
Systems & Control Letters 21 (1993) 49-57 49 
North-Holland 

An adaptive variable structure control 
for a class of nonlinear systems* 

Chiang-Ju Chien 
Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan, Republic of China 

Li-Chen Fu 
Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan, Republic of China 

Received 29 September 1992 
Revised 24 January 1993 

Abstract: Motivated by the recent advance in adaptive output-feedback control for a class of nonlinear systems which can be 
transformed into the so-called output-feedback form [7, 10, 11], an adaptive variable structure controller is proposed in this paper to 
solve the nonlinear model reference adaptive control problem. It is shown that an asymptotic output tracking performance can be 
achieved for this class of nonlinear system even if some nonlinearity is not available or some unknown parameters are fast time-varying. 
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1. Introduction 

In the researches of adaptive control for affine nonlinear systems, it is usually assumed that the unknown 
parameters enter linearly into some known nonlinear vector fields. Based on the differential geometric 
approach [4, 13], an adaptive version of state-feedback linearizing control for such types of nonlinear 
systems has been developed I-1, 8, 9, 15-1 and an adaptive version of state-feedback input-output linearizing 
control is given in [14]. However, besides a number of constraints on the nonlinear systems, the above 
researches require the common assumption that the state measurement is available. Recently, in order to 
relax such assumptions, a more challenging problem has been proposed in the field of adaptive output- 
feedback control. Kanellakopollos et al. first derived observer-based [5-1 and indirect [6] adaptive output- 
feedback control for a class of nonlinear systems which can be globally transformed into a linear system with 
input nonlinearity under the assumption of output matching and sector-type conditions. Later, based on the 
adaptive observer-integrator backstepping approach, a more general class of nonlinear system which can be 
transformed into the so-called output-feedback canonical form has been studied in [7], where no output 
matching or sector-type condition is needed. Using the filter transformation technique and the backstepping 
concept, [10, 1 I] also propose output-feedback controls for the same class of nonlinear systems. 

In this paper we develop a new approach, which is different from those in [7, 10, 11], to solve the adaptive 
output-feedback control problem for a class of nonlinear systems using a variable structure method. The 
proposed adaptive variable structure scheme is also different from those in traditional linear model reference 
adaptive control (MRAC) systems [2, 3] where variable structure design is applied to the adaptation of some 
traditional control parameters. Using this new adaptation scheme, we release the standard requirement of 
the upper bounds on some unknown parameters which are frequently observed in the field of robust linear 
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MRAC. Appropriate  update laws are given to compensate for the unknown upper bounds on some unknown 
parameters. For  this class of nonlinear system with relative degree one, very mild assumptions are needed for 
the controller design and the asymptotic  output  tracking performance can be achieved even when the 
nonlinearity is not available or some unknown parameters are fast time-varying. Under  suitable conditions 
for control  parameters, the tracking performance of the output  error will in general be better than 
conventional  adaptive controllers for this class of nonlinear system. 

The paper is organized as follows: in Section 2, a detailed problem formulation for this class of nonlinear 
systems is given. An MRAC-based  error model is derived in Section 3 and then the adaptive variable 
structure controller is proposed. Section 4 gives some numerical simulations to demonstrate  the control  
performance of this adaptive scheme. Finally, a conclusion is drawn in Section 5. 

2. Problem formulation 

We consider an affine nonlinear system of the following form 

= f ( x )  + ~, f~( ) + g(x)u,  y = h(x), (1) 
i = l  

where ~,* . . . . .  ~* are some unknown parameters which may be time-varying, x e N" is the state vector, u s 
is the control  input, y e ~  is the control  output;  f, g , f ,  i = 1 . . . . .  m are smooth  vector fields with f(0) = 0, 
g(0) ~a 0 and h is a smooth  function with h(0) = 0, Vx e ~". The following is the most  relevant condit ion on the 
nonlinear system described above throughout  this paper. 

• Assumption I. The nonlinear system described in (1) can be transformed into the following output-  
feedback form: 

m 

2 = A z  + p o ( y ) +  ~ O * P i ( Y ) +  ba(y)u  ~ - A z +  P(y )  7 t* + b f f ( y ) u ,  y =  cTz, (2) 
i = 1  

, . .  

1 ' "  

A =  ". b =  c T = [ 1  0 . . .  0], 

0 '"  

0 ' "  

where 

I m a  1 1 
- -  a 2  0 

-- an_ 1 0 
[_ - a .  0 

01 0 

1 

0 

h i  E nl 
P(Y) = [Po(Y),Pl(Y)  . . . . .  P,,(Y)] e N"×~"+'), 7 t* = [ t ,  0* . . . . .  0 " ]  T E N " + ' .  

In particular, (c, A) is an observable pair, a j, b j, j = 1 . . . . .  n are unknown constants, o(y) ~a 0, Vy e ~ is 
a known nonlinear function and Pi(Y)~ R", i = 0 . . . . .  m are some nonlinear vectors. Here, we assume that 
P(y )  is not  available but bounded  by some known function Q(y)  such that IP(y)I <- ~IQ(y)I + K for some 
unknown positive constant  ~c. Furthermore,  ~(y) and P(y )  are uniformly bounded if y is uniformly bounded 
and I ~P*l < K for some rc > 0 if ~,* is time-varying. 

The following proposi t ion gives a sufficient and necessary condit ion to ensure the existence of the 
t ransformation stated in Assumption I. 

Proposition 2.1 (Kanellakopoulos et al. [7], Mar ino and Tomei [10, 11]). The sys tem (1) can be transformed 
into (2) via a 9lobal state space transformation z = T(x),  T(O) = 0 if  and only i f  the fol lowin9 conditions are 

satisfied ]'or all x ~ ~", 

(1) rank {dh(x), d L z h ( x )  . . . . .  dL}-  ~ h(x)} = n, 
(2) [ad~r, ad~r3 = 0, i , j  = O, 1 . . . . .  n - 1, 



C.-J. Chien, L.-C. Fu / An  adaptive variable structure control 51 

n t 

(3) ( - 1)"ad)r = ~s=l  [( - as) + Poj(Y)]( - 1)"-Sad~ -st, where Po(Y) = [Pol(Y) . . . . .  P0,(Y)] T, Poj(Y) = 
Y t 

So poj(S) ds. 
(4) I f .  a d ~ r ]  = 0, i = 1 . . . . .  m,  j = 0, 1 , . . . ,  n - -  2, 

(5) [9, ad~r] = 0, j = 0, 1 . . . . .  n - 2, 
n (6) g = cr(y)~j= 1 bs( - 1)"-Jad~-Sr, 

(7) the vector fields ad)r, j = 0 . . . . .  n - 1 are complete, where r is the veetor field satisfyin9 

~ {~ i f j = 0 , 1  . . . . .  n - 2 ,  (3) 
LrL h =  i f j = n -  1. 

In order to suit the controller design purpose here, another condition on the system in (1) is needed to 
guarantee the feasibility of applying output feedback and variable structure control. The following are the 
investigations of the condition and the resulting effect. 

• Assumption II. The polynomial b l  s n - 1  + • • • + b,_xs + b, is Hurwitz and bt # 0. 

Proposition 2.2 (Marino and Tomei [11]). I f  the nonlinear system (1) satisfies Assumptions I and II, then, the 
zero dynamics of ( l )  is exponentially stable and can be expressed, in suitable global coordinates, by a linear 
asymptotically stable system as 

r 1 
-b .2 /bl  1 0 .... O. 

z =  - b , -1 /b ,  0 0 ... 1 5 

L - b , / b l  0 0 .'. 0 

Finally, to make the problem posed above tractable, one more condition is necessary. 

• Assumption III. The sign of bl is assumed to be known and without loss of generality, we assume bl > 0. 

Remark 2.3. When Assumptions I-III  are satisfied, the nonlinear system (1) with relative degree one can be 
transformed, via z = T(x), into (2) and the transfer function 

bls"-~ + . . . + b ,  (4) 
G ( s ) = c V ( s l - A ) - l b - s ,  + a l s . _ l  + . . . + a ,  

is a minimum phase system with known relative degree and sign of high-frequency gain. However, the 
parameters as, bj in G(s) are assumed to be unknown before controller design. Furthermore, we allow the 
unknown parameters ~* to be time-varying and the nonlinearity P(y) to be not available, which is more 
general than in [7, 10, 11]. 

3. The adaptive variable structure controller 

For the nonlinear system described in Section 2, the control objective is to design the input u(t) through an 
adaptive controller such that the output y(t) of the nonlinear system tracks the output y,.(t) of a linear 
time-invariant reference model described by y,,(t) = M(s)I-r,,] (t), where M(s) is a stable system with relative 
degree one and rm(t) is a uniformly bounded reference input. 

The basic strategy used to construct the error model between y and y,, is the traditional model reference 
adaptive control concept [ 12]~ However, instead of the conventional model reference adaptive control, a new 
adaptive variable structure control will be given in order to get better robustness and tracking performance. 
First, from the point of view of frequency-domain representation, (2) can be described as 

y = G(s)[a(y)u] + ~ Gs(s)[(P(y)gJ*)2 ], 
j = l  
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where G(s) is defined as in 

S n - 1  

t~j~s) = s" + al s"- ] + 

and (P(y)7J*)j denotes the 

y = G(s)[~(y)u + 
j = l  

N o w  define 

(4), 

. . . + a  n 

j th  element of P (y )~* ,  which can be rewritten as 

• 1 
S n - j 

bls  ~-~ + ?- • + b . ( P ( Y ) ~ * b  • i5) 

~ ,  S n - 3  

v = tr(y)u + j=l b ls" -  1 +- . .  • + b. (p(v)Tj.)j. a___ rr(y)u + a 

then, from the tradi t ional  model  reference adapt ive  control  s trategy [12], it can easily be shown that  there 
exists 0 *  = [0" . . . . .  0 * . ] T ~  2" and 0". > 0 such that  if 

a(s) 
~ E ~ ]  

a ( s )  r 7 

v = [0" . . . . .  07.] n~s) LYJ 
, ( 6 )  

Y 

Fm 

where a(s)= [1, s . . . . .  s"-2]  +, n(s) is a monic  Hurwi tz  polynomial  of degree n -  1, then the closed- 
loop transfer function f rom r,. to y equals M(s). F r o m  (6), one can readily find that  u in fact satisfies 

a(y)u = [0~ . . . . .  07.] 

a(s) 
~ )  [a(y)u] 

a ( s )  r 

n(s) LYJ 

Y 

rm 

a(s) 
+ [o*  . . . . .  0.*_1 ] ~ [a ]  - a 

where 

-&& (~*Tw q- ~ Ai(s)(P(y)~P*) j, (7) 
j = l  

A (s) = + • • .  + ) -n~s; - 1  b , s ' - ' + . . . + b .  

is p roper  stable or strictly p roper  stable. Note  that  (7) is usually referred to as the matching condit ion for the 
tradit ional  model  reference adapt ive  control  scheme. But since aj, b;, ~*  are not  known,  69* and A;(s) will 
not  be available in advance,  and hence (7) cannot  be used to design the controller. However ,  (7) can actually 
be used to describe the output  function y f rom the i npu t -ou tpu t  opera to r  point  of view as 

y = M(s)IO*d-l (a(y)u  -- O*Tw -- j~=l Aj(s)(P(y)~*)j)  + rm]. 



C.-J. Chien, L.-C. Fu / An adaptive variable structure control 53 

If we define the t racking error  eo as y - y.,, then the error  model  due to the unknown parameters  can readily 
be found as follows: 

eo = M(s)O*~-l [a(y)u - O*Vw - ~ Aj(s)(P(y)tP*)jl .  (8) 
j = l  

By Assumpt ion  II, the reference model  M(s) can be chosen to be strictly positive real (SPR), and for the 
following state-space realization of (8), 

d o = A m e + b m O * ~ l ( ~ r ( y ) u - O * T w - ~ A j ( s ) ( P ( y ) ~ P * ) j ) ,  eo=cTme (9) 
j = l  

the triplet (A,., bin, c,.) will satisfy 

P,,Am + ATpm = - 2Q,.; Pmbm = c,.; CTm(SI -- A,.)-Xb,.  = M(S) (10) 

for some P m =  pT > 0, Qm > 0. Let l-I denote  the absolute  value of any scalar or  the no rm of any vector  or  
matrix.  The  adapt ive  variable structure control ler  is now designed as 

sg~n (eo ) (ill (t)lw(t)l 
I 

u(t) - + fl:(t)m(t) +/~3(t)), 
~rty) 

(11) 

f 1 if eo > 0 
s g n ( e o ) =  0 if e o = 0  

-- 1 if eo < 0, 

with re(t) being defined as the bounding  function 

m(O = sup IQ(y(T))I (12) 
t>'C 

and ill(t), fl2(t), fl3(t) being the control  pa ramete rs  to be updated.  Since Aj(s) is a stable p roper  or  strictly 
proper  transfer function, it is easy to show that  there exist positive constants  fl* and fl* (depending on 
7 ~*, 0* . . . . .  0"_ 1, bl . . . . .  b., x) such that  

Ai(s)(V(y)tP*)j < fl*m(t) + fl~. (13) 
j = l  

So, if we define [O*l = fl* and choose a L y a p u n o v  function 

1 1 
V = 5eTpme + ~ ( f l i -  fl,)2, 

i=l  

with P~ = Pm > 0 sat isfying (10) and  )'1,72,  73 > O, then, 

(I = - eTQm e + ~ tr(y)u -- O*Tw -- Aj(s)(P(y)~'*)~ + (fli -- fl*)fl, 
j = l  i= l  e°( ) 

- 0"~ (/~i-/~*)lwl + ( f12  - -  f l * ) m  + ( f13  - -  f l~) "~- ( f l i -  f l~)fi i" 
i = 1  

Let the adapt ive  law be designed as 

fit = 71leo[ Iwl, /~2 = 721eolm, fi3 = Y31eol, (14) 

with fl~(0) > 0, then I? will now satisfy 17 < - qmlel 2 for some constant  q., > 0. 
N o w  we are ready to state the main  result abou t  the p roposed  controller.  
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Theorem 3.1. Consider the nonlinear system (1) satisfying Assumptions I IIl. I f  the controller is designed as in 
(1 l) (12) and the parameter update law is chosen as in (14), then the tracking error eo will converge to zero 
asymptotically and all signals inside the closed-loop system remain uniformly bounded. 

a(s) 
Proof. Since I /<  - q,,lel 2, we have e~L2  ~ L~, and ill, f12, f13, Y, P(Y), m ~ L ~ .  Let wt = n ~  [a(y)u], from 
(5) wl in fact satisfies 

• ] w, = alstF  ' I s t e y l -  
n(s)U j=t bl s ' - I  + " "  + b, (P(y)gt*)2 

f 

Since y is uniformly bounded, this implies wx is uniformly bounded and hence u and all signals inside the 
closed-loop system are uniformly bounded. Finally, we conclude that ~ • L~ by (9) and e will converge to zero 
asymptotically by Barbalat's lemma [12]. This completes our proof. [] 

Corollary 3.2. Consider the system setup in Theorem 3.1. I f  ill(O) >_ fl*, i = 1, 2, 3, then the output error will 
converge to zero in finite time with all signals inside the closed-loop system remaining uniformly bounded. 

Proof. Consider the Lyapunov function V(e) = l e tpme ,  where P,, satisfies (10). Then under the adaptive 
variable structure controller (11), (12) and (14), we have 

= -- eTQme -- IO~l ((ill -- fl*)lwl + (,q2 - fl*)m + (f13 - fl*)) -< - eT Qm e, 

since ill(t) >_ fli(O), Vt > O. This implies e is uniformly bounded and e approaches zero at least exponentially 
fast. Furthermore, by the fact that 

eo0o'= eoct  O <_ leol{lct Amllel - ((ill - /~*) lwl  + (f12 - -  fi*)m + (fla - fl~'))} 

there exists a finite time Ts such that eoOo -< - ~cleol < 0 for all t >_ Tf and leol ~- 0, and hence, the sliding 
surface eo = 0 is guaranteed to be reached in finite time. Consequently, fli and all signals inside the 
closed-loop system will now be uniformly bounded. [] 

Remark 3.3. In this paper, the bounds on fi*, fl* and fl* are not assumed to be available and suitable integral 
update laws on ill, f12 and fla are given so that only asymptotical tracking performance is obtained. However, 
in order to get a good tracking performance, it is reasonable that the initial conditions fll (0), f12(0) and f13(0) 
are set large enough in the beginning according to Corollary 3.2. Simulation results really show that the 
choice of fli(0) affects the transient behavior of the tracking performance. 

Remark 3.4. Theoretically, the adaptive variable structure scheme will stabilize the closed-loop system no 
matter what fli(0)'s are. However, as discussed in Remark 3.3, the low magnitude of the control parameters 
will to some extent affect the tracking performance. The adaptation gains 71, 72 and 73 in (14) will now play 
an important role in improving the transient behavior of the tracking performance. This is because large 
adaptation gains will provide high adaptation speed and, hence, increase the control parameters to a suitable 
level of magnitude so as to achieve the aforementioned feature as quickly as possible. 

Remark 3.5. It is well known that chattering behavior will be observed in variable structure design. The 
remedy for this kind of behavior is the introduction of the boundary layer into the controller design. In our 
adaptive variable structure scheme, it is easy to modify u(t) in (11) as 

u(t) -- - ~ ) ° )  (fll(t)lw(t)[ + fl2(t)m(t) + fl3(t)) 

J~sgn(eo) if le0l > e 
7 ~ ( e o )  

(eo/~ if l eol -< 

for some small ~ > O. Note that u(eo) is now a continuous function. 
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4. S i m u l a t i o n s  

We consider the same nonlinear system in [11] 

xl = x2 + ~b*(e y -- 1), X2 = X3, X3 = U, y = Xa + 2X2 + X 3, (15) 

which is not state-feedback linearizable and does not satisfy the global Lipschitz condition. However, this 
example is a relative degree one system which satisfies Assumptions I and II. Indeed, the linear transforma- 
tion z~ = x~ + 2x2 + x3, z2 = x2 + 2 X 3 ,  z 3  = X3 brings the system (15) into the following output-feedback 
form 

i1] 101 ll iyl ill e2 = 0 l ] l z = / +  0 + u, y = I-1 0 0 ]  z2 . 

3 0 0J LZ3J 0 3 

Let the initial condition of (15) be y(0) = 1. The adaptive controller is designed as follows: 

• Controller 1 (adaptive variable structure controller) 

u = - s g n ( e o ) ( f l l l w l  + / 3 2 m  + / 3 3 )  

• Controller 2 (adaptive variable structure controller with boundary layer e = 0.01) 

u = 7Z(eo)(/311wl +/32m + / 3 3 )  

where 

m = s u p e  rc~), w =  [u] s - -~ -6 [y  ] y rm and /31, i = 1,2,3 
t_>r 

are the control parameters updated by (14) with ~,1 = 72 = 73  = 1. The reference model and reference input 
are chosen as 

f 1 
5 --1 

M ( s )  - rm(t) = 
s + 5 '  1 

1 

if t < 2  

i f 2 < t < 4  

i f 4 _ < t < 6  

i f 6 < t < 8 .  

Four  simulation cases are now described. 

(i) Figure l(a)-(d) are the simulations for ~b* = 5 (time-invariant case) with Controller 1. The initial 
conditions for update law (14) are set to be/31(0) = 3, f12(0) = 2,/33(0) = 0.1. Nice tracking performance 
between y and Ym is achieved in Fig. 1 (a). However, chattering behavior in control input is also observed in 
Fig. l(c). 

(ii) Figure 2(a)-(d) are the repeated simulations as in case (i) except that Controller 1 is replaced by 
Controller 2. The control performances are hardly affected by the redesigned scheme but obviously the 
chattering is drastically improved. 

(iii) Figure 3(a)-(d) are repeated simulations as in case (ii) except that ~k* = 5 sin(10t) (time-varying case). 
(iv) Finally, in order to study the effect of initial choice of/3i(0), we repeat the simulation case (iii) but 

reduce /3i(0) to be /31(0)= 1.5, fiE(0)-- 1, /33(0)= 0.1. As shown in Fig. 4(a), the tracking performances 
between y and Ym are not as good as those in simulation case (iii). However, the large output error results in 
rapid increase in the magnitudes of control parameters/3i, and hence, after a transient period, satisfactory 
tracking performance is again ensured. 
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Fig. 1. Simulations for ~O* = 5 with Controller h (a) plant output versus model output; (b) bounding function; (c) control input; 
(d) control parameters. 
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Fig. 2. Simulations for ~0" = 5 with Controller 2: (a) plant output versus model output; (b) bounding function; (c) control input; 
(d) control parameters. 
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Fig. 3. Simulations for ~b* = 5 sin(10t) with Controller 2: (a) plant output versus model output; (b) bounding function; (c) control input; 
(d) control parameters. 
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Fig. 4. Simulations for the case as in Fig. 3 but with reduced ill: (a) plant output versus model output; (b) bounding function; (c) control 
input; (d) control parameters. 

5. Conclusion 

Under some suitable coordinate free geometric condition, a affine nonlinear system can be transformed, 
via a state transformation, into a so-called output-feedback form which is a linear system driven by some 
nonlinear functions. An adaptive variable structure controller is then proposed in this paper to solve the 
nonlinear model  reference adaptive control problem. It is shown that the asymptotical output tracking 
performance can be achieved for this class of  nonlinear systems with relative degree one even when some 
nonlinearity is not available or some unknown parameters are fast time-varying. Under suitable conditions 
for control parameters, the tracking performance of the output error will in general be better than 
conventional adaptive controllers for this class of nonlinear system. 
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