
Passivity Based Control of the Double Inverted 
Pendulum Driven by a Linear Induction Motor 

Chin-I Huang, and Li-Chen Fu 

Abstract- In this paper, we will propose a nonlinear 
passivity based controller fur a double inverted pendulum 
system, consisting of a two-link pendulum mounted on a pad 
which is moved by a linear induction motor so that the double 
pendulum points straight-up The proposed controller nut 
only can drive the double pendulum from its “natural stable 
hanging position” tu its “unstable upright inverted position” 
while linear the induction motor’s displacement is brought to 
zero but also can guarantee that the motor with very unique 
end-effect can achieve servo motion tracking with high 
performance. Also, computer simulations are .provided tu 
demonstrate the effectiveness of .the hereby presented 
controller design. 

I n d u  Terms- Double Inverted Pendulum, Underactuated 
Mechanical System, Linear Induction Motor, Passivity Based 
Control, Adaptive Backstepping Control 

1. INTRODUCTION 

The general double inverted pendulum system is a two- 
link (twodegree of freedom) manipulator mounted on a 
cart (one degree of freedom), where both links are not 
actuated hut the cart is actuated. The main goal is to bring 
up the two-link pendulum from its “natural stable hanging 
position” to its “unstable upright inverted position” while 
the cart i s  brought to the origin. Since ifthe cart needs to be 
driven by a rotary actuator and to move translationally, then 
a gear and a rotary-to-linear converter will be required to 
fulfill the purpose. But the most obvious advantage of the 
linear motor is that i t  has no power loss due to gears and is 
free of mechanical rotary-to-linear converters to produce 
linear motion. Hence, in this paper the cart of  the system is 
in particular xtuated by a linear induction motor. For the 
double inverted pendulum it is a typical underactuated 
mechanical system. So far, there have been many similar 
systems proposed in the literature, such as Acrohot[24], 
Penduhot [ I  8-20], etc. 

Many studies have been conducted for controlling 
nonlinear underactuated mechanical systems p 8-20, 211, 
which can he roughly classified into two groups 
respectively associated with swing up control and a balance 
control. For implementation o f  the first control strategy, 
researchers use the concept of partial feedback linearization 
and passivity to  design the swing up controller. For 
implementation of  the latter, people consider the linear 
quadratic regulator (LQR) design or the pole placement 
technique based on the plant model linearized around the 
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desired equilibrium stabilizing the pendulum at the desired 
position. 

On the other hand, linear induction motors (LIMs) 
widely used in many industrial applications including 
transportation, conveyor systems, actuators, material 
handling, pumping of liquid metal, and sliding door closers, 
etc. with satisfactory performance. Besides LIMs, linear 
electric motors also include linear D.C. motors, linear 
synchronous motors and linear stepping motors. Among 
these motors, the LIM has many advantages such as simple 
replacement about the motion device of  the motor, 
reduction of mechanical power losses and of the size of the 
motion device, silence, high starting thrust force, and easy 
maintenance, repairing and replacement. 

In the early researches, Yamamura has first discovereda 
particular phenomenon of the end-effect on LIM I]. A 
control method, decoupling the control of thrust and the 
attractive force of a LIM using a space vector control 
inverter, was presented in PI, i.e. by selecting voltage 
vectors of PWM inverters appropriately. 

Although h e  parameters of the simplified equivalent 
circuit model of an LIM can he measured by conventional 
methods (no-load and locked secondary tests), due to 
limited length of the machine the realization of the no-load 
test is almost impossible. Thus, the applicability of 
conventional methods for calculating the parameters of the 
equivalent model is limited. In order to measure the 
parameters, application of the finite element (FE) method 
for determining the parameters of  a two-axis model of a 
three-phase linear induction motor has been proposed in 131. 
Another method is proposed by removing the secondary [4]. 

To resolve the unique end-effect problem for an LIM, 
speed dependent scaling factors are introduced to the 
magnetizing inductance and series resistance in the d-axis 
equivalent circuit of  the rotary induction motor (RIM) [5] 
to correct the deviation caused by the “end-effect”. On the 
other hand, there is a thrust correction coefficient 
introduced by [6,7] to calculate an actual thrust to 
compensate for the end effect. A Elated method to deal 
with the problem is that an extemal force corresponding to 
the end effect is introduced into the RIM model to provide 
a more accurate modeling of an LIM under consideration of 
end effect as shown in [SI. 

The paper is organized as follows. In section 2, we 
introduce the system model and state the control objectives. 
Section3 will develop a passivity-based nonlinear control 
of the double inverted pendulum to  solve the task of  
bringing up to  pendulum from its “natural stable hanging 
position” to its “unstable upright inverted position”. In 
Section 4, we propose an adaptive backstepping approach 
to  fulfill the tracking linear induction motor. To 



demonstrate the effectiveness of the hereby developed 
controllers, Sectioe 5 will provide extensive computer 
simulations with satisfactory performance: Finally, Section 
6 gives some concluding remarks. 

I I .  PROBLEM FORMULATION 

The system of double inverted pendulum consists of a 
two-linked pendulum mounted on a cart actuated by a 
linear induction motor to move translationlly along a 
horizontal track so as to maintain two-link inverted 
pendulums on the cart. Each link is free. to rotate on the 
vertical plane ahont an axis associated with an articulated 
joint, defining the two DOFs, 0, ( I )  and el ( 1 ) .  In our set- 
up, we assume that no torque can be around the axis of 
@ , ( I )  and e,(t), which a e  two passive joints. The linear 
induction motor is an actuator, which exerts a force'along 
the translational DOF X .  Figure 1 illustrates the system o f  
double inverted pendulum on a cart driven by a linear 
induction~motor. The swing up problem consists in driving 
the double pendulum from its "natural stable hanging 
position" to its 'bunstable upright inverted position" while 
the linear induction motor displacement is brought to zero. 

In this paper,=we not only consider the pendulum 
dynamics but also consider the dynamics of the actuator, i.e. 

. linear induction motor. The mathematical model of the 
double inverted pendulum is constructed-. using Euler- 
Lagrange method under. the following assumptions to 

(A. I )  f i e  links of the pendulum are rigid bodies; 
(A.Z)The inherentfriction of the pendulum can be neglected; 
(A.3) Three phases ofthe LIMare balanced: 
(A.4) The magnetic circuit ofthe LIM is unsaturated; 

~- assumption later in  the stage ofcontroller design); . 

. simplify the analysis: 

.~ (A.S) The LIM is without end e f e c t  (we will ?elax this 
, .  . 

\ I . -  
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~. - Fig 1: The DlPpn a-LlM configuration 

.~ theaynamics of the entire system can be rearfanged into, 
the following more compact fqrm _ _  . .  

. . .  

. .. 
. -  

- .  

F = M(q)ij +C(q,g.) +G(q) - ( 1 )  

where q = [ x e ,  @,I' IS -the generalized coordinates and 

F =[< OO]'is vector of the external force. The notations 
of the inertia matrix M,the Coriolis C, and gravity G, and 
the para-meters involved are shown in Table 1. 

111. PASSIVE SYSTEM AND PASSIVITY BASED CONTROL 

In this section, we try to design the controller which 
achieves the goal of moving the double pendulum from its - 
"natural stable hanging position" to its "unstable upright 
inverted position" while the cart driven by the LIM is 
brought to origin. To facilitate the controller design, .we 
briefly review some of the basic definitions. and the 
theorem ofpassivity theory [25]. . .  

3.1 Basic concepts and definitions of Passive System 
Consider an MIMO nonlinear system of the form 

x = f ( x )  + g(x)u 

Y =  h(x) (2) 
where x s ~ R "  -is the.state, # E  R"' is the input, y c  R"' is 

the output, f and g are C" vector fie'lds, and !I is a 

smooth mapping (i.e. C). It is assumed that the vector 
-field f has at least one equilibrium and without loss of 
generality we assume that . f (O) = 0 and h(0) = 0 .  Let U 
he the set of admissible inputs that consisting of all reaC 
valued piecewise continuous function defined on R"' , It is 
also assumed that for any U E  U and for 
any x ' = x ( O ) ~  R" , the output y( t ) .=h(Ht,  9 , u ) )  of 

system (Z), where q4(t,xo,u) denotes  the flow of 

f ( x ) +  g(x)u for any initial condition xo E R" and.for any 

U E  U ,  is such that ji1yr(s)$ ) I ds <oo ;forali 1-20, i.e. 

the energy stored in system (2) is bounded above. ; 
Definition l(251: A system (2) is said-to be C' passiveif 
there exists a C' nonnegative function V : R" i R ,  called 
the storage function, which satisfis.V(O) = 0,  such,that for 

a l l L E U .  P E R " ,  1 2 0 -  

- v ( x - V ( x 0 )  s / ' y ' ( s )u ( sps  . (3) 

Definition 21251: k passive sysfem Z -wirh storage 
fun2iion.V is said to be lossless iffor all U E  U .-x0 E R? 
t 2.0 

.~ 

. ?  . 

.o . 

.*v(x)-v(xo j = J ' y r ( s ) u ( s ) &  (4) 

Definition 31251: A passive system Z wi'th. storage 
function V is said b be strictly passive i f  there-exists a 
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positive definite function S : R” + R such that for all 
u - E U ,   ER", t 2O 

v ( x ) - v ( x o )  = c y r  (s)u(s)dr -Joss(x(sjjds ( 5 j  

Theorem 11251: Suppose Z is passive with a storage 
function V which is positive definite with no critical point 
other than x = 0 und such that L, V(x )  = 0 (i.e. Iassless 

system) and if D =  span{ad;g, :0<  k <  n - l , l S  i < m} has 
dimension n at eachx # 0 ,  then the control law 

U =-(L,V(x))‘ = -hr (x) (6 )  
globally asymptotically stabilize the system. 

3.2 Partial Feedback Linearizafion 
It has been shown that the dynamics of the double 

inverted pendulum ( I )  are not feedback linearizable with 
static state feedback nor through some nonlinear coordinate 
transformation [20]. The double inverted pendulum system 
belongs to the class of underactuated mechanical systems, 
which have fewer control inputs than the degrees of 
freedom. We first consider a general underactuated 
mechanical system with n generalized coordinates and m 
actuators. By partitioning the vector q , we get 9 =[9:  ,q:]  , 
with 9# corresponding to the passive variables and q, 
corresponding to the actuated variables. The dynamics of n 
degrees of  freedom of the general underactuated 
mechanical system with qs passive coordinates and 9,  
actuated coordinates can he written in the following general 
form [20]: 

M m i n  + M n i z  +Cs (4.9) +gn (4) = 0 
M,qn+cM_q~+C~(q,q)+g,(q)=f, (7) 

Here, M(q) i s ’ the  symmetric, positive definite inertia 
matrix, the C ( q , q )  includes Coriolis and centrifugal terms, 
G contains the terms derived from the potential energy, 
such as gravitational and elastic generalized forces, and f ,  
represents the input o f  the generalized forces produced by 
the nz actuators at q, . In the underactuated mechanical 
system (7), we first assume that all the parameters are 
known. Thus we may achieve a linear response from either 
link, but not both, by applying suitable nonlinear partial 
feedback linearization. Considering the first formula in (7), 
one gets 

By substituting (8) into the second formula in (7), one 
obtains 

where 

qe =-M-‘(M nn aX9,+Cn+gn) .’ (8) 

i G i _ q , + C r + g x = f x  (9) 

M m  =M_ - M ~ ~ M ; ; M . ,  

C, =c,-M,M;& (10) 

s, = g , - M , G g e  
Hence, a partial feedback linearizing controller can be 
defined according to equations (9) and (10) yielding 

where U is regarded as a new control input. As a result, the 
complete system can be rewritten as 

f ,  = nmu+q + g ,  (1 1) 

Mmqn + c, + g, = -M,,u 

4; = U  (12) 

Let the control input U be designed into t w o ~ p a r t s  
u = U= + ua , Then, U ,  and un are designed such that 9,  
and 9n will converge to zero as t 4 m ,. respectively. 

3.3 Passivity-Based Cokroller Design . . 

The partial feedback linearization approach transfers the 
original-system (7) into a simpler one (12) both in concept 
and in structure. For the reason of convenience, we rewrite 
system (12) in a more general form 

( 1 3 )  
e = f ( Q ) + g ( Q ) u  
X=Ax+Bu 

According to nonlinear Q -subsystem in (13), there exists 
the total energy V,(Q) . The time derivative of  the total 

energy V ( Q )  can be derived as 

= L,Vn + L&u (14) 

L,Ve = o  (15)  

By the assumption A.2, the double inverted pendulum 
system is lossless system. Thus, we have 

According to Theorem 1, if the control input is chosm as  

U = -(L&)7 (16) 
then the Q subsystem is globally asymptotically stable. 
On the other hand, the x -subsystem is globally 
asymptotically stable if the control input U is selected as 
U = - K x x  such that the transfer function K z ( s l -  A)- ’B  is 
strictly positive real. From the Passivity Theorem [22, 271, 
we know that the whole system can be rendered passive 
with the combined control input 

u = - ( L , V , y - K , x  (17)  
Remark In order to achieve the farmer control objective, 
i.e. t o .  stabilize the double inverted pendulum in the 
“unstable upright inverted position ”, the following two 
condifions should he satisfied. 
A)  x=O,x=O; 

B/ Vn = V ,  = g ( h c , l c ,  +2m,l, +?I ,  +mr,l, +mc,/c,);  
where the second condition refers to the double inverted 
pendulum at the desired unstable upright invertedposition 
with zero linear displacement and zero linear velocity. The 
explicit energy expression of the double invertedpendulum, 
when under the above conditions. is: 

q f h l , ~ C ~ ( ~ ~ z ) ’ + M ~ ~ ( ~ ~ ~ Q z  

+g(2(nlzL2+~4)cos(~4)+(nl l ,+d ‘%4 +%ld)CoStl) 
=V ‘p ( I  8) 

The control input which can successfully swing up the 
double pendulum from its “natural stable hanging position? 
to its “unstable upright inverted position” is shown to be 
U 4 , X - k  # 
%(T-YgX($,+%A t m , l , + ~ ~ . . e , + ~ m l , + ~ ~ ~ Q ~ ~ ~ ) )  

However, be  real control input is not “force”, but is 
“voltage” according to the full dynamics of double inverted 
pendulum system driven by LIM. Since the above proposed 
passivity based controller can make the system of 
pendulum globally asymptotically stable, in the following 
context we will assume that the desired motion trajectory 
xi of LIM can be sought. Hence, the problem to find the 
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forceltorque control to swing up .  th.e double inverted 
pendulum problem can he changed as motion tracking 
problem for an LIM. In the next section, we will propose a 
position controller to achieve the objective of motion 
tracking of the LIM. An adaptive position controller is 
proposed to deal with uncertainty of the mutual inductance. 

IV. ADAPTIVE BACKSIEPPING CONTROI.LER DESIGN, 

The fundamental difference between a rotary induction 
motor and a LIM is the finite length of the magnetic and 
electric circuit of the LIM along the direction of the 
travelling field. The open magnetic circuit causes an 
initiation of the socalled longitudinal end-effects [ 5 ] .  

For a LIM, the end effect with the load force can be 
represented as a function of the speed k , which can he 
normally simplified into the form 

2 

FE = c b n  x" + x  x M, x + b o +  bix +bixz 
" = O  

In this paper, the end-effect is assumed in the 
aforementioned form as FE = OV,' with the unknown 

constant parameters,@ = M ,  b o  b ,  b 2 ] ,  and a known 

function vector V,' =[i 1' i ' ,  , a ! ' ] .  The joint mass 

A4 = m, +Me is therefore also unknown, which leads to 

the total mechanical load with motor itself as F, = O'V, , 

where 0' =[M bo b, b,] . To proceed further, we 
introduce some more assumption as shown below: 
(A.6) x, = + 'LO, 

(A.7) The desired speed should be a bounded mooth 
,function with knownfirst and second onler time derivatives, 
then further simplify the dynamics shown in ( 1 )  by 
introducing a nonlinear coordinate transformation given as 
follows: 

[ 

x, = i,' +ij  

x3 +idad 

x4 =$Ad <i,,dq 
x5 = x  

Remarks: The transformation is trying to make the 
secondary flux norm, the electric force and the rotor speed 
as individual variables x 2 ,  x4 and xi, respectively, and 
certainly the nonlinear transformation is not unique. 
Intially, we adopt the stator voltage inputs as 

cv, =- " V [17,22], with such 

transformation, then the dynamical equations shown in ( I )  
can thus he transformed into the following dynamic model: 

x, =-2u,x, +2a,x, +(2x, /&)V 

x4 = - p x , x , - p p x , x , - ( q  + a n ) x a + J ; ; V  

i2 = -2u,x, + 2a,x, 
x, =a,x,+a,x,-(q +a,)x,+p<xa 

To control the system (19) we develop the position 
controller to achieve the goal x, + xd as introduced in the 
following section. 

Now, we introduce another state 

X6 = x, (20) 
to facilitate investigation of the development of a position 
controller. Then, define the tracking errors as follows: 

(21) 
Normally, while the position tracking error is driven to zero, 
the speed is also regulated to zero. Thus, we naturally 
define a joint error signal S as follows: 

where a is a positivc scalar gain, and note the case with 
a=O will be degenerated back speed tracking problem. 
Theorem 2. Consider an LIM whose dynamics are 
governed by system' (19) under the assumptions (A.6). 
Given a third-time differentiable smooth desired position 
trajectory xd with x d ,  x d ,  xd and xd being all hounded, 
then the following control input can achieve the control 
objective xr 3 xd (i.e. x6 = x, will follow xd 
asymptotically) with the control input 

e =x, -xd  A e6 

S = e,  +nep =ei +ne,,  (22) 

-aq v , V, =-- A d  V v,, = -- 
v c  J 1 . U ' c '  

for some PI, p2 > 0 ,and 

g Z ( 4  = px3x5 +Px2x, + (4 + a, - ab4  - pI W,x4 + r.% 1 
o;w, =(PI ++'w +-@W = ( p ,  ++Yw +-O, 'W'  

I I 

K ,  K ,  K ,  K ,  
with the parameter vector@' as well as the known function 
vector W'satisfying O'W = 
Proof: 
Step 1 .  Choose a different stabilizing function a, as 
follows 

W' . 

where 0 denotes the on-line parameter estimate. And, 
redefine the new error variables z, = S, z , = x4 -a, . 
Evaluate the time derivative of the Lyapunov function 
candidate 

along the solution trajectories to obtain 
1 ;  =-p,KiMz:+K,z,z,+OT(--O + z , W )  ( 2 5 )  
r, 

Devise the adaptation law as 
L i  

= @  = - r z w  , I  (26) 

for some proper positive adaptation gain r, , then (25) can 
be slightly simplified as: 
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V. SIMULATION RESULTS (27) f --  I - PIK,M4 +K,z,z, 
In our simulation, the parameters of the linear induction 

motor we use are according to Table 2. All the results will 
Step 2 .  The time derivative of z2 is now expressed as - 

2, = i4 -4 = -g,(x)- Or& +dx2V (28) 
where the function are as previously defined. Thus, we 
need to select a Lyapunov function candidate and design V 
to render its time derivative nonpositive. We want to apply 
the augmented Lyapunov function candidate as: 

be demonstrated in the following sections. 
The two-link Pendulum start form its “natural stable 

hanging position” (0, = K ,  O2 = 0 )  to its “unstable upright 

inverted position” ( 0, = 0, 0, = 0 ) while the LIM i s  

(29) 
I 

Vi = K + - z i ,  
2 

whose time derivative is found to be 
?, = -pK,M&+ K,z,z, +z2[-g,(x) -OF, +&VI, (30) 

The control law V should he able to cancel the indefinite 
term in (17). On the other hand, to deal with the unknown 
parameters 0, , we will try to employ the current estimates 

El,, i.e., 
I 

P’ =-[g,(x)+ 0,W; -K,z, -P2z,l, (3 1) & 
?, =-plK,A4z:+z26,W, - p 2 z :  (32) 

From this resulting derivative 

in order to cancel the last term in (32), we modify the 
Lyapunov function as below: 

(33) 
1 1 -  

Vj = + - z 2  +-0:i3,, 
2 ’ 2  

and the time derivative of V, hence is 

J 

ig. 3 Angle of Link One 0, Fig4. Angle of link Two O2 

VI. CONCLUSION 

In this oaner. we have Dronosed a nonlinear Dassivitv . .  , . .  
1 :  

p3 = - p , ~ , ~ z ;  +$(%w2 (34) 

Now, the term with 6 , c a n  be eliminated completely with 
the update law . .  

for some positive adaptation gain r2 ,which thus yields 

controller and an adaptive hackstepping controller for 
double inverted pendulum mounted on a linear induction 
motor. The controller which not only swing up but also 
balance the two linked inverted pendulums on the motor. 
Stability analysis based on Lyapunov theory is performed 
to guarantee the controller design is stable. Finally, the 
simulation results confirm thc effectiveness of our control 
design. 

r2 

. . ”  
0, = 0, =-r AW, 

ri, = - p , ~ ,  M~: - plz: 

(35) 

(36) 
which guarantees boundedness of all parameter estimates 
6 ,  4 and z,, z2 ,and z ,  E L2 n C . To show boundedness 
of the rest of states, we can rearrange the dynamical 
equations from system (19) as shown below: 
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Table 2: Specification and parameter of the motor 
Specification Parameters normal 

value 
Rs = 13.2R 
Rt  = 1 I . 78a  

3 Phase (Y-connected) 

Rated Air gap 0.12511 
Rated Current L3 =0.42H 

Rated Voltage 240V L. = 0.42H 
Lm = 0.4H 
M = 4.775 Kg 
B = 53Kglsec 

I ,  = 0.39m 

Rated Poles 
Pitch 46.5” 
Secondary length 82cm 
m, = 4.775 kg I m, =O.l2kg 

m2 =O.O2kg I ,  =0.395m 
mc, = 0.0Skg 
mc2 =O.OSkg 

IC, = 0.195 

1, = mc/: 112 

Table 1: Nomenclature 
no,m,,m, Mass of LIM and joints 
nd,mii Mass ofeach pendulum 

Length of each pendulum 
I , J 2  Moment ofinertia ofeach pendulum 

: , , I < ?  Length of each pendulum from axis to centre of 

q-(d-) Axis input stator voltage 

q-(d-) Axis input stator current 

Primary (secondary) resistance 
Primary (secondary) inductance 

q-(d-) Axis rotor flux 

Linear speed of the primary 

Position of the primary 
Primary mass 
Viscous friction coefficient 
Electromagnetic force 

Mechanical load force 

Mutual inductance 
Number of pole pairs 
Pole pitch 
Force constant (=3PLn2a /2~Lr )  
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