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Abstract

When tracers are introduced into an injection borehole, the resulting non-axisymmetrical plume undergoes transverse

dispersion during transport to the extraction well in a radially convergent tracer test. The transverse dispersivity governs the

shape of the breakthrough curves observed at a point between the extraction and injection wells. Accordingly, concentrations

monitored at the extraction and observation wells can be used to simultaneously determine the longitudinal and transverse

dispersivities. This study presents a two-dimensional Laplace transform finite-difference (LTFD) model to examine the effect of

the finite mixing volume of an injection well bore on non-axisymmetrical transport during a radially convergent tracer test. The

developed model was compared to the analytical solution to evaluate the accuracy of the model. Comparative results suggest

that the LTFD model with an upstream weighting technique incorporating an extra fine mesh, can be used to effectively and

accurately solve the radial advection–dispersion equation with large Peclet numbers. Two tracer tests with distances 5 and

25 m, were considered to investigate the effect of inter-well distance on the role of injection well bore storage. Simulation

results reveal that injection well bore mixing volume significantly decreases the peak concentration and spreads out the

breakthrough curve obtained in the tracer test with a 5 m inter-well distance. When the inter-well distance increases to 25 m, the

injection well bore mixing volume weakly affects the tracer transport.

q 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Tracer tests attempt to determine solute transport

parameters, such as aquifer porosity, the dispersion

tensor and hydrogeological properties. A radially

convergent tracer test facilitates the recovery of

injected mass, reduces the effect of apparent dis-

persion due to a flow field, and minimizes the

influence of a natural hydraulic gradient. Thus,

radially convergent tracer tests are particularly useful

when transport characteristics, rather than hydraulic

properties, are to be determined. These studies and

experiments in this area are commonly limited to the

analysis of breakthrough curves in the extraction well,

although new sampling technologies are available for
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measuring concentration in the field (Mackay et al.,

1994). The models’ complexity is such that the

analysis is often reduced to adjusting one-dimensional

solutions (Thorbjarnson and Mackay, 1994), rather

than involving the more accurate two-dimensional

models.

Predictive and interpretive models of radially

convergent tracer tests have been developed as

axisymmetrical models (Sauty, 1980; Guvanasen

and Guvanasen, 1987; Moench, 1989, 1991, 1995;

Welty and Gelhar, 1994; Wang and Crampon, 1995;

Chen et al., 1996; Becker and Charbeneau, 2000).

Axisymmetrical models typically consider only longi-

tudinal dispersivity. In a related work, Guvanasen and

Guvanasen (1987) first took the transverse dispersion

into consideration and derived an approximate two-

dimensional, semi-analytical solution in streamline

and equipotential coordinates to describe the non-

axisymmetrical tracer transport. Their solution, how-

ever, is appropriate for the generation of breakthrough

curves only. Guvanasen and Guvanasen (1987)

observed the discrepancy between their approximate

solution and the verified finite element solution for

small Peclet numbers. Given the importance of

solving this non-axisymmetrical problem, Chen et al.

(1999) presented a two-dimensional mathematical

model in cylindrical coordinates to illustrate

the non-axisymmetrical tracer transport in a radially

convergent tracer test. They also proposed a curve-

fitting method that involved a theoretical break-

through curve at an intermediate point, to evaluate

transverse dispersivity, which could not be deter-

mined by a one-dimensional model. The method does

not, however, allow mixing in either the extraction or

the injection well bores.

Moench (1989) considered the effect of both

extraction and injection well mixing volumes in

radially convergent tracer tests, suggesting that both

extraction and injection well bore mixing volumes can

markedly affect systems with low porosity. In

particular, both extraction and injection well bore

mixing volumes can cause significant spreading of the

breakthrough curves and can shift the arrival time of

the peak concentration in such systems. Moreover,

from the definitions of extraction and injection well

bore mixing factors (Moench, 1989), both effects are

almost identical if the diameters of the extraction and

injection wells are equal.

Zlotnik and Logan (1996) pointed out that Moench

(1989) improperly formulated the boundary con-

ditions at the injection well. Zlotnik and Logan

(1996) derived an improved boundary condition based

on a detailed analysis of flow and advective transport

in the injection well, demonstrating that the improper

use of the model derived by Moench (1989) could

produce incorrect breakthrough curves for the extrac-

tion well under conditions that involve a significant

mixing factor in the injection well. A numerical

example indicated an error of up to 70% in the peak

concentrations of a breakthrough curve and of 10% in

the peak arrival time for a Peclet number of 100

(Zlotnik and Logan, 1996).

This work investigates the effect of injection well

bore mixing volume on non-axisymmetrical transport

in a radially convergent tracer test, using the

formulations of Zlotnik and Logan (1996). A Laplace

transform finite-difference (LFTD) model is devel-

oped to evaluate the effect of well bore mixing volume

on the movement of a tracer. The result represents an

improvement in the accuracy of the determined solute

transport parameters, including aquifer porosity, and

longitudinal and transverse dispersivities.

2. Mathematical model

The tracer test in a radially convergent flow field is

considered. The flow field is generated by a fully

penetrating well of radius rW located on the vertical

axis at r ¼ 0; u ¼ 0; and fluid pumped at a constant

volume rate of Q from a homogeneous and isotropic

aquifer of infinite horizontal extent (Fig. 1). The

seepage velocity V caused by extraction is given by,

V ¼ 2
A

r
ð1Þ

where A ¼ Q=2pbf; and b and f represent the aquifer

thickness and effective porosity, respectively. When a

field test is initiated, once water levels are stabilized, a

tracer is introduced into the injection borehole with a

radius rI and a center point (rL; p) from which it flows

out of the injection borehole (Fig. 1). The concen-

tration distribution Cðr; u; tÞ is not axisymmetrical.

The configuration in Fig. 1 is symmetrical around the

line that passes through the extraction and injection

wells. Thus, only one half-plane is considered.
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Mechanical dispersion is assumed to follow Fick’s

law in that the longitudinal and transverse dispersion

coefficients are proportional to the velocity. The

effects of molecular diffusion are assumed to be much

smaller than those of mechanical dispersion.

The tracer transport equation in cylindrical coordi-

nates is,

aLA

r

›2C

›2r
þ

A

r

›C

›r
þ

aTA

r3

›2C

›2u
¼ R

›C

›t
ð2Þ

where aL and aT denote the longitudinal and

transverse dispersivities, respectively, and R is a

retardation factor.

The aquifer’s initial tracer concentration is

assumed to be zero before the test is started

Cðr; u; 0Þ ¼ 0; rW # r # rL ð3Þ

A mass balance at the well screen, used to ensure

perfect mixing, is considered to account for the

influence of mixing in the extraction well. The outlet

boundary condition, which describes the solute

transport between the extraction well and aquifer is,

pr2
WhW

›CWðtÞ

›t
¼ 2prWfbaL

A

rW

����
���� ›Cðr; u; tÞ

›r
at

r ¼ rW

ð4Þ

where hW is the mixing length of the extraction well,

and CWðtÞ denotes the tracer concentration in the

extraction well (Hodgkinson and Lever, 1983;

Moench, 1989).

The initial condition applied to Eq. (4) implies that

the well bore contains no contaminant before pump-

ing begins, and is given by,

CWð0Þ ¼ 0 ð5Þ

If the volume of water in the well bore can be

neglected, then Eq. (4) becomes the commonly

used condition ›C=›r ¼ 0 at the extraction well ðr ¼

rWÞ:

Zlotnik and Logan (1996) considered flow and

transport in a ring-shaped domain centered at the

extraction well, bounded by circles of radii r ¼ rW

and rp ¼ rL 2 l ðl p rLÞ; in deriving the boundary

condition at the injection well. The physical

assumption is that advective transport dominates

dispersive transport at a small distance l < 5rI

downstream in the discharge zone of the injection

well.

Therefore the concentration distribution Cðr; u; tÞ

at a distance r ¼ rp from the extraction well obeys the

Fig. 1. Schematic diagram of a convergent radial tracer test after Chen et al. (1999): (A) cross section; (B) plane view.
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following boundary condition,

aL

A

r

›Cðr; u; tÞ

›r
þ

A

r
Cðr; u; tÞ

¼

A

r
CIðtÞ p2 d , u , p

0 0 , u , p2 d

8><
>: r ¼ rp < rL ð6Þ

where CIðtÞ is the concentration generated in the

injection well and transported downstream through

the narrow and short (a few well diameters)

discharge zone by advection. This small zone with

advection-dominated flow has an aperture angle of

2d: The aperture angle of this narrow zone at the

distance rp < rL 2 l from the center of extraction

well is,

2d ¼
2arI

rL

ð7Þ

where a is a factor that defines the distortion of

distances between the two most widely separated

stream lines that enter (or leave) the injection well.

This parameter also depends on the skin effect

for an injection well (Zlotnik and Logan, 1996;

Eq. (3)). a ¼ 2 for uniform isotropic aquifer with

a well without a skin. For skins with

high conductivity, 2 # a # 4; whereas for skins

with low conductivity, 0 , a # 2 (Drost et al.,

1968).

The effluent concentration from the injection well

in an ambient horizontal flow is yet to be determined.

The effluent concentration from the well with an

initial dissolved tracer mass, M0; satisfies a mass

balance equation for the tracer in the borehole:

22arIfblVðrLÞlCI ¼ pr2
I hI

dCI

dt
ð8Þ

CIð0Þ ¼
M0

pr2
I hI

¼ C0 ð9Þ

where hI is the mixing length of the injection well

(Zlotnik and Logan, 1996; Eq. (6)).

After integration, the known effluent concentration

CIðtÞ can be substituted into the boundary condition,

Eq. (6). The physics of the problem stipulate that C is

a single-valued function in r and u coordinates.

Moreover, C is a continuous and symmetrical

function across u ¼ 0 and u ¼ p: Thus, the boundary

conditions in the transverse direction are as follows

›Cðr; 0; tÞ

›u
¼ 0 ð10Þ

›Cðr;p; tÞ

›u
¼ 0 ð11Þ

The definitions of the dimensionless variables are

similar to those used by Chen et al. (1999). Following

Moench (1989), substituting the definitions given in

Table 1 into Eq. (2) yields the dimensionless transport

equation in the following form

1

Pe

1

rD

›2C

›r2
D

þ
1

rD

›C

›rD

þ
1

Pe

aD

r3
D

›2C

›u2

¼
2R

1 2 r2
WD

›C

›tD

ð12Þ

Table 1

Dimensionless parameters used in the mathematical model (after

Moench, 1989; Zlotnik and Logan, 1996)

Dimensionless quantity Expression

Time tD ¼
Qt

phfðr2
L 2 r2

WÞ

Distance rD ¼
r

rL

Extraction well radius rWD ¼
rW

rL

Injection well radius rID ¼
rI

rL

Peclet number Pe ¼
rL

aL

Dispersivity ratio aD ¼
aT

aL

Extraction well mixing factor mW ¼
r2

WhW

fhðr2
L 2 r2

WÞ

Injection well mixing factor mI ¼
rIrLhI

fhðr2
L 2 r2

WÞ
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Consequently, the initial conditions and boundary

conditions become,

CðrD; u; 0Þ ¼ 0 ð13Þ

mW

›CWðtDÞ

›tD

¼
1

Pe

›CðrD; u; tDÞ

›rD

at r ¼ rW ð14Þ

CWð0Þ ¼ 0 ð15Þ

1

Pe

›CðrD; u; tDÞ

›rD

þ CðrD; u; tDÞ

¼
CIðtDÞ p2 d , u , p

0 0 , u , p2 d

(
ð16Þ

2CI ¼ mI

dCI

dtD
ð17Þ

CIð0Þ ¼ C0 ð18Þ

›CðrD; 0; tDÞ

›u
¼ 0 ð19Þ

›CðrD;p; tDÞ

›u
¼ 0 ð20Þ

This study adopts the LTFD method to solve the

initial boundary value problem specified by Eqs.

(12)–(20). Appendix A provides a detailed derivation

of the LTFD method.

3. Model verification

3.1. Verification of the model accuracy

The axisymmetrical Laplace-domain analytical

solution for a convergent tracer test of the Moench

(1989, 1991) solution is used to test the accuracy

of the developed LTFD model. Table 2 summarizes

the simulation conditions and transport parameters

for verification of the two practical tracer tests.

Notably, the LTFD model determines the solution

analytically in the u coordinate and numerically in

the radial coordinate. A uniform grid mesh was

used to discretize the radial distance in this LTFD

model. Numerical procedures based on the finite-

element or finite-difference methods performed well

for dispersion-dominated transport (small Peclet

number), but suffered from excessive artificial

oscillation and numerical dispersion when applied

to advection-dominated transport (large Peclet

number). The problem of artificial oscillation can

be solved by upstream weighting. Upstream

weighting, however, tends to aggravate the numeri-

cal dispersion problem. The study used upstream

weighting to prevent the artificial oscillation, and

employs an extra fine grid mesh to eliminate

numerical dispersion. The grid numbers, Ngrid;

required to eliminate numerical dispersion are

considered here. Fig. 2 compares the breakthrough

curves of Moench’s analytical solution and those of

the LTFD solution for various grid numbers. Two

solutions agree closely for a small Peclet number

of Pe ¼ 1 (Fig. 2). The LTFD model with a coarse

grid mesh ðNgrid ¼ 100Þ yields numerical results

with noticeable numerical dispersion for Pe ¼ 10:

The dispersion becomes significant for Pe ¼ 100:

The LTFD solutions of the fine grid mesh ðNgrid ¼

1000Þ agree well with analytical solutions for Pe ¼

1 and 10, yet the error from the numerical

dispersion becomes noticeable at Pe ¼ 100: By

employing the extra fine grid mesh ðNgrid ¼

10; 000Þ; the LTFD solution agrees closely with

the analytical solution for all ranges of Peclet

numbers. Increasing the grid numbers reduces and

eventually eliminates the numerical dispersion of

the difference between the concentration in the

analytical solution and that in the LTFD solution.

Although the method is computationally intensive,

requiring, for example, a combination of numerical

Table 2

Numerical values used in the model verification for two practical

tracer tests

Parameter Test 1 Test 2

Pumping rate, Q (m3/min) 2 2

Aquifer thickness, h (m) 10 10

Effective porosity, f (dimensionless) 0.2 0.2

Radius of extraction well, rW (m) 0.1 0.1

Extraction well mixing length, hW (m) 10 10

Radius of injection well, rI (m) 0.1 0.1

Injection well mixing length, hI (m) 10 10

Distance to the injection well, rL 5 25

Injected mass, M (kg) 10 40

Longitudinal dispersivity, aL (m) 5, 0.5, 0.05 25, 2.5, 0.25

Peclet number, Pe (dimensionless) 1, 10, 100 1, 10, 100

Transverse dispersivity, aT (m) 1, 0.1, 0.01 5, 0.5, 0.05

Dispersivity ratio, aD (dimensionless) 0.2 0.2
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Laplace transform inversion, finite Fourier cosine

transform inversion and finite-difference techniques,

the overall CPU (central process unit) time used in

the above three cases is less than 30 min on a

Pentium IIIw computer.

Comparing the analytical solutions with the LTFD

numerical solutions reveals that the LTFD model with

an upstream weighting technique and an extra fine

grid mesh can effectively and accurately solve the

radial advection–dispersion equation with a large

Peclet number.

3.2. Mathematical behavior of the finite Fourier

cosine inversion

The finite Fourier cosine inversion in Eq. (A13)

is given in the form of an infinite series. Infinite

series can be straightforwardly evaluated. Yet, the

fact that sufficient terms of the series must be

summed to yield an accurate result needs to be

considered. The dependence of the required number

of terms on Peclet number provides an insight into

the convergence of the finite Fourier cosine inver-

sion. Table 3 presents the required number of series

terms for rD ¼ 5 and for various Peclet numbers and

dimensionless dispersivity ratios at a tolerance of

1026: Give a fixed tolerance error, the number of

terms to be summed increases with Peclet number

and decreases as the dimensionless dispersivity ratio

aD increases. The required numbers of series terms

in the finite Fourier cosine inversion are 8, 24, and

48 for Pe ¼ 1; 10, and 100, respectively. For the

same fixed tolerance and Pe ¼ 10; the required

numbers of series terms in the finite Fourier cosine

Fig. 2. Comparison of the developed LTFD model with different grid numbers and Moench’s solution for Pe ¼ 1; 10, and 100.
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inversion are 24 and 16 for aD ¼ 0:2 and 0.4,

respectively.

4. Effect of well bore mixing volume

The developed LTFD model is applied to

illustrate the effect of injection well bore mixing

volumes on non-axisymmetrical contaminant trans-

port in a radially convergent tracer test. Grid

number 10,000 was used to discretize the mesh

radially. Fig. 3 compares the concentration contours

in Test 1 of the hypothetical tracer tests with and

without the injection well bore mixing volume for

30, 60 and 90 min, with a Peclet number of 100

and an inter-well distance of 5 m. The solid

and dashed lines in Fig. 3 represent the

concentration contours of a tracer with and without

the injection well bore mixing volume, respect-

ively. Fig. 3 reveals that the advancement of

the solute plume in a tracer test with a

finite mixing volume of the injection well bore is

slower than that obtained with an infinitesimal

volume.

Data from the tracer test are commonly analyzed

by matching the observed and theoretical break-

through curves. Chen et al. (1999) pointed out that

the longitudinal and transverse dispersivities can be

simultaneously determined from breakthrough

curves at the extraction well and an observation

well in field tracer tests. They considered the

influence of injection well mixing volume on

breakthrough curves at both wells. Fig. 4 compares

the breakthrough curves at the extraction well and

at an observation point in Test 1 of the hypothe-

tical tracer tests (r ¼ 1; u ¼ p), depicting the

effects with and without injection well bore mixing.

Apparently, injection well bore mixing significantly

spreads the breakthrough curves and shifts

the arrival time of the peak concentration (Zlotnik

and Logan, 1996). A shorter distance from

the observation well to the injection point causes

greater spreading and a greater shift in the peaks of

the breakthrough curves.

Fig. 5 is reconstructed from Fig. 4 by normalizing

the concentration with respect to peak concentration

ðCD ¼ C=CpeakÞ at the extraction well, and by employ-

ing dimensionless time ðtDÞ; which had been used to

generate the type curves in determining longitudinal

dispersivity. In general, the field breakthrough curves

are first compared to the type curves at the extraction

well to yield longitudinal dispersivity. The type curve

for Pe ¼ 1 with finite mixing volume in an injection

well bore is chosen as the set of non-dimensionalized

hypothetical field data to demonstrate how the finite

mixing volume in the injection well bore affects the

determination of longitudinal dispersivity for a

radially convergent tracer test. The data are fitted to

the type curves at the extraction well in a tracer test,

neglecting the finite mixing volume of the injection

well bore. Fig. 6 presents the hypothetical data and a

match using type curves at the extraction well for a

tracer test without injection well bore mixing. The

estimated Pe is 1.61 rather than Pe ¼ 1: Conse-

quently, the estimate of dispersivity differs by a factor

of 1=1:61 < 0:62 if well bore mixing is not adequately

considered.

In view of the definition of the injection well

mixing factor, mI (Table 1), which indicates the

distance between two wells ðrLÞ; significantly

influences mI : Therefore, the possibility of an

injection well bore mixing effect of non-axisymme-

trical transport on the inter-well distance, is

examined. Fig. 7(a) and (b) shows how injection

well bore mixing volume affects breakthrough

curves at the extraction well and at the observation

point at r ¼ 5 m; and u ¼ p in Test 2. The effect of

injection well bore mixing volume is insignificant

Table 3

The dependence of the number of the series terms for convergence of finite Fourier cosine inversion

Number of terms Pe ¼ 1; aD ¼ 0:2 Pe ¼ 10; aD ¼ 0:2 Pe ¼ 10; aD ¼ 0:4 Pe ¼ 100; aD ¼ 0:2

n 8 24 16 48
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at the extraction well but is noticeable at

the observation point at r ¼ 5 m, and u ¼ p in

the scale tracer test with an inter-well

distance of 25 m, demonstrating that the long-

distance tracer transport gradually reduces

the retardation due to the injection well bore mixing

volume.

Our study demonstrates that the finite mixing

volume of an injection well bore significantly affects

the results of the tracer test with a small inter-well

Fig. 3. Concentration contours of a hypothetical tracer test with and without injection well bore mixing volume: (a) t ¼ 30; (b) t ¼ 60; (c)

t ¼ 90 min.
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Fig. 4. Comparison of dimensional breakthrough curves with and without injection well bore effect: (a) extraction well for Test 1 tracer test with

rL ¼ 5 m. (b) observation point (r ¼ 1 m; u ¼ p) for Test 1 tracer test with rL ¼ 5 m.

Fig. 5. Comparison of dimensionless breakthrough curves at extraction well with and without injection well bore effect with concentration

normalized with respect to peak concentration and with the abscissa expressed as dimensionless time for Test 1 tracer test with rL ¼ 5 m.
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Fig. 6. Hypothetical field data (with injection well bore mixing volume) matched with the type curves of a tracer test without injection well bore

mixing volume.

Fig. 7. (a) Comparison of dimensional breakthrough curves with and without injection well bore effect: (a) extraction well in a tracer test with

rL ¼ 25 m; (b) observation point (r ¼ 5 m; u ¼ p) in a tracer test with rL ¼ 25 m.
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distance and weakly affects the results of a test with a

large inter-well distance.

5. Conclusions

This study develops a two-dimensional non-

axisymmetrical mathematical model to investigate

the effect of finite mixing volume in the injection

well bore on solute transport in a convergent radial

tracer test. The LTFD method is applied to solve the

advection–dispersion equation in cylindrical coordi-

nates. The accuracy of the present model is verified

using the Moench’s axisymmetrical analytical sol-

ution. Comparing the analytical solution reveals

that, by using an extra fine grid mesh and the

upstream weighting technique, the LTFD model can

effectively and accurately solve the two-dimensional

radial advection–dispersion equation with large

Peclet numbers. The LTFD model yields both non-

axisymmetrical concentration contours and break-

through curves at the extraction well and the

observation point. The concentration contours

obtained through simulation show that the injection

well bore mixing slows the migration of the tracer

plume from the injection well to the extraction well.

The results also show that the effect of the injection

well bore mixing volume decreases as the inter-well

distance increases.
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Appendix A

The LTFD solution of the governing Eq. (12),

subject to initial and boundary conditions (13)–(20) is

derived.

First, taking the Laplace transform of Eqs. (12),

(13) and the associated boundary conditions (13)–

(20), with respect to tD yields,

1

Pe

1

rD

›2G

›r2
D

þ
1

rD

›G

›rD

þ
1

Pe

aD

r3
D

›2G

›u2

¼
2R

1 2 r2
WD

sG ðA1Þ

mWsG ¼
1

Pe

›GðrD; u; sÞ

›rD

at r ¼ rW ðA2Þ

1

Pe

›GðrD; u; sÞ

›rD

þ GðrD; u; sÞ

¼
GIðsÞ p2 d , u , p

0 0 , u , p2 d

(
ðA3Þ

2GIðsÞ ¼ mI½sGIðsÞ2 C0� ðA4Þ

›GðrD; 0; sÞ

›u
¼ 0 ðA5Þ

›GðrD;p; sÞ

›u
¼ 0 ðA6Þ

where s denotes the Laplace transform parameter and

G represents the Laplace transform of C; as defined

by,

GðrD; u; sÞ ¼
ð1

0
CðrD; u; tDÞe

2stD dtD ðA7Þ

GIðsÞ ¼
ð1

0
CIðtDÞe

2stD dtD ðA8Þ

Taking the finite Fourier cosine transform with

respect to u of Eqs. (A1)–(A6) yields,

1

Pe

1

rD

d2W

dr2
D

þ
1

rD

dW

drD

2
1

Pe

aDn2

r3
D

þ
2Rs

1 2 r2
WD

" #
W ¼ 0 ðA9Þ

mWsW ¼
1

Pe

›WðrD; n; sÞ

›rD

at r ¼ rW ðA10Þ

1

Pe

›WðrD; n; sÞ

›rD

þ WðrD; n; sÞ ¼ FðnÞ ðA11Þ
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where

FðnÞ ¼

GIðsÞd; n ¼ 0

GIðsÞ
ð21Þn sin nd

n


 �
; n ¼ 1; 2; 3…

;

8><
>:

GIðsÞ ¼
mIC0

1 þ mIs

where n denotes the finite Fourier cosine transform

parameter and W represents the finite Fourier cosine

transform of G; as defined by,

WðrD; n; sÞ ¼
ðp

0
GðrD; u; sÞcosðnuÞdu ðA12Þ

Such a transform is useful since the inversion is

directly given by the following formula (Sneddon,

1972)

GðrD; u; sÞ ¼
1

p
WðrD; 0; sÞ

þ
2

p

X1
n¼1

WðrD; n; sÞcosðnuÞ ðA13Þ

A finite difference method is applied by discretizing

the radial distance of the transformed ordinary

differential equation (A9). The advection terms are

approximated by the upwind difference formulae.

Substituting the difference formulae into the trans-

formed partial differential equation yields the follow-

ing algebraic equation

1

Pe

1

ðrDÞi

Wiþ1 2 2Wi þ Wi21

DðrDÞ
2

þ
1

ðrDÞi

Wiþ1 2 Wi

DðrDÞ

2
1

Pe

aDn2

ðrDÞ
3
i

þ
2Rs

1 2 r2
WD

" #
Wi ¼ 0

ðA14Þ

The finite-difference equation in the Laplace domain

is rearranged:

aWiþ1 þ bWi þ cWi21 ¼ d ðA15Þ

where,

a ¼
1

PeðrDÞi DðrDÞ
2
þ

1

ðrDÞi DðrDÞ
;

b ¼ 2
2

PeðrDÞi DðrDÞ
2
þ

1

ðrDÞi DðrDÞ

"

þ
aDn2

PeðrDÞ
3
i

þ
2Rs

1 2 r2
WD

#
;

c ¼
1

PeðrDÞi DðrDÞ
2

and d ¼ 0:

Written in matrix notation, the finite difference system

of simultaneous equations (A15) becomes,

½V�½W� ¼ ½D� ðA16Þ

where ½V� denotes the coefficient matrix; ½W�

represents the vector of the unknown transformed

concentration, and ½D� is the known right-hand vector.

The system of algebraic equations represented by Eq.

(A16), can be solved using direct Gaussian elimin-

ation or other (for example, iterative) methods to yield

a Laplace-transformed concentration at the node

points. Additionally, a FORTRAN subroutine,

DLSACB, is readily available (see Visual Numerics,

Inc., 1994). The solutions in the original domain,

CðrD; u; tDÞ; are the Laplace and finite Fourier cosine

inversions of WðrD; n; sÞ: For convenience, the finite

Fourier cosine transform is performed first. Also, the

Laplace inverse of WðrD; n; sÞ must be determined

numerically. A FORTRAN subroutine DINLAP/

INLAP (Visual Numerics, Inc., 1994), based on the

De Hoog et al. (1982) algorithm, is employed to

perform the Laplace inversion. The computer code of

the LTFD model is available from the corresponding

author upon request.
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