatxg0(s, x
(0), ξ (0)) ⊂ O for

0< s � t provided thatt is small. DenoteX = (x, ξ). The solutions to (2.3) related tog and
g0 can be written asXg(s,X

(0)) = Xg(s, x
(0), ξ (0)) andXg0(x,X

(0)) = Xg0(s, x
(0), ξ (0)),

respectively. LetF(s) = Xg(t − s,Xg0(s,X
(0))), then

t∫
0

F ′(s)ds = F(t) − F(0) = Xg

(
0,Xg0

(
t,X(0))) −Xg

(
t,Xg0

(
0,X(0)))

= Xg0

(
t,X(0)) −Xg

(
t,X(0)). (2.4)

It should be noted thatx component ofF may not be inO. In order to make sense ofF , we
can extendg smoothly toM̃ . Thus,M̃ becomes a Riemannian manifold carrying a me
which is a smooth extension ofg. Nevertheless, the integral in (2.4) is independent of
extension ofg. It is shown in [11] that

F ′(s) = ∂Xg

∂X(0)

(
t − s,Xg0

(
s,X(0)))(Vg0 − Vg)

(
Xg0

(
s,X(0))),

whereVg0 = (∂Hg0/∂ξ,−∂Hg0/∂x) andVg is defined similarly. In conclusion, we obta
that

t∫
0

∂Xg

∂X(0)

(
t − s,Xg0

(
s,X(0)))(Vg0 − Vg)

(
Xg0

(
s,X(0)))ds

= Xg0

(
t,X(0)) −Xg

(
t,X(0)). (2.5)

Before leaving this section, we want to remark that the right-hand side of (2.5) is s
determined bydg nearx(0). This property will be verified in the following section.

3. Proof of Main Theorem

Assume that(M,g) satisfies the assumptions of Main Theorem nearx(0) = 0 ∈ Γ . Let
Õ be an open neighborhood of 0 iñM and the metricg has been extended smooth
in Õ, still denoted byg. We now introduce the boundary exponential map expΓ (s,p) =
expp(sµ(p)) near 0, wherep ∈ Õ ∩ Γ andµ(p) ∈ TpM̃ is the unit inner normal toΓ
with respect tog. It is clear that expΓ is a diffeomorphism ifÕ is small. By virtue of this
map, we can introduce coordinates, still denoted by{x1, . . . , xn−1, xn}, in Õ such thatÕ
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andxn > 0 in Õ ∩M. Moreover, in this coordinate system, the metricg is given by

g =


0

gαβ
...

0
0 · · · 0 1

 and g−1 =


0

gαβ
...

0
0 · · · 0 1

 .

Hereafter the indicesα andβ run from 1 ton− 1.
First, we want to determineg(0). Clearly, in boundary normal coordinates, it is enou

to determineg(v, v)|x=0 for any tangent vectorv. We use here the following argument
Michel’s paper [9]. Denoteeα theαth standard basis ofRn. Let us define a set of vecto
V = {vαβ, α � β}, wherevαα = eα andvαβ = eα + eβ for α < β . Let c : [0, ε) → U be
a curve on{xn = 0} with c(0) = 0 andc′(0) = v, wherev is an element ofV . Here we
chooseε small enough so that all geodesics joining 0 andc(τ ) for 0< τ � ε lie entirely in
U+ = {x ∈ U : xn > 0} except for the two endpoints. It is easy to see that

lim
τ→0

dg(0, c(τ ))

τ
= ‖v‖g = g(v, v)1/2.

Now by repeating the arguments for allv ∈ V , we can determinegαβ(0) for all α,β
and henceg(0). Clearly, using the same method, we can findg(x ′,0) for |x ′| < δ with
δ sufficiently small, wherex ′ = (x1, . . . , xn−1).

Having foundg onΓδ := {(x ′,0): |x ′| < δ} for smallδ, we can determine the right-han
side of (2.5) by knowingdg(p,g) for all p,g ∈ Γδ. This can be seen, using the notat
of the previous section, by observing thatdg is the generating function of the canonic
relation obtained by projecting the set{(X(0),Xg(t,X

(0))} ontoT ∗Γ × T ∗Γ. This set is
called the scattering relation in [4]. A more differential geometric way to see this is vi
formula derived in [9]

γ ′(t (p, q)) = i∗
(∇′

q t (p, q)
) −

√
1− ∥∥∇′

q t (p, q)
∥∥2
i∗g µ(q), (3.1)

whereγ is the geodesic issued fromp and parametrized by the arc length,i :Γδ → U is the
inclusion map and∇′ is the gradient operator on the boundaryxn = 0. Let ξ(0)(p, q) and
ξg(t (p, q), ξ

(0)(p, q)) =: ξg(p, q) be the initial and final covectors related to the geod
connectingp,q ∈ Γδ. Reinterpreting (3.1) in the covector setting, we can see that fo
geodesic joiningp andq , p �= q , ξ(0)(p, q) andξg(p, q) satisfy

ξ(0)(p, q) = g(p)i∗
(∇′

pt (p, q)
) −

√
1− ∥∥∇′

pt (p, q)
∥∥2
i∗g g(p)µ(p) (3.2)

and

ξg(p, q) = g(q)i∗
(∇′

q t (p, q)
) −

√
1− ∥∥∇′

q t (p, q)
∥∥2
i∗g g(q)µ(q). (3.3)
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Next we would like to determine all derivatives ofg at 0. Sinceg−1g = I , it suffices to
determine all derivatives ofg−1 at 0. Letv ∈ V and definẽc(τ ),0 � τ � ε̃, be a curve on
{xn = 0} with c̃(0) = 0 andc̃′(0) = g−1(0)η, whereη = v(v ·g−1(0)v)−1/2. As before, we
choosẽε sufficiently small so that all geodesics joining 0 andc̃(τ ) for 0< τ � ε̃ lie entirely
in U+ except for the two endpoints. Now we are at the position to choose our refe
Riemannian metricg0 in M. The goal here is to choose ag0 such thatν(0) · g−1

0 (0)η < 0,
i.e.,

n∑
j=1

g
nj

0 (0)vj > 0 (3.4)

for all v = (v1, . . . , vn) ∈ V . One possible choice is thatg−1
0 is of the form

g−1
0 =


λ1

In−1
...

λn−1
λ1 · · · λn−1 1

 , (3.5)

whereIn−1 is the identity matrix of sizen−1 andλα > 0. Since det(g−1
0 ) = 1−∑n−1

α=1λ
2
α ,

we can chooseλα sufficiently small for allα to guarantee the positive-definiteness ofg−1
0 .

Here we want to point out thatη does not satisfy the incoming direction (2.1) with resp
to g, but it satisfies (2.1) in terms ofg0. In fact, we can see thatν(0) · g−1(0)η = 0. With
this choice ofg0, we obtain that the solution to the Hamiltonian system (2.3) with res
to g0 can be written explicitly as(

xg0

(
s,0, ξ (0)

)
, ξg0

(
s,0, ξ (0)

)) = (
sg−1

0 ξ(0), ξ (0)
)
,

where the initial(0, ξ (0)) satisfies (2.1) in terms ofg0. Note that the curvexg0(s,0, ξ (0))
lies entirely inU+ for all smalls.

Now consider the geodesic (relative tog) connecting 0 and̃c(τ ) for 0 < τ < ε̃. In
view of the formulas (3.2) and (3.3), it is readily seen that givenc̃(τ ) we can determine
ξ(0) = ξ(0)(τ ) and Xg(t (τ ),X

(0)(τ )) = Xg(τ) from the boundary distance functio
dg(0, c̃(τ )) = t (τ ). Notice that ift (τ ) is sufficiently small (i.e.,τ is small), thenξ(0)(τ ) is
close toη and(0, ξ (0)(τ )) satisfies the incoming condition (2.1) related tog0. Furthermore
we can see thatξ(0)(τ ) → η asτ → 0. Expressing every variable in the identity (2.5)
terms ofτ , we have that

t (τ )∫
0

∂Xg

∂X(0)

(
t (τ )− s,Xg0

(
s,X(0)(τ )

))
(Vg0 − Vg)

(
Xg0

(
s,X(0)(τ )

))
ds

= Xg0(τ )−Xg(τ) = (
t (τ )g−1

0 ξ(0)(τ )− xg(τ ), ξ
(0)(τ )− ξg(τ )

)
. (3.6)

Differentiating both sides of (3.6) inτ yields
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∂Xg

∂X(0)

(
0,Xg0

(
t (τ ),X(0)(τ )

))
(Vg0 − Vg)

(
Xg0

(
t (τ ),X(0)(τ )

))
t ′(τ )

+
t (τ )∫
0

d

dτ

{
∂Xg

∂X(0)

(
t (τ )− s,Xg0

(
s,X(0)(τ )

))
(Vg0 − Vg)

(
Xg0

(
s,X(0)(τ )

))}
ds

= (
t ′(τ )g−1

0 ξ(0)(τ )+ t (τ )g−1
0 ξ(0) ′(τ )− x ′

g(τ ), ξ
(0)′(τ )− ξ ′

g(τ )
)
. (3.7)

Takingτ → 0 in (3.7), we obtain that

∂Xg

∂X(0)

(
0,Xg0

(
0,X(0)(0)

))
(Vg0 − Vg)

(
Xg0

(
0,X(0)(0)

))
t ′(0)

= I2n×2n · (Vg0 − Vg)(0, η)t
′(0)= (

t ′(0)g−1
0 η − x ′

g(0), ξ
(0)′(0)− ξ ′

g(0)
)
, (3.8)

whereI2n×2n is the identity matrix of size 2n. It has been shown previously thatt ′(0) =
‖c̃′(0)‖g = 1. Writing out the formula (3.8), we conclude that

g−1(0)η = g−1
0 (0)η − t ′(0)g−1

0 η − x ′
g(0) (3.9)

and

1

2
η · ∂xg−1(0)η = ξ(0)′(0)− ξ ′

g(0). (3.10)

It should be noted that we do not use (3.9) as the reconstruction formula forg(0) since we
need to choose the curvec̃ before proceedings with the arguments. The curvec̃ has already
used the informationg(0). It follows from (3.10) that

v · ∂xg−1(0)v = 2
(
v · g−1(0)v

)(
ξ(0)′(0)− ξ ′

g(0)
)
. (3.11)

By repeating the above arguments for each one element ofV , we can derive (3.11) fo
all v ∈ V . In turn we are able to determine∂xg−1(0). Using the same method, we c
find ∂xg

−1(x ′,0) for (x ′,0) near 0. Thus,∂kxα∂xng
−1(0) is also determined for all positiv

integerk.
To continue the proof, we differentiate (3.7) inτ and setτ = 0. To end, we get that

I2n×2n

n∑
j=1

∂xj (Vg0 − Vg)
(
g−1

0 η
)
j

(
t ′(0)

)2

= (
t ′′(0)g−1

0 η + 2t ′(0)g−1
0 ξ(0)′(0)− x ′′

g (0), ξ
(0)′′(0)− ξ ′′

g (0)
) +Ψ, (3.12)

where(g−1
0 η)j is thej th component ofg−1

0 η andΨ is a 2n vector which consists of term
containing onlyg−1(0) and∂xg−1(0). Therefore,Ψ is a known vector-valued function.
is easily observed that only the lastn components of

∑n
j=1 ∂xj (Vg0 − Vg)(g

−1η)j contain
0
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the second derivatives ofg−1 at 0. Moreover, since we have found∂xα∂xng−1(0), the only
term yet to be determined is∂2

xng
−1(0). Singling out the last component of (3.12), we ha

1

2
η ·

[
n∑

j=1

∂xj ∂xng
−1(0)

(
g−1

0 η
)
j

]
η = (

ξ(0)′′(0)− ξ ′′
g (0)

)
n
+ (Ψ )2n

from which we get that{
v · ∂2

xng
−1(0)v

}(
g−1

0 v
)
n

= 2
(
v · g−1(0)v

)3/2

{
η ·

[
n−1∑
α=1

∂xα ∂xng
−1(0)

(
g−1

0 η
)
α

]
η

+ (
ξ(0)′′(0)− ξ ′′

g (0)
)
n
+ (Ψ )2n

}
. (3.13)

Since(g−1
0 v)n is not zero (see (3.4)), we can determinev · ∂2

xng
−1(0)v from (3.13). Once

again, repeating the arguments for allv ∈ V and noting that(g−1
0 v)n is never zero for any

v ∈ V , we can determinev ·∂2
xng

−1(0)v for all v ∈ V and hence∂2
xn
g−1(0). Using the same

procedure, we can determine∂2
xng

−1(x ′,0) for |x ′| < δ with δ sufficiently small. In turn
we can find∂α

′
x ′ ∂2

xng
−1(0) for any multi-indexα′.

Inductively, assume that we have determined∂α
′

x ′ ∂lxng
−1(0) with 0 < l < 2 and

arbitraryα′. Now by differentiating (3.6)2 times in τ and settingτ = 0, we single out
the term containing∂2xng

−1(0) and find that{
v · ∂2xng−1(0)v

}(
g−1

0 v
)2−1
n

=R, (3.14)

whereR is a known value which is determined by the induction assumption. Der
(3.14) for eachv ∈ V and noting that(g−1

0 v)n is never zero, we can determinev ·
∂2xng

−1(0)v for all v ∈ V and therefore∂2xng
−1(0).
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