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Longitudinal samples, i e . datasets with repeated measurcments over ume, are common m biomedical and epidemiological studies such
as chineal trials and cohort observational studies An exploratory ol tor the analyses of such data s the virying coefficient model Y (1) =
X' (1)B(1)+€(1), where Y(r) and X(7) = (X""(}) . X%1(#))! are the response and covariates at ume 1, B(1) = (B,(1)... .B. (1)
are smooth coetficient curves of 7 and €(r) 15 a mean zero stochastic process A spectal case that 1s of particular mterest i many situations
15 data with time-dependent response and time-independent covariates We propose 1 this article a componentwise smoothing spline
method for estimating B,(#),. ., B, (1) nonparametrically based on the previous varying coefficient model and a longitudinal sample
of (+.¥(r).X) with hme-mdependent covarates X = (X', .. X" from s independent subjects A “leave-one-subject-out”™ cross-
validation 15 suggested to choose the smoothing parameters Asymptotic propertics of our spline estimators are developed through the
explicit expressions of their asymptotic normality and risk representations, which provide usetul msights tor inferences Applications and
finite sample properties of our procedures are demonstrated through a longitudinal sample ot oproid detoxificanion and a simulation study.
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1. INTRODUCTION

Longitudinal data, that 1s, samples with »n independent
subjects. each measured repeatedly over a time period, are
common in biomedicine, epidemiology. and other fields of
natural and social sciences. Examples of such samples can be
easily found in clinical trials, follow-up studies tor monitor-
ing disease progression, and observational cohort studies. For
a general setup of the data, we consider a real valued time
variable ¢, and define Y () to be the real valued response or
outcome variable at time 1 and X(t) = (X"(1).. ... XA,
with & > 0 and X'”(r) being a real valued covariate, to be
R**Y valued independent covariate vector at time 7. Depend-
ing on the choice of the ume origin, r is not necessarily
non-negative and 1s generally assumed to be on the real line.
For a longitudinal sample of » randomly selected subjects,
the jth measurement of (7, Y(r), X(r)) for the ith subject is
(t,.Y,.X,). where | <i<n.1<j<m, m 15 the num-
ber of repeated measurements of the ith subject. 1, is the

i
measurement time, Y, is the observed response variable at 7,
Oy
and X, = (X!

by or s X,(/“)T is the observed covariate vector.
The total number of observations across all the subjects is
N=3Y" ,m,.

Statistical analyses with this type of data are usually con-
cerned with modeling the mean curves of Y (/) and the effects
of the covariates on Y(r) and developing the corresponding
estimation and inference procedures. Under the framework of
parametric models, such as the marginal lincar and nonlin-
ear models and the mixed etfects models, theory and meth-
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ods for parameter estimation and interences have been studied
extensively and can be found, for example, in Laird and Ware
(1982). Liang and Zeger (1986), Diggle (1988), Diggle, Liang,
and Zeger (1994), Davidian and Giltinan (1995), and Vonesh
and Chinchillt {1997). among others. Nonparametric smooth-
ing methods, such as kernel estimators and smoothing splines,
for estimating the mean response curve without the presence
of covariates other than time have been proposed and studied
by Hart and Wehrly (1986), Miiller (1988), Altman (1990),
Rice and Silverman (1991), among others. These authors also
investigated a number ot procedures for selecting the smooth-
ing parameters that are uniquely tailored to the structures of
longitudinal data.

Motivated by an epidemiological example of predicting the
depletion of T-lymphocytes (CD4) cell counts among Human
Immunodeficiency Virus infected persons, Zeger and Diggle
(1994) and Moyeed and Diggle (1994) considered the follow-
ing partially hnear model:

A
Y(1)=Bo()+ 3 4B, X" (1)} +elr), (1)

i=|

where B,(7) 15 a smooth function of f, B, are unknown
Euclidean parameters, and €(f) is a mean zero stochastic pro-
cess, and investigated werative procedures for the estimation
of (By(1), B,,....B,). Recently, Cheng and Wei (2000) pro-
posed an alternative method tor estimating (8,,. ... 3,) of (1)
without relying on iteration.

Although (1) is more Hexible than the classical linear mod-
els, it requires the covanate effects 8,0 [ =1,....k, to be
constants over lime, a restriction that may not be realistic for
many situations. On the other hand. the actual sample sizes in
most longitudinal studies mav not be large enough to support a
completely general nonparametric model when the dimension-
ality of X(r) is high. Thus for a more practical generalization
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of (1), Hoover, Rice, Wu, and Yang (1998) considered the fol-
fowing varying coefficient model’

Y(n=X"()B(1) +e(r), (2)

and suggested a class of smoothing splines and  local
polynomials for the estimation of B(t). where B(1) =
(Bo(). ..., B (1)) is a vector of smooth functions of 1. €(1)
is the mean zero stochastic process as defined in (1). and for
all 7, X{(r) and e(r) arc independent. Intuitively. (2) gives a
linear model between Y (r) and X(7) at each fixed time ¢. and
reduces to a projection of Y () to the linear space spanned by
the components of X(#) when the linear relationship does not
hold. Large sample properties for the estimation procedures of
Hoover et al. (1998) have only been developed for the special
case of hernel estimators. It has been noted by these authors
that the smoothing splines proposed in Hoover et al. can be
computationally very extensive.

Because the local polynomial estimates of Hoover ct al.
rely on only one bandwidth to smooth all (A + 1) coetficient
curves, they may not lead to adequate smoothing tor all the
coefficient curves simultaneously. As a remedy, Fan and Zhang
(2000) studied a two-step smoothing alternative for estimat-
ing B(r) of (2), which first computes raw estimates of B(7)
at distinct time points and then smooths each component of
these raw estimates. They further suggested a modification of
the two-step smoothing basced by binning the adjacent obser-
vations to treat the data that have sparse observations at some
distinct time points. It is expected that, through appropriate
binning, the two-step smoothings will have satisfactory theo-
retical and practical performances under the data framework
of this article.

A special case of (2) that 15 of particular interest is lon-
gitudinal data with time-independent covariates, X(f) = X.
In practice, time-independent covariates such as treatment,
dosage, and gender are very common in longitudinal studies.
Based on (2) with X(7) = X, Wu and Chiang (2000) showed
that a componentwise kernel method for the estimation ol B(r)
may be more flexible in practice than the kernel method of
Hoover et al. (1998).

In this article. we focus on Model (2) with time-independent
covariates X and develop a componentwise smoothing spline
procedure for the estimation and inferences ol B(¢) based on
the longitudinal sample {(1,. ¥, . X))} 1 =i=sn. 1 =) =m}
Comparing with the results that have already been established
in the hiterature, our estimation and 1nference procedure has a
number of interesting features. First, in contrast to the penal-
1zed least squares of Hoover et al. (1998). our spline estima-
tors are based on componentwise penalized least squares. This
approach allows us to significantly simplitfy the computation
by solving k + | separate lincar equations. instead of a large
lincar system nvolving all & + [ components. Second, the
asymptotic propertics of our estumators are developed through
their asymptotic distributions, which are useful for construct-
ing confidence regions and other inference procedures, yel
comparable asymptotic properties for the smoothing splines of
Hoover ct al. (1998) have not been developed. Third, similar
to Rice and Silverman (1991), we select our smoothing param-
cters by a cross-validation that deletes the entire observations
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of each subject one at a time. The computation involved in
our cross-validation is much simpler than that required by the
cross-validation of Hoover et al. (1998). For the finite sample
properties of our cross-vahdation and smoothing splines, we
demonstrate through a Monte Carlo simulation that, at least
for the special case of time-independent covariates, our pro-
cedures are either superior (o or comparable with the ones
currently available in the literature. Applications of our proce-
dures are demonstrated through a biomedical example of eval-
uating the treatment effects m an opioid detoxification study.
we present our componentwise smoothing
splines and the cross-validation method. In section 3, we

In section 2.

develop the asymptotic distributions and mean squared risks
of our spline estimators. Application of our procedures to the
opwid detoxification study is discussed in section 4. Monte
Carlo simulations tor our procedures and their comparisons
with the existing approaches in the literature are presented in
section 5. Finally, proofs of the main results are provided in
the Appendix.

2. ESTIMATION PROCEDURES
2.1 Componentwise Smoothing Splines
We assume throughout that
Y(n)=X"B(1)+e(1), (3)

with B(r) and () defined in (2), E(XX') is invertible and
its inverse is denoted by E_),. Multiplying both sides of (3)

XX/
by X and taking expectations, 1t is easy to verify that B(7)
is well-defined and is given by B(1) = (B,(1). . . .. B, =
(ELOEIXY(0)]. For each r =0, ... k. the (+ + 1)th com-

ponent 3, (1) of B(r) i

A
B,(r):E[(Ze,_, ,Hx‘”)ym}, (4)

=0

where ¢, is the (p, g)th element of Eyy, .

Based on (4). a natural approach for the estimation of ()
is 1o construct simoothing estimators for each corresponding
B, (1). Because E(XX') is unknown and does not depend on 1,
1t can be estimated by the sample mean

E(XX')=n "3(X,X]).

=1

—
We assume further that E(XX ) is also invertible and denote

its inverse by Eyy. Then, a natural estimator of ¢, is €, . the

(p. q)th element of Ey, .

Suppose that the support of the design time potnts is con-
tained in a compact set [a. b] and B,(¢) are twice differen-
tiable for all 1 € [a, b]. We can obtain a penalized least squares
estimator B,(r: w) of B, (¢) by minimizing

nooh

0B A =33 fufZ, 8.0

=] =1

I7 ki
A, [ [BI)] ds. ()
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where A, is a non-negative smoothing parameter. w
(wy..... w,) wnh w, being non-negative weights and Z,,, =
Z, o€ 41 ,HX ,,) Then our estimator of B(r) ts ﬁ(t w) =
(B')(t w), . Bk(t; w))’. Usual choices of w, may include
w=1/N und w,=1/(nm,).

The minimizer ﬁ, (1:w) of (5) is a cubic spline and a linear
statistic of Z,I,. To see the linearity of §,(r; w), we define
Hi,.p) 0 be the set of compactly supported functions such that

Hpy=18(): g and g" are absolutely continuous

b
on {a, b], and / [¢"(s)[Pds < oo}.

Setting the Gateaux derivative of J,(8,: A,) to zero, é, (r; W)
uniquely minmmizes (5) if and only if it satisfies the normal
equation

53 7, )

=)\,f Bl (s:w)g"(s)ds, (6)

for all g in a dense subset of |, ;. The same argument as in
Wahba (1975) then shows that there is a symmetric tunction
S, (£, s), which belongs w0 %, , when either 1 or s 15 fixed.

so that B,(r; w) is a cubic spline estimator and given by

noom

(W) =3 [wS, (11,)Z,, ], (7)

=1 4--1

The explicit expression of S, (1, s) is unknown. For the theo-
retical development of ,é, (t: w), we will approximate S, (7.s)
by an equivalent kernel function whose explicit expression is
available.

Remark {. The penalized least squares approach of min-
imizing (5) is different from first estimating E[XY(s)] by
E[ﬁ/(t)], a consistent estimator obtained by smoothing each
component of E[XY ()], and then estimating B(7) by

B(1)=E,\ EIXY(1)).

To see this, consider the simple case of (3) with X =
(1.X)", E(X) =1 and var(X) = Then, we have
B(1) = (By(1), B (1))

1 X
XX’ =
XX

Bo(1) + B, (1) )
Bu(t)+28,(1) .

The first and second components of E[)ﬁ’(z)l are then consis-
tent estimators of [B,(1) +B,(1)] and [By(1) +28,(1)]. respec-
tively. Thus in contrast to B(r; w), B(t) is constructed by

and

E[XY(1)] = <

a linear combination of consistent smoothing estimators of

607

[By(1)+B,(n)] and | B,{1)+ 28,(7)] with random weights that
depend on X. When B,(7) and B3, (t) satisfy different smooth-
ness conditions, larger mean squared errors may result from
estimating [B,(1) + B,(1)] and [By(1) + 2B,(1)] than estimat-
ing By(r) and B, (1) separately. Thus in general. B(1) is less
desirable than (73 w). Similar phenomena will evidently hold
for the general X with & > 1. In addition, we note that because
our estimators rely on calculating the nverse of E()’(-)\(7 ), they

=T
may be unstable when E(XX ) is nearly singular.

Remark 2. The smoothing splines of Hoover ct al. (1998)

are obtained by minimizing

3

=33 1r —[LX‘“L&, “

IERIAN| -0

+ZA] 1B/ ds. (®)

1=0 a

with A = (A .. .. A} being non-negative smoothing param-
eters. From (5) and (8), we see that J,(B,: A,) and J=(B: A)
use different square and penalty terms. Computationally, min-
imizing (8) requires solving a linear system that involves all
the components of B(r) simultaneously. On the other hand,
(5) is minimized with respect to B, (r} only. Thus particularly
when & 18 large. the computation involved in (5) is much sim-
pler than the computation nvolved in (8). Because B,(t: w)
has a simple linear expression, 1ts asymptotic properties can be
developed by methods similar to that with independent identi-
cally distributed data. Theoreucal properties of the spline esti-
mators obtamned by minimizing (8) have not been developed.

Remark 3. Ditferent choices of w generally lead to dif-
ferent fimte sample and asymptotic properties for 3, (1; w).
The intuitive choices of w, = I/N and w, = l/(nm,) essen-
tially correspond to providing equal weight to each single
observation and equal weight to each subject, respectively.
ldeally the optimal choice of w may depend on the correla-
tion structures of the data. But. because the correlation struc-
tures are usually unknown and may be difficult to estimate,
we do not bave a uniformly optimal choice of w. In practice.
w, = 1/N and w, = 1/(nm,) generally give sutisfactory esti-
mators. For the special case of n tends to infinity while m,,
i=1lo.... n. remain bounded. Lin and Carroll (2000) sug-
gested that v, = /N leads to asymptotically optimal kernel
smoothers for the generalized estimating equations.

2.2 Cross-Validation

Adequate «moothing parameters for B,(t;w) may depend
on the structures of the possible intracorrelations. When
the correlation structures are completely unknown, a useful
approach suggested by Rice and Silverman (1991) is to select
the smoothing parameters by a “leave one subject out™ cross-
validation procedure. Extending their approach to the current
setting, we define

.

: )H ©)

noom,

=1y =i

CV(A.w) =

ZXW (- :)
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to be the cross-validation score of B(r: w), where Bf Dt w)
is the smoothing spline estimator computed from (5) using
the remaining data with all the observations of the rth sub-
Ject deleted. The cross-validation smoothing parameters A =
(Roreeadi )
CV(A:w).
Theoretical properties of A, have not yet been developed.
For a heuristic justification. it can be shown by the same argu-
ment as in Remark 3 of Wu, Chiang, and Hoover (1998) that

A, approximately minimizes an average prediction error of

B,(1: w). However, a systematic optimization algorithm for
A, is currently still unavailable.

[

3. ASYMPTOTIC PROPERTIES

We present in this section the asymptotic properties of

B,(tr:w,) with fixed time designs and the uniform weight
w,=(1/N...., 1/N). Without loss of generality, we assume
that ¢ = 0 and h = 1. Extension to general {a,b] can be
obtained using the affine transformation « = (t —a)/(h — )
for r € {a, b|.

3.1 Assumptions

The following technical conditions. which will be used to
establish the asymptotic properties of B, (¢; w,), are imposed

mainly for mathematical simplicity and may be moditied 1f

necessary.
Al. The time design points {1, } are nonrandom and satisty

Dy = sup |Fy(t)— F(1)| — 0. as

1<]|0,1]

n— 00,

for some distribution function £ with strictly positive density
foon [0, 1], where Fy (=N 37" 1, . and 1 is the
indicator function. The density [ is three umes differentiable
and uniformly continuous on [0, 1]. The vth derivative f'"(r)
of f(r) satisfies f7(0) = (1) =0 for v =1, 2.

A2, The coefficient curves B,(1), r =0,.... k. are four
times differentiable and satisfy the boundary conditions
BU(0) = BY(1) =0 for v = 2,3. The fourth derivatives
BH(), r=0,..., k, are Lipschitz continuous in the sense
that [B¥(s;) — B (s:)] < ¢, sy — 2] tor all 5,5, € [0, 1]
and some positive constants ¢,, and ¢,,.

A3. There exists a positive constant 8 > 0 such that
E(|e()]™) <oc and E(X*?) < oo forall r=0..... k.

A4. The smoothing parameters A,, » =0, ..., k, arc non-
random and satisfy A, — 0. N/ — oo and A 7D, — 0 as
1 — 0.

AS5. Define  o’(r) = E[e*(1)] and p(r) = lim,
Ele(t)e()]. Both o*(¢) and p_(t) are continuous at .

In general. o*(r) may not equal p_(r). Strict inequality
between o (¢) and p_(t) appears, for example, when e(7) is
the sum of a stationary process of ¢ and an independent mea-
surement error (see Zeger and Diggle 1994). Because in most
applications (1) and p,(7) are unknown, we do not require
further specific structures for o (1) and p_(t). except for their
continuity in A5. When {7,} are from random designs, we
would require almost sure convergence of D, to 0., as sug-
gested in Nychka (1995, section 2).

are then defined to be the minimizer of
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3.2 Equivalent Kernel Estimator

Because S, (7, 5) does not have an explicit expression, we
would like to approximate it by an explicit equivalent kernel
function. Substituting S, (1, s) of (7) with the equivalent ker-
nel. the asymptotic properties of B, (r; wy) can be established
through the equivalent kernel function. For the independent
identically distributed data, an equivalent kernel is usually
obtained by approximating the Green's function of a differ-
ential equation: see. for example, Silverman (1984). Messer
{(1991). Messer and Goldstein (1993), and Nychka (1995).
Under the current context, we consider the following fourth
order differential equation

A gD+ (g, (1) = (DB, (1).

with g0y = ¢/ (1) =0 for v =2,3. Let G, (1, s5) be the
Green’s tunction associated with (10). Then. any solution g, {1}
of (10) satisties g, (1) = j;: G, (1.9)B,(5)f(5) ds.

Let y= [ (f(s)"*ds and (1) = y N ds. We
define

relo.1]. (10)

Hy (t.9)=H, (L@).T) Tsren™ an

to be the equivalent kernel of S, (f,s), where

S e
H(t.s)= A, sin(/\' |1‘As|>
' 22 V2

+C()5(A\'/;lf—s[)}exp<4 A\’/;lr—.s(). (12)

It 1 straightforward to verify that H, (¢.s) reduces to
HA” (r.s) when /() is the uniform density. Substituting
SA/ (t.1,) m (7) by H, (r. t,l). our equivalent kernel estimator
of B,(t) with the uniform weight w,, is

aoom,

1 ~
,Br(f: w()) = N ZZ [H)\,([’ ,I[)ZI/)]'

=1 =1

(13)

The next lemma shows that H, (1, s) is the dominating term
of G, (r.s), which in turn approximates S, (7. s).

Lemma 3.1 Assume that conditions Al and A4 are satis-
fied. When n is sufficiently large, there are positive constants
), 5, Kk, and K, so that

(G, (1.9) = H, (1.5)] <k exp(—a, A e —s]). (14)
ar

EFGA’ (1, s)iJ <k AT exp(—an AT =), (15)
|

1S, (1.3) =G, (1.9)] kA" Dy,

t—y

xexp(—a A1

). (16)

and
ar 1

{?AzTSA' (1. s){ <A D exp(—an A —s|)

hold uniformly for r, s € [0, 1] and 0 < » < 3.
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Remark 4. Note that H, (t.s) is not the only equivalent
kernel that could be considered. Another possibility is to use
the equivalent kernels suggested by Messer and Goldstein
(1993). However, because (I11) has a sharper exponential
bound than the bounds given in Theorem 4.1 of Messer and
Goldstein (1993), we use H, (1, s) in this article

3.3 Asymptotic Distributions and Risks

We now summarize the mamn results ot this section, Define
I o
U =3 ole, X))

A

MO (1. )= 30 B, (1), (E[X XU

beopa=0

—B,(1,)8,(t:),

M =MO() +a(te,,.

!

MOy 1) = M (1 1)+ pun t)e,

MOy =M. 1) and M (1) =M (1. 1).

Theorem 3.1. Suppose that Al through A5 are satis-
fied, 7 is an interior point of [0, 1], and there are con-
stants A, , > 0 and g, > O such that lim, . N'-A"* =
A e lim, AN Y m A Y = and lim, | Nr V=0
When n — oo, B, (1: wy) is asymptotically normal in the sense
that

i

(NA) 1B, (r:w0) = B,(1)]
— N(A, ob, (). [7,(1)]7) in distribution.  (18)
where
N =—{f(N1"B"(n (19
and
T,(t):{4f FOTMI () +agMP (1) - (20)

The prior theorem implies that the asymptotic distributions
of ﬁ,(r: w,) are affected by n. m,, and the intrasubject cor-
relations of the data. These correlations affect the asymptotic
variance term |7, (1)]7 if @, is strictly positive. that is, Y./ m’
tends to infinity sufficiently fast. In the interesting case that
m, are bounded. the probability that there are at lcast two
data points from the same subject in a shrinking neighborhood
tends to be (. hence. the intrasubject correlation does not play
a role in local smoothing.

Risks of spline estimators are usually measured by their
asymptotic mean squared errors. However, because Z y

involves the inverse of E[ﬁl | the first and second moments,
hence the mean squared errors, of Br(l; W,) may not exist.
An alternative measure ot risks that has been shown to be
appropriate for the local polynomial estimators ts the mean
squared errors conditioning on the observed covariates {see
Fan 1992, Fan and Gijbels 1996 and Ruppert and Wand 1994),
Let X, = {X,,....X,}. Conditioning on X,. we measure the

_Copyright © 2001 All Rights Reserved

risk of B, (7: wy) by the asymptotic representation of the mean
squared errol
MSE[8, (12 w) 2, ] = E{[B, (:w) = B,(0]'|,}. 21y

More generally. we measure the risk of B(7: w,) by the asymp-
totic representation of

MSE, [B(1: w,)., ] L !/1 MSE[B(r: w,)|, ]}

[

(22)

where p = (p,. . . .. p)t o p =0,

Theorem 3 2. Suppose that Al through A5 are satisfied
and ¢ is an interior point of [0, 1]. When n is sufficiently large,

MSE[/B, (1: w,)| X, ] = X1b, (N 4V, (1)

+()/)(N A l”J—f—i(%)l)
-

+ ()P(” "/2/\,) '}-0/,(11 ‘) +0p(/\,:)- (23)

where b, (1) is defined 1 (19) and

VIA’ 1,4["'(1)‘——3’4M,[])(,)

+[}:(';) ]M‘ (1. (24)

i1

1
V()= ——=N
=7

Furthermore, lim, V(1) = 0
max,_,.,{m,/N)=0.

3.3.1 Remark 5. We note that. unlike Theorem 3.1. the
previous theorem does not require any further rate condition
on A, other than (A4) and allows for any choice of ponrandom
m,. Thus under the conditions of Theorem 3.2, B, (11 w,) is
consistent in the sense that MSE[[; (1:wy)|X,] - 0 in prob-
ability as n -— ~. The rate of V (r) tending to O depends
onnom.i= 1,0, n. A, and the intrasubject correlations.
IFA N ! converges to 0 in a rate slower than Y- (m,/N)?,
then the second term of the right side ot (24) becomes negligi-
ble, so that the effect of the intrasubject correlations disappears
from the asymptotic representation of MSE[B,(!;W()HI”].
This occurs, for example, when the m, are bounded. which
15 a case of practical interest. However, in general, the con-
tributions ot the intrasubject correlations are not negligible. If
m, — oo sufficiently fast as n -— oc, then the second term of
the right side of {24) may dommate. This occurs, for example,
when m, == n" for some a > 0

it and only if lim

o0

3.3.2 Remark 6 The derivations of Theorem 3.2 can be
extended to random designs and other weight choices. Sup-
pose that ¢, are independent identically distributed with dis-
tributton function F and density f For the uniform weight
w, = (1/N.,. .,1/N). we would require the almost sure con-
vergence of A, **D, t0 0 as n — x and consider the same
cquivalent kernel estimator as defined in (13). For the weight

choice of w, = (... .. w ) with w, = /(nm,), we Would
replace Fy and Dy of Al hy Foy =" Y0 (am) "y,
and D} = sup, |, | [FL(2 F(I I. 1espect1ve]y. and under the
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almost sure convergence of A73* D3 to 0 as n — oo, consider
the equivalent kernel estimator

noom,

B (:w) =33 [(nm) 'H, (1.1,)Z,,]

=1 =1

The asymptotic distributions and the asymptotic conditional
mean squared errors of these equivalent kernel estimators can
be derived explicitly. However, as noted by Nychka (1995,
section 7). because the exponential bound of (16) may not be
sharp enough to establish the asymptotic equivalence between
the smoothing spline and the equivalent kernel estimators.,
improved error bounds have to be developed under these
situations.

3.3.3 Remark 7. Suppose that the time design points /,
are nonrandom, w, = (w,.. ... w,) with w, = 1/(nm,) 15 used
and Al holds for F}(t) and Dj}. By Lemma 3.1.
show that the variance of [§, (t; w,) conditioning on X', can be
approximated by

x)}

)GA,( 4, )G (1)

we cun

n m

ZZ{( ) G (t:1,) var(Z,,

=1 =1

1
+ox {(—~
('1~I1)#(’2~/1) n-m”m,:

X, X)}

Unfortunately, the two previous summations cannot be easily
approximated by some straightforward integrals without fur-
ther assumptions on #,. Similarly, we do not have an explicit
asymptotic risk representation for ﬁ,(t; w) with general w.

x COV(Z

it

h/7I

3.4 Inferences

The asymptotic distribution of Theorem 3.1 is potentially
useful for making approximate inferences for B (t; w,). In
particular, if n, m,, i =1....., n, and A, satisfy the con-
dittons stated in the theorem and there are consistent esti-
mators (ﬁ,(z),%,(r)) of (b,(r).7,(z)), then an approximate
100(1 — )% confidence interval for 3,(r) can be given by

(B, (1; wo) = Ab, ()] Fut,_o s N'2A AR (1), (25)
where 0 < a < 1, u, is the pth quantile of the standard
normal distribution. In principle, it is possible to construct
the consistent estimators ZJ,([) and 7,(r) by substituting the
unknown guantities of (19) and (20} with their consistent esti-
mators. But, in practice, b,(¢t) is difficult to estimate because
it depends on the fourth derivative of (,(r). One possible
approach to circumvent the difficulty of estimating b,(r) is to
select a small smoothing parameter A, so that the asymptotic
bias of (18) is negligible. For the estimation of 7, (7). one has
to construct adequate smoothing estimators for the variance
and covariance processes o2(t) and p, (t). Wu, Chiang, and
Hoover (1998) investigated some plug-in type asymptotic con-
fidence procedures based on the kernel estimator of Hoover
et al. (1998). However, a practical procedure based on (25)
requires substantial further development.

Journal of the American Statistical Association, June 2001

Another approach that may be useful for the inferences
of B(r) is the bootstrap. Hoover et al. (1998) suggested a
bootstrap procedure that resamples subjects from the origi-
nal data with replacement. Here, a bootstrap spline estimator
B (r; wy) of B,(r) can be computed based on (7) and the
bootstrap sample. Thus to estimate the variance of B 1 Wy).
we first obtain B independent bootstrap samples and then
use the sample variance of the B bootstrap spline estima-
tors 7 (12 w,). Let V™' (1) be the bootstrap estimator of the
variance of ﬁ, (1. w,). A bootstrap approximate 100(1 — a)%
interval for 3, (1) can be constructed by

Bt wo) £ D). (26)
We note that (26) is an approximate 100(1 — )% confidence
interval for B,(r) only if the bias term of (18} is negligi-
ble, which occurs, for example, when 8,(t) is time-invariant.
However, in general, because no bias-adjustment has been pro-
vided. (26) may not be a rigorous 100(] — )% confidence
interval for B,(r). Comparing with the plug-in type asymp-
totic interval, (26) avoids the complications of estimating the
components of 7,(r). We present in section 5 some empirical
coverage probabilities of (26) obtained through a simulation.
However, the theoretical properties of this bootstrap procedure
have not been investigated.

An important issue of model diagnostic based on (3) 1s to
determine whether some or all of the coefficient curves (3, (¢).
r=10,....k. can be approximated by some parametric fami-
lies. Further theoretical and practical investigations on the fol-
lowing two inferential extensions are warranted. The first is to
examine simultaneous confidence bands for 3, (). The second
is to test the hypotheses that, for some or all r =0.....k,
B.(r) belongs to a parametric family. A case that is of par-
ticular interest in practice is to test the hypothesis that the
covariate effects are time-invariant, so that the model reduces
to {1).

4. APPLICATION TO OPIOID
DETOXIFICATION STUDY

The main objective of this randomized clinical trial is to
evaluate the effect of a combination treatment of naltrexone
with buprenorphine for opioid detoxification. As one of the
two pharmacologic treatments (methadone maintenance and
opioid detoxification) for opioid dependence, opioid detoxifi-
cation has the advantage of being relatively inexpensive and
accessible to vast majority of opioid-dependent individuals
(e.g., Gold. Redmond, and Kleber 1978). Among 60 opioid-
dependent individuals who were not using methadone, 32 were
randomly assigned to the NB (naltrexone-buprenorphine)
treatment group and 28 were assigned to the PB (placebo—
buprenorphine) group. During the 8-day impatient clinical
period, each patient received OOW (observer-rated opioid
withdrawal scale) measurements and NB/PB nterventions at
9 scheduled trial times per day. Because some individuals
randomly missed their scheduled measurements or quit the
treatment process, the intervention times were different per
individual. Further details of the design, medical implications,
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and an initial analysis of the study can be found in Umbricht-
Schneiter, Montoya. Hoover. Demuch. Chiang, and Preston
{1999).

Because the usual chronological time does not provide a
meaningful scale to measure the treatment effects. we fol-
low Umbricht-Schareiter et al. (1999) and define the trial time
to be the trial number of an intervention. Specifically, with
m, repeated measurements, /,, have integer values between |
and 72.

For the purpose of demonstration, we evaluate here the
effects of the treatment and the baseline OOW scores, defined
as the OOW scores at the entry of the study, on the OOW
scores over trial time. Here, ¥, is the ith patient’s OOW score
at the jth trial, X0 =

f N

X I if the individual belongs to the NB group.
' 0 if he/she belongs to the PB group,

and X,m represents the individual’s centered baseline OOW

score, computed by subtracting the sample average from the

individual’s actual baseline OOW score.

Although parametric analyses or the descriptive statistics as
in Umbricht-Schneiter et al. (1999) can be used, 1t is of inter-
est to explore whether these approaches reasonably fit the data.
as misspecified models may lead to erroneous conclusions.
Under (3), B,(7) represents the mean OOW curve for individ-
uals in the PB group with average baseline OOW score; 3,(1)
represents the treatment difference at ¢: and [3,(7) represent
the change of mean OOW score at ¢ associated with the unit
change of baseline OOW score. .

We computed the smoothing spline estimators S,(t; w),
! =0,1.2, for both w, = I/N and w, = |/(nm,) weights
based on (7) with A, and a subjective smoothing vector
A =(.001,.01,.1)". As precise global minimum of the cross-
validation scores may be hard to find in some cuses. the
subjective smoothing parameter A was considered because its
corresponding cross-validation score was very close to that for
A, . Both w, = 1/N and w, = |/(nm,) weights give similar
results for this dataset, so we only present the results for the
w, = 1/N weight. Based on the “resampling-subject” boot-
strap described in the previous section. we also computed the
95% bootstrap intervals (26) for B,(¢), B,(f), and B.(r). As
discussed in section 3.4, because no bias adjustment has been
considered. these intervals may not accurately approximate the
95% confidence intervals. Figure 1 shows the estimates and
their corresponding 95% bootstrap intervals computed based
on the cross-validated smoothing parameters A . The esti-
mated mean curve tor the PB group appears to be slightly
undersmoothed. But the estimates for the NB treatment effect
and the baseline OOW effect seem to have adequate smooth-
ing. Figure 2 shows the estimates and their 95% bootstrap
intervals computed based on the subjective smoothing vec-
tor A. Comparing these figures, we see that the estimates 1n
(1b). (ic), (2b). and (2c¢) are virtually identical, yet the esti-
mated curve in (2a) seems to be more appropriate than the
one in (la).

Qualitatively, we can see from these figures that the mean
OOW curve fB,(1) for the PB group generally stays around 1.0
throughout the trial. The estimated treatment effect 3,(r)

appears to imply that the NB treatment is positively associ-
ated with higher OOW scores at the beginning of the trial,
but it generally leads to lower OOW scores for the later half
of the trial. The baseline OOW scores appear to be positively
associated with higher OOW scores throughout the trial, but
this positive association has a decreasing trend. These assess-
iments are generally consistent with that of Umbricht-Schneiter
et al. (1999). who presented the mean OOW scores over time
by their daily averages. The reader 15 referred to their arti-
cle for a detailed discussion of the biomedical implications of
the time-varying treatment effect and the potential advantages
of the naltrexone--buprenorphine treatment. Although we have
not developed inference tools as formally as would ultimately
be desirable, we note that. if the treatment effects were in
fact constant, the pointwise intervals would not be affected by
bias, according to our asymptotic results. The envelopes traced
by the intervals i the figures, or by wider intervals produced
by a Bonferroni adjustment, are not inconsistent with constant
treatment effects. Thus there is not strong evidence for non-
constant coefticients, although the steady dechining trend in
Figure (1c) or Figure (2¢) would seem plausible.

5. SIMULATION

To evaluate the practical performance of our procedures, we
consider the Model (3) with

60
(t—30)7r>

Bolr) = 3.5+6.5sin (’_71)

ﬁl(t):».2—1.6cos( 0

30—1\'
[52(1):.25«0.0074( o )

and X = (I, X", X7 where X''' and X¥ are independent
random variables with Bernoulli(.5) and N(O, 4) distributions,
respectively. The simulation was independently repeated 500
times. Within each repetition. we randomly generated 400
subjects and their corresponding covariate vectors X,, { =
| I 400. Each subject was assigned a probability ot 40%
10 be observed at the integer design points {0, 1,.. .. 30}, so
that the average number of repeated measurements per subject
was approximately 12. Because the time design points were
different from subject to subject, we obtained uneven ¢, with
r=1,....400 and y=1...., m,. The errors €, were gen-
erated from the mean sero Gausstan process with covariance
function

_].0625exp(—1t, , —1t

— fih 2
0.

). if e =i,

if 1 # i.

Ccov (6’1 ne 6‘:!:

The time-dependent responses ¥, were obtained by substitut-
ing the available X, 7,,. and €, into (3).

For each generated sample. we computed the component-
wise spline estimators B/(!: w,) of B,(2), 1 =0,1,2, using

the cross-validated smoothing parameters A, and the subjec-
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Figure 1. The Sold Curves Represent the Estimated Effects and the Dotted Curves Show the Corresponding 95% Bootstrap Intervals When

the Cross Validated Smoothing Parameters A., = (.0001, .01, 10)7 and w, = (1/N, .., 1/N) Are Used. (a} The estimated PB mean OOW curve
Bo(t; wy). (b) The estimated NB treatment effect 3,(t, w,) (c) The estimated baseline OOW effect B,(t; w,).

tive smoothing parameters A = (A, A,. A,)! with A, = 1, 10,
and 100 for 1 =0.1,2. As a comparison. we also estimated
B,(t), 1 =0.1,2, using the two-step smoothing method of
Fan and Zhang (2000) with both local linear and smoothing
spline smoothers. The cross-validation of Rice and Silverman
(1991) was used to select the smoothing parameters for the
two-step smoothing spline estimators. For the two-step local

linear estimators of (3,(r), we used the Epanechnikov kernel
and the bandwidths suggested in Fan and Zhang (2000). How-
ever, because similar results were obtained by the local linear
and the spline smoothers, we only present here the two-step
smoothing spline estimators.

As an intuitive measure of the bias and variability of
the esumators of 3,(¢), we computed the averages and the
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Figure 2. The Sold Cyrves Represent the Estimated Effects and the Dotted Curves Show the Corresponding 95% Bootstrap Intervals When
A =(.001,.01,.1)7 and B,(t;w,) Are Used. (a) The estimated PB mean OOW curve B,/t;w,). (b) The estimated NB treatment effect B,(t;w,).

(c) The estimated baseline OOW effect B,(t;w,).

standard errors, over the 500 simulated samples. of the
componentwise and two-step smoothing spline estimators.
Figure 3 shows the true 8,(1). / =0, 1.2, curves. the sam-
ple averages of B,(f: w,) using the cross-validated smoothing
parameters, the sample averages of the two-step smoothing
spline estimators of 3,(r). and the corresponding £ sample
standard error bars of these estimators at several time points.
Possibly due to the fact that the cross-validation scores have

Copyright © 2001_All Rights Reserved

little variation for a wide range of A, values, we see from this
figure thut the sample average of [:33(1; w,,) with the cross-
validated smoothing parameters is slightly oversmoothed. The
averages for the other estimators are reasonably close to their
corresponding true curves. Thus in terms of bias. it seems that
both the componentwise and the two-step smoothing methods
are comparable for /=0, 1, and the componentwise smoothing
has a slightly larger bias than its counterpart produced by the
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Figure 3. The Real B,(t) Curves, the 500 Simulation Averages of §3,(t,w,) (dashed curves) with A, ., and the Two-Step Smoothing Spline
Estimators (dotted curves), and the Corresponding +2 Sample Standard Error Bars of the Estimators. (a) [ =0. (b) I =1. (¢c) I =2.

two-step method. Yet, the sample variances of the two-step
estimators are generally larger than those of the component-
wise estimators.

To assess the effects of the smoothing parameters and the
practical performance of the bootstrap intervals (26), we com-
puted the 95% bootstrap intervals for 3,(¢) based on ﬁ,(z; W)
with the cross-validated smoothing parameters A, ,, and the
subjective smoothing parameters A, = 1. 10, 100 for / =0, |, 2.

Here the bootstrap procedure was carried out with 200 boot-
strap repetitions. Tables 1-3 show the empirical coverage
probabilities, computed over the 500 simulated samples, of the
95% bootstrap intervals for B,(¢). The entries of these tables
show that, although no bias adjustment was used. the cov-
erage probabilities for B/(t; w,) with A, , and the subjective
smoothing parameters A, = 1 and 10 are generally close to
their nominal level, except for a few exceptions. These cov-
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Table 1. Empincal Coverage Probabiltties of 95% Bootstrap Intervals
for B,(t) at Nine Time Points Based on B,(t;w,) With the Cross-
Validated Smoothing Parameters and A, = 1.0, 10.0, 100.0
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Table 3. Empircal Coverage Probabilities of 95% Bootstrap Intervals
for B,(t) at Nine Time Points Based on B.,(t; w,) With the Cross-
Validated Smoothing Parameters and A, = 1.0, 10.0, 100.0

180 21.0 240 270

Time point 3.0 6.0 8.0 120 150

Moo 9 93 95 94 93 94 90 92 95
A, =10 92 93 95 93 92 93 94 93 93
A, =100 89 93 93 9 88 .88 86 90 .93
A,=1000 .18 8 44 O01 00 00 17 89 .61

erage probabilities may be further improved if proper bias
adjustment could be used. However, the coverage probabilities
for B[,(t; w,) with A, = 100 are frequently significantly lower
than their nominal level, indicating an inappropriate choice for
the smoothing parameter.

APPENDIX A: GREEN'S FUNCTION FOR
UNIFORM DENSITY

This special case serves an important linkage between G, (t, s) and
H, (t.s). Its dominating term will be used to establish Lemma 3.1.
Direct derivation shows that, for the uniform density /(1) = I}, (¢),
the Green's function G (¢.s) of (10) is the solution of

o i i
A,WGﬁ'(z,s)-i-oﬁv(t,s)::O, for 1 (A1)

subject to the following conditions:

(a) G§ (1,5) =Gy (s.) =G (1 —1.1=5)

(b) (8”/61”)Gﬁ‘7’ 0.1) = (8 ,/x?t”)G‘A’" (I,y=0forr=273;

(c) (r?"/ﬁt")Gﬂ\’” (r, s}, — ((i”/ﬁt”)G’A" (1.9, =0 for v =
0.1.2;

(d) ((’i‘/(?tl)G’A/,(t, ., — (6’/51‘)Gi" (f.8) s = A, "

Lemma A.  Suppose that Gﬁ\ (1, s) 1s the Green’s function of the
differential equation (10) with f() = Lo, (r). When A, > 0, the
solunon GY (r.s) of (A.1) 15 given by

GY (r.5) = HY (1.5){1 + Ofexp(=A, " /V2) ]}, (A2)

where H}' (1, ) 1s defined n (12).

Proof of Lemma A Because the proof mvolves tedious algebra,
we only sketch the main steps. By the well-known result in differ-
ential equations, for example, Brauer and Nohel (1973). a general

Table 2 Empirical Coverage Probabilities gf 95% Bootstrap Intervals
for B,(t) at Nine Time Points Based on [3,(t;w,) With the Cross-
Validated Smoothing Parameters and A, = 1.0, 10.0, 100.0

Time point 30 6.0 9.0 120 150 180 210 240 27.0
Alev 92 94 93 .86 .87 .90 92 92 95
Ar=10 92 93 93 93 92 93 93 93 .93
A,=100 93 94 93 92 92 93 93 93 95
A, =1000 92 94 93 .85 83 85 90 .93 94

Time Point 3.0 60 90 180 210 240 270

As o 9 92 8 8 8 91 95 93 .94
A,=10 94 96 .94 92 94 94 92 94 92
A,=100 94 93 92 93 94 92 93 93 92
A,=1000 92 92 79 66 69 .84 93 93 92

12.0 150

solution G¢ (1.3) of (A1) can be expressed as

Gy (1,8 =

3 {[Cl,S][](/\;rlMtf/(Yq5)/\/5)

il 35
+Cj4,,,cos()\;‘ll/if,ﬂ(t.3)/\/5)]
X exp()\:mg’,t't,s)/\/i)}.

where =1 or 2, when t < s or t > s. §(1,8) = {,(t,5) =1 —35,
A, s) =4 8) =145 &(ios) = —{(r.5) =1t~y and &(1.5) =
=0 (t.8) =1 +5.

By G} (1.8) = G (s.1) in condition (a) of (A.1), we can obtain
that €, = —Cs. Ca = Ca Coa = Cor. Cpy = Coy. Cps = —C.
Cig = Cor. €y = Cyy and Cpy = Cyy Furthermore, G (1,s) =
Gy (1—=1.1~ ) implies that

Cpy = [—cos(V2A7 YOy +5in(V24A, 1) C ]
x exp(—v2A74) (A3)

and

Cpy= [sm(VEA, PYCp +cos(V2ATH) O]

X exp(~\/§A,']”4). (A4)

Let A% =212 A, = 27271 — (/4) and A, =27 x
AV 4 (w/4) Taking dervatives of Gi' (t,s) with respect to 1, we
can derive from condition (b) of (A.1) that

4 8
Ci+C—Cy=Cpr=3(=1)"'C\,+3Y.C,, =0, (A.5)
-1 =5
[Cos(A) )(C)y — C ) +sin(A] HC, + Ciy)]
x exp(--2A7) + cos{AT W Cp3 — Cis)
—sm(A WC +C) =0 (A.6)
and
[sIN(AT(Cyy — Cp7) +sm(AT)(Cpp + O]
x exp(=2A5 ) +sin(ASNC ), — Cys)
= SI(A(C +Ch) = 0. (A7)
From conditions (¢) and (d) of (A.1). we get
Ch+Cn+Cs—C,=0 (A.8)
and
Ciy = Crp=Cis+Cie = =47, (A9)
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By (A.6) and (A.9). we can express C,s through €, as hn-
car combinations of C,, ;=1,..., 4, and get €5 = —-C, -
2N Cl = CL =27 RN O =20 O 272N and
Ciy==2(C;,+C)+Cpy+2 YA, 14 Substituting €5 through
Cy with their corresponding hnear combmations ot ¢, ;=
1.. .4, we can derive from (A.3). (A.4), (A 6). and (A 7) that

2exp(—2A7)C) + [exp(—=2A7 ) +cos(2A1))]|C)4

—s(2A})C L+ 2 AT exp(=2AT 1 =0, (A 10)
2exp(—24)Cy, + [2Zexp(=2A7 )} +sin( 247 Cy
—[exp(=2A7,) —cos(2A7))]
xC =27 AT exp(=2A%) = 0. (A1)
{cos(AT)) —[cos(A))) +2sin(A]) )] exp(—2A7 )}
X (€ +Cpy) =sin(A )] I —exp(=2A, )|
X (Cly+Cr)+2 A5 cos(AT )T —exp(—2A! )]
=2 "A7 s Al [ +exp(=247 )] =0 (A 12)
and
{—sin(A )+ [sin(A3) +2sin(A) )} exp(—2A7))}
XACH +C) = [sin(AT ) +sm(ATS ) exp(—2A7)]
X A(Cpr+C) =2 "A% [sin(AlL) —sm(A7)]
x | +exp(—2A4),)] =0. (A.13)

Suppose first that A, # 2 2[(k+2 "] Y and A, £ 2 S(hw) * for
any positive nteger & When A, — 0. 1t can be dertved from (A.10)
to (A.13) that

Cir= (=1 (&, "/ VD) |1+ Ofexp(=4; 7 /v2)).

{=1.2.

(A1)
and

C, = 0(/\,""4exp(f)\f"'4//5)), [=3.4. (A.15)
Finally, C,5 through C,, can be directly calculated by using (A 14)
and (A 15). so that

=356,

C, :O(A, exp(—2 V). (A.16)

Cr=—(A/ VD)) |1+ Ofexp(~A, "’4/\/’3))} (A17)
and

Coe= (31, '/"4/(2\6)){| +Ofexp(=A, “4/\6))] (A 18)
Then (A.2) 1s obtamned by substituting (A.14) through (A 18) mto
the general expression of G (7,3). When A, =27[(A+2 "iw] *or
2 (k) 7, the same argument as before shows that the coelficients
m (A 14) through (A 18) also hold. This completes the prool
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APPENDIX B: PROOF OF LEMMA 3.1

Betore establishing  the relatonship  between G4 (7, s) and
Gy (103). we first consider a transformation (, (7. ) such that

O (). LNV s) =G, (1.9)f(s) (B 1)

Let

¥
g, (1) = ./4, O, (. v)B, (1~ (1) dv.

b (1) = 6T (NPT ()]
() = P3IT 4T (T DY ()] !

and & (0O = ') f(0] ' Tt s straghtforward to verify  that
g, (1) = ¢, (I'(£)) and ¢, (1) 15 the solution of the following tourth
order differential cquation

A . ,
[(;’I)q:“(u) +yq, (u)} + A, Ld),(u)q,”' M)

/-1

=8, "(n). B2

subject to the boundary conditions q,“"(()) = (/,W( N=0forv=2,3.

Let 2D and J be the operators for differentiation and 1dentity, and
M, be the multiplicatton operator M,¢ = ¢ ¢ Then (B 2) can be
expressed as

(T+ANL, g, () =B,(1" (1)), (B.3)

where £, = [(A, /y)D +J) and A, = A, (Y, M,D* L, " Let
Al (i, v) be the Kernel associated with the integral operator A7, We
can vertfy by the mduction argument in the proof of (A.1) of Nychka
(1995) that. when # 15 large. there are constants «, = () and &, > 0
so that

>

}A: (1, 1')i < koW exp({—agA, " u—v)).

where W 15 some positive constant W < 1. Because [A) (1, v)| < |
for suffictently small A, . the tegral operator £7'(J+.A4,) ' has the
expansion

LNT+A) ':L,‘[J+Z(—A,)"] (B.4)

r—1
Thus by nterchanging the mtegration and summation signs, (B 4)
implies that
O, (n.v)= ('}f\" Litu )

N [
+Z(71)"[U GU i )A (s ) ds. (BS)

[

Applymg Lemma 4.2 of Nychka (1995) and Lemma A with « =

I'tr) and v = () to (B.5), there are posttive constants c,,, «y, o K.
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and 7" <o that, uniformly tor ¢, s € [0, 1].

(u.v)‘

Q (uov) — Gf\, ¥4

|
<|

~ {
-l G
e [

{\ _/4(11, $IAT (s, 1‘)({\'
14

7 R A L oy N
g W ) /() pr( 5 i —s|—agA 7ls ll) ds

r—I

< KA, “4(
< ki exp(—ap A7 Hu—vl)
<kirexp(—apA; B n’l[t[ [Tty u)I)
< whtexp(—aft AT —s]). (B.6)
From (B.1). we also have that

O, (1, v)— (}f\" o

s
]41)()

(u.v)

(N
[(;\(1\ ~ Gy (D), E(s )AJJ} (B7)

f(s)

Then, (14) 1v a direct consequence of Lemma A,
and (11). The exponential bounds ol
same method.

For the proofs of (16) and (17). we can show from (0) and (7} that

(B 6), (B.7)
(15) can be obtained using the

i
/ Sy (1,8, () dFy(s)
4

+A[

Let R, be the ntegral operator such that

LsgP(ydv=yg,1,)  (BX)

{
R ON = [ G, (1), (5) d(F = F)i0)

0
By (14), (15), and the mduction argument in the proof of Nychka
(1995), there are positive constants ki, &} such that, uni-
formly for r,s € [0, ] and 0 < <3

and

l a* RNG }
}Ifj ,[JA,('-“)](I)}
S KR DGA YA Y ep[—a A, s (BY)

Also, by Cox (1983) (cf. Lemma 3.1 of Nychka 1995),
of (B.8) satisfies

a4 solution

S lt,) =G, (1,1, )+ R[S, (.1,

and, when » is sufficiently large,

S ,y=6,( %L.’R’[(;A( 1)

=1

(B.10)
Taking w, > &t /(1 — k" Dy A, 7). we can dernve trom (B.9),
(B.10} and condition A4 that, unmiformly for 1. s € [0, 1].

[S, (t.8) =Gy (20)

< 1RGOl

=1

KD A T :
iKT)\,’"’4(—I—’\~’ H)exp[—a,/\, R \‘]
L=k DA

< koA, Dy expl—a AT =y ]
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This completes the proot of (16). Again. {(17) can be shown by similar

dervations,

APPENDIX C: THREE TECHNICAL LEMMAS

Lemma C1 I assumptions Al and A4 of Section 3.1 are satis-
fied, then, when A, s suthciently small,

N

/ (}i/((. IM!M () Fs) ds

0

i , .
= Al AT o) (C.1)
V2

and

|
[ Gy (1 SIMZ () fi)ds = MP (L + o(1)) (C.2)
<}

hold for all ¢ [7.1 - 7| with some 7> 0

Proof of Lemma €./ By Lemma 3.1, the properties ot double
exponential distributions and straightforward algebra. we can show
that. for some positive constants k. . and ¢,

o
1/“ |G ()= H oMV ()1 (s) ds

.
G o = H (6 ()|

Ty

“Hy DM O] () dds

N
- / KJ/\' chp(—a)\, v
o

I’Vl”(s [/‘ Yds

SelMM . as A, = 0. (C.3)
Sumilarly, denoting o =1 (1) und v = I'(+), we can show ifrom (12)
and the properties of double exponential distributions that, for A,

sutticiently small,

/ H M
)

R g
/ [H, o) VT e [f—T)—)}dv
r)

MU - o).

Y(s)ds

| .
— — jtf '4(f)/\"

4/2 (€4

Thus. (C. 1) falows from (C.3) and (C.4). and (C
by similar caleulations

2) ¢an be shown

Lemma (.21t B, (1) satisfies assumption A2 of section 3.1 and
g, (1) 15 a soluton of (10). then q:“(f) > [3:“0) umiformly for ¢ €
[0 1) as A, = D

Proof of Lcnma €2
of Nvchha (1495)

This lemma s a special case of Lemma 6.1

Lemma .3 Let B,'(l. W) {HA, (rot )2, 1 i
the conditions in Theorem 3.1 are satisfied. then 8] (r: w“) 15 asymp-
totically normal m the sense that (18) holds with [3 £IWy)

by B row,).

Proof of Lenona €30 Deline U,
U, Y, Tois easy (o see that

1

=Ny

[ Ay |

replaced
=%t e, 1X,(“) and Z,, =

F(Z,) = E,X B =6,
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By Al, A4, (11). (14). and Lemma C.2, we have
E[B; (1. %) =B, (1)
1
= [ G (1.B, ()1 (5) ds =B, (1)

1
+f0 (Hy (1.5) = G, (£.$)B, () (5) ds

!
+f“ Hy (1. )8,(s) d(Fy(s) = F(s))

==A[F(O] g (D1 +0(A,))
=—=Ab,(1)(1 +0(A,)). (C3)

For the variance of B,‘(z‘: w,), we consider var [Ef(z; w))| =
Vi+ V4V where Vi = N30 Zm‘ [H;%, (t,1,}var(Z,,)).

Z Yo [H, (11, H, (1. tpyeon(z,, .. Z,.,)|

NI

and, because the subjects are independent,

Vi =— Z YH, (o OH, (1, eov(Z, 7, )] =0,
”#1 non
Because U, and €, are independent, we have
var(Z,, ) = var[U,, (X] B(1,)}] +var(U, €,) = M/"(1,)).
hence, by Al and (C.4),
V= L THONTIATEM () (Tt o(1)).

42

Simlar to the derivation 1n (C.3), because

cov (Z1;|r iy r) _ ('OV{ [X;’ﬁ(r” )]* IJN[XVIB(tu:)]}
+LO\{LI"€U| Uuem}
— M( )(l,” l/w)’

1t 18 straightforward to compute that

m

Vig= {i(’}’\,“l)z_ % } [/H)\, (’w"l)H/\,(f-Sz)M,(z'

i=1

X (s1. 82} f(5)) F(83) dsy dsy (14 0(1))

m

= —} = —IMP (L + o).
(5 %

The previous equations and (20) imply that var[B7(:.w,)] =
N7 322(0)(1 + o(1)). Finally, we can check from A3, (l1).
and (12) that [:3*(1; w,) satisfies the Lindeberg’s condition for dou-
ble arrays of random variables. The lemma follows trom (C.5) and
the central limit theorem for double arrays (e.g., Serfling 1980,
section 1.9.3).

APPENDIX D: PROOFS OF MAIN THEOREMS

Proof of Theorem 3.1. By the definitions of U, and Ij,,, condi-
tions Al, A3, and A4 and Lemma 3.1. we have that. when # 1s suf-
ficiently large,

noom,

Z Y [H ()0, —

r=1 =1

Br(’lwo)*ét(“wo) = Un)}/l/]

12
= Op(” )
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and

R ~ 1 noom
Br([:w(])_B:“* W()):NZZ [S)\ ([ f”)vG/\ (t ’1/)] i 1/}
=1 =l

=0,(N~ "/2)\:1’/8).
Then (18) 15 a direct consequence of Lemma C 3 and the prior
equalities.

Proof of Theorem 3.2.
position on (21), we have

Using the variance-bias squared decom-

MSE([B, (1. wy)|X, ] = {E[B, (1: W) [ X,] - B (0}
+var(B, (1: wy)|X,).  (D.1)
where, because Y, , and Y, are independent when i, # i,

var(é,(t; w )| X,) = ViV,

noom,

_ Azz[sA (r.1,) U2 var (V,)]

=1 j=1
and
l s

V= i >3 S) y,

=1 n#p

)U CO\(Y,”, ,h)]

)S,, (1.t

12

Using Lemma 3.1 and the derivation of (C.2), we can show that for
sufficiently large n.

var(é,(r; w())fx

N AN e (1)e, (1 +0,(1))

T2
" 2 1
2 =7 et

i~ 1

(D.2)

For the conditional bias term of (D.1). we consider that for suffi-
ciently large n.

E[Bz (1, w())l;rn] - Br (’)

ZZ{S)\ L f”)[U”.X’IB(t”)

l]/l

U X7B(’1/))]}

oo

ZZ[é (t.1,)U, X B(1,)]

=1 =1

-B,(N+0,n ") (D3)

N

By similar quadratic expansions as V; and V;;. Lemma 3.1, and the
weak law of large numbers, we can sh()w that for sufficiently large »,

N

{3 S5, Grl0, X B0 - £, X B

r= 1 =1

Y BV s [y oL
_{4\/§N AL [g(N) N“
x M (1)(1 +o,(1)) (D.4)
and, furthermore, by Lemma C.2.
ZZ‘[SA (t.1, (U,,X;fﬂ(z,,))]—ﬁ,(r)}
=1 =1
= X6, (D11 +0,(1). (D.5)
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The conclusion of the theorem (23) is then a direct consequence
of (D.1) through (D.5).

[Receved January 1999. Revised May 2000.]
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