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An -Automata Approach to the
Representation of Bilevel Images

Yih-Kai Lin and Hsu-Chun Yen

Abstract—We use -automata(i.e., automata over infinite words) as a
device for representing bilevel images. A major advantage of our approach,
as opposed to using the conventional finite automata, lies in that -au-
tomata are capable of representing image objects of zero size, such as lines
and points. To demonstrate the feasibility of our approach, we also show
how a number of image processing operations, includingshift, flip, rota-
tion, complement, boundary, difference, union, intersection, and size, can be
effectively carried out in the framework of -automata. In particular, the
size of an image represented by an -automaton is measured based on the
theory of Markov chains. In comparison with other automata-based image
representation schemes reported in the literature, our approach is capable
of supporting a richer set of operations, which can be performed on the au-
tomata directly and easily.

Index Terms— -automata, image representation.

I. INTRODUCTION

As a modeling tool,finite automatahave played an important role in
various areas of computer science and the related disciplines. Aside
from their usefulness in formal languages and complexity theory, it
has recently been shown that finite automata can also play a construc-
tive role in digital image compression (see, e.g., [1]–[4]). By exploiting
self-similarities within images, evidence has suggested thatfinite au-
tomata, serving as an image compression tool, are capable of signifi-
cantly reducing the amount of memory needed to encode bilevel (i.e.,
black-and-white) images. The model ofweighted finite automata[1]
has been proposed to encode and process gray-tone images. The idea
of using finite automata to encode bilevel images is the following. By
recursively subdividing an image area into four quadrants, a subimage
can be addressed by a stringx1; . . . ; xn, where eachxi belongs to an
alphabet of four letters (representing the four quadrants), andn rep-
resents the granularity of the subdivision. The subdividing procedure
continues until quadrants are either entirely black or entirely white.
In this setting, an image can then be associated with alanguageL in
such a way that a stringx is in L if and only if the corresponding
subimage addressed byx is “black.” To support the applicability of
such a strategy, [3] has shown that various image processing applica-
tions can be effectively performed in the framework ofweighted finite
transducers.Weighted finite transducers act as language transducers by
accepting input languages (interpreting the original images) then gener-
ating target languages (interpreting the target images). Since weighted
finite automata and weighted finite transducers deal with words of fi-
nite length, an infinite resolution image is interpreted as the “limit” of
images defined by weighted finite automata of increasing resolution.

To deal with images of infinite resolution, an alternative approach
is to use!-finite transducers[5] to process bilevel images. An!-fi-
nite transducer defined in [5] is a device which maps a deterministic
Büchi recognizable language into another deterministic Büchi recog-
nizable language. In a language accepted by a conventional finite au-
tomaton, a string is of finite length, meaning that the corresponding
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image area has nonzero size. It seems that finite automata are not ap-
propriate for representing image objects of zero size, such as “points”
and “lines.” To overcome such a deficiency in image representation,
in !-automata (i.e., automata on infinite strings) a string of infinite
length is used to capture the essence of a “pixel.” The coordinates of
a point in the plane can be treated as a two-dimensional (2-D) vector
of real numbers in Euclidean space. Since any real number can be rep-
resented by an infinite string over an appropriate alphabet, it becomes
possible to use!-automata to represent some zero-sized images (such
as lines) as well as images with scattered “noises” of zero size. In a
recent paper [6], the question of which images can be encoded as fi-
nite automata with infinite resolution has been investigated. One prac-
tical advantage of producing zero size objects is to present line-like im-
ages against finite automata which are designed for the representation
of silhouette-like images. In [5], image operations of “zooming” and
“placement” are implemented by the “quotient” and “concatenation”
operations, respectively, while the affine transformation is carried out
through the so-calledgeneralized sequential machines.

Motivated by the work of [5] (also [4]), in this paper we focus on
those bilevel images representable by a special type of!-automata
calledBüchi automata[7], a model that has been extensively studied
in the literature (see, e.g., [7] and [8]). Taking advantage of several
known results as well as results derived in this paper concerningBüchi
automata, we are able to show how a variety of image processing op-
erations (including size, complement, and boundary which were not
studied in [5]) are carried out in a unified framework based upon!-au-
tomata. As we shall see later that in comparison with [5], our approach
is capable of supporting a richer set of operations, and such operations
are performed on the automata directly (rather than using transducers).

Among the new results is the measurement ofsizesof infinite resolu-
tion images represented by deterministic Büchi automata. For this end,
we reduce the computation of image sizes to theprobabilistic reacha-
bility problemin the theory ofMarkov chains, which, in turn, leads to
an effective procedure for measuring the sizes of images encoded by
deterministic Büchi automata. Although the computation of integrals
proposed in [3] suits for counting the size of an image represented by
a weighted finite automaton, in this paper, we propose a new way of
measuring the size of an image based on the theory of Markov chains.
More will be said about the comparison between these two approaches
in Section IV. We also show the relationship between image represen-
tation schemes based on finite automata and Büchi automata. As op-
posed to the transducer-based images operations, each of our image
operations is performed on the automata directly.

The remainder of the paper is organized as follows. In Section II,
the definition of Büchi automata and their connection to bi-level im-
ages are introduced. Several basic results concerning Büchi automata
are given in Section III. By using these results a number of image pro-
cessing operations can be effectively carried out in the framework of
!-automata (Section IV).

II. PRELIMINARIES

Given analphabet(i.e., a finite set ofsymbols)�,��, and�! denote
the sets of finite words and!-words, over�, respectively. An!-word
over� is an infinite string written in the form!1!2 . . . where!i 2 �.
Let denote the set of real numbers,the set of rational numbers and

the set of integers. Letk denote the set of vectors ofk real numbers,
k the set of vectors ofk rational numbers andk the set of vectors

of k integers.
Although we mainly focus on 2-D digital images and numbers in

base 2, our results can be easily extended to higher dimensions and

1083-4419/03$17.00 © 2003 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 21, 2009 at 02:38 from IEEE Xplore.  Restrictions apply.



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 33, NO. 3, JUNE 2003 525

Fig. 1. Quadtree representation of an image. (a) Addresses of some subsquares
and (b) the corresponding quadtree.

Fig. 2. Diminishing triangles and the corresponding FA.

other bases. In this paper, the locations of image pixels are referred to
by their quadtree addresses in the following way. A quadtree represen-
tation of an image is based on the successive subdivision of the given
image into four quadrants. The four quadrants form the subtrees of the
root representing the original image. The formal definition of quadtrees
can be found in [9]. The address of a node in a quadtree is a string!
over the alphabet� = f0; 1g2 [i.e., f(0; 0); (0; 1); (1; 0); (1; 1)g].
Given a square area, the empty string" is chosen as the address of the
whole square. The four quadrants of the square addressed byw have
w � (0; 0),w � (0; 1),w � (1; 0), andw � (1; 1) as their addresses, where
“ �” denotes the string concatenation operation. The example shown in
Fig. 1 illustrates the addresses of several subsquares and the corre-
sponding quadtree.

The use offinite automatato encode (and compress) images is not
new. Results along this line of research can be found in [1]–[4]. The en-
coding is done in such a way that the setf0; 1g2 is treated as the input
alphabet of a finite automaton, and a stringx1x2 � � � xk (xi 2 f0; 1g2)
is accepted iff the corresponding square represented byx1x2 � � � xk
(in terms of the quadtree address) is “black.” Fig. 2 demonstrates a
picture of diminishing triangles (given in [4]) together with the corre-
sponding finite automaton. Fig. 3 illustrates the finite automaton “ap-
proximating” a line, and clearly, by using the multi-resolution concept,
more states are required in order to get an approximation of higher res-
olution. The inability to faithfully encode a line (which has zero size) is
exactly the pitfall of a finite automaton not only accepts strings of finite
length, and each string represents a square of nonzero size. To over-
come this shortcoming, in this paper we use!-finite automata(which
accepts strings of infinite length) to encode bi-level images. Related
results can be found in [5].

Without loss of generality, 2-D square images are assumed to be nor-
malized in the sense that the ranges ofx andy coordinates are in[0; 1].
The transformation between the real coordinates and the associated
quadtree addresses of a pixel is rather straightforward. Let� = f0; 1g.
Given a pointp = (x = x12

�1 + x22
�2 + x32

�3 + � � � ; y =
y12

�1 + y22
�2 + y32

�3 + � � �) 2 [0; 1]2, the corre-
sponding quadtree address is(x1; y1)(x2; y2)(x3; y3) . . ., where

Fig. 3. Approximation of a slope line and the corresponding FA.

(xi; yi) 2 �2. For example, point(1=3; 1=3) can be mapped into
“(0; 0)(1; 1)(0; 0)(1; 1)(0; 0)(1; 1) . . ..” In this setting, images
with infinite resolution can be represented as sets of!-words over�2.
Throughout the rest of this paper, we are interested in those images
which can be characterized byBüchi automata, which define the
so-called!-regular languages. Since a real number might have two
possible encodings (e.g., “0.100 000 0…” and “0.011 111 1…” both
represent1=2 in binary), we restrict ourselves to languages which
include either both the encodings of a real number or none of them.

A nondeterministic Büchi automatonis a 5-tuple B =
(�; S; �; s0; F ), where � is a finite set of input symbols, S is
a finite set ofstates, s0 (2S) is the initial state, �(�S � � � S)
defines thetransition relation, andF (�S) is the set offinal states.
Note that Büchi automata are a special type of!-automata. A
deterministic Büchi automatonis a Büchi automaton whose transition
relation is restricted to a function�: S � � ! S. Notice that
nondeterministic Büchi automata are strictly more powerful than their
deterministic counterparts. LetB = (�; S; �; s0; F ) be a Büchi
automaton and� = !1!2 � � � be an!-word over�. A run of B on
� = !1!2 � � � is an infinite sequence of statesr = r0r1 � � � such that
r0 = s0 and (ri; wi+1; ri+1) 2 �, for i � 0. A run is said to be
successful(or accepting) if there exist infinitely manyi � 0 such
thatri 2 F . B accepts!-word� if B has a successful run on�. Let
L(B) = f� 2 �!jB accepts �g. If there is a Büchi automatonB
such thatL = L(B),L is said to be Büchirecognizable. A generalized
Büchi automatonis a 5-tuple(�; S; �; s0; F ), where�; S; � ands0
are identical to that of a Büchi automaton, andF = fF1; . . . ; Fkg
(for somek) such thatFi � S; 1 � i � k. A run is successful
(accepting) if for each1 � i � k, some state inFi appears infinitely
often in the run. It is known that the classes of languages recognized
by generalized Büchi automata and Büchi automata are identical
[8]. Unless stated otherwise, Büchi automata are assumed to be
nondeterministic throughout this paper.

In our subsequent discussion, Büchi automata are also viewed as di-
rected graphs, in which nodes and edges represent states and transi-
tions, respectively. Theinitial stateis annotated by an incoming arrow,
whereas thefinal statesare highlighted by double circles. Given two
nodesu and v in a directed graphG, we write u ,! v to denote
the existence of a path fromu to v in G. A directed graph(V; E)
is strongly connectedif for every pair of nodesu andv, u ,! v and
v ,! u. A strongly connected componentG0 of a directed graphG is a
strongly connected subgraph which is maximal (i.e., no other strongly
connected subgraph inG properly containsG0). A subgraph(V 0; E0)
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Fig. 4. Liney = (1=2)x.

of a directed graph(V; E) is an end componentif the subgraph is
strongly connected and ifu 2 V 0 and(u; v) 2 E, thenv 2 V 0 as
well. (Notice that a node without any outgoing edges is considered an
end component.)

III. B ILEVEL IMAGES AND BÜCHI AUTOMATA

In this section, we focus on those bilevel images which can be char-
acterized by Büchi automata, as well as on how conventional oper-
ations in image processing can be carried out in the framework of
formal languages. To give the reader a better feeling for how Büchi
automata can be used to “compress” images, consider an example il-
lustrated by Figs. 4 and 5, in which a liney = (1=2)x (which con-
tains infinite points) is “encoded” in a succinct fashion by a Büchi au-
tomatonB (which consists of only two states). Notice that the point
x=001 101 110 101 010���

y=000 110 111 010 101���
is in L(B) (i.e., on the line), but x=1���

y=1���
is

not. In fact, it is easy to see that for a point to be on the line, the first
componentx equals the left shift of the second componenty (because
x = 2y).

In view of the above example, a natural question to ask is whether
a more general form of lines can be encoded by Büchi automata. A
recent result [10] answers the above in the affirmative. More precisely,
we have the following.

Theorem 1 [10]: For arbitrary~a 2 2 andb 2 , the set of strings
~x (over� = f0; 1g2) satisfying~a � ~x = b is recognizable by a Büchi
automaton where “�” is the inner product.

What Theorem 3.1 says is that given an equation~a � ~x = b, there
exists a Büchi automaton recognizing the set of strings encoding~x.
The interested reader is referred to [10] for details of the proof.

For an encoding scheme to be useful, it must be able to support var-
ious image processing operations effectively. For this end, our subse-
quent discussion will reveal the applicability of our!-automata scheme
to those basic image processing operations summarized in Table I.

In order to deal with image processing operations in the framework
of !-automata, we require a few results concerning the closure prop-
erties of the languages accepted by Büchi automata. The first one is a
well known result (see [7] and [8]).

Theorem 2: The class of languages recognized by Büchi automata
is closed under union, intersection, difference, and complement.

Fig. 5. Büchi automatonB representing the liney = (1=2)x.

Note, however, that the class of languages recognized by determin-
istic Büchi automata is not closed under complement.

Given two infinite strings! and!0 over the alphabetf0; 1g2, we
write ! + !0 to denote the string encoding the sum of the numbers
represented by! and!0. We also writeL+L0 (L; L0 � �!) to denote
f! + !0j! 2 L; !0 2 L0g. In what follows, we show that the “sum”
of two Büchi recognizable images remains Büchi recognizable.

Theorem 3: Given two Büchi automataB0 = (f0; 1g; S0; �0;
s0

0; F
0) andB00 = (f0; 1g; S00; �00; s00

0 ; F
00), a generalized Büchi

automatonB can be constructed to recognizeL = f!0 + !00j!0 2
L(B0); !00 2 L(B)00g, i.e.,L = L(B0) + L(B00).

Proof: (Sketch) To a certain extent, our construction is a modifi-
cation of the so-called “product automata” approach which has many
applications in automata theory (see [11]). A state in the constructed
automatonB is a triple (r1; r2; r3), wherer1 andr2 represent states of
B0 andB00, respectively, andr3(2f0; 1g) is a flag used for recording
the “carry bit” of the summation up to the position associated with state
pair (r1; r2). A transition between two states simulates an addition of
two digits. To give the reader a better feeling for how the construction
functions, consider Fig. 6 in which the sum of 010 111… and 011 111…
is performed. Here, the real numbers 0.010 111… and 0.011 111… are
represented by the automata shown in Fig. 6(a). The corresponding
fragment of the constructed automaton is depicted in Fig. 6(b). Take
the transition(c; w; 1)

0
!(d; x; 1) for example [see Fig. 6(c)]. What

it means is that if the summation up to state pair(d; x) has a carry,
then adding the two bits associated with transitionsc

0
!d andw

1
!x,

together with the carry-in bit, will result in a carry-out (to the left),
while the resulting bit is 0.

Now we are in a position to describe the automatonB which accepts
L. B = (f0; 1g; S; �, s0; F ), where

1) s0 = (s0

0; s
00

0 ; 0);
2) S = f(r1; r2; r3)jr1 2 S0; r2 2 S00 andr3 2 f0; 1gg;
3) The transition relation� is defined as follows: For each

(r1; r2; r3) 2 S, �0(r1; a
0) 2 S0, �00(r2; a

00) 2 S00, we have
(�0(r1; a

0); �00(r2; a
00); r0

3) 2 �((r1; r2; r3); a), provided that
r3 = (a0 + a00 + r0

3) mod 2 anda is the remainder of(a0 + a00 + r0

3)
divided by 2;

4) F = fF 0 � S00 � f0; 1g; S0 � F 00 � f0; 1gg.
The correctness of the construction is straightforward.
Even though the above theorem deals with the alphabetf0; 1g, it is

straightforward to generalize the result to the alphabetf0; 1g2. Hence,
we have the following.

Corollary 1: The sumof two Büchi recognizable images remains
Büchi recognizable.

Corollary 2: Given a Büchi automatonB = (f0; 1g2; S; �;
s0; F ) and~x 2 2, we can construct aBüchi automatonB+x to
acceptL = fl + !jl 2 L(B)g, where! encodes~x.

Proof: Clearly,! (which encodes~x) can be accepted by a Büchi
automaton, our result then follows immediately from Corollary 1.

As we shall see later, the shift operation is carried out based upon
the result of Corollary 2. The reader is referred to [5] how the theory
of affine transformationis used for implementing the shift operation.
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Fig. 6. Addition of two real numbers. (a) Automata representing the two numbers, (b) fragment of the constructed automaton, and (c) the concept of carry-in.

In some image processing applications, the ability to calculate cer-
tain geometric properties, such assize, is important. Given a determin-
istic Büchi automaton which represents an image, we now propose a
method to calculate thesizeof the image area. For this end, we use the
theory ofMarkov chainsto capture the essence of imagesizes.

A Markov chainM is a 4-tuple(S; P; s1; F ), whereS is the
set of states,s1 (2S) is the initial state,P : S � S ! [0; 1]
defines the transition probability function satisfying the condition
that for a given state, the sum of its outgoing probabilities equals
one, andF is the set of accepting states. Theprobability measure
of a sequence of states� = s1; . . . ; sk, denoted byPr(�), is
P (s1; s2) � � � � � P (sk�1; sk). Such a probability measure can be
extended to the setACCEPT(M) = f�j� is an infinite computation
from s1 which visits some state inF infinitely many timesg using the
theory of Markov chains in a standard way. We definePr(M) = the
probability measure ofACCEPT (M). The reader is referred to [12]
for more background on probability theory and Markov chains.

The idea of using Markov chains to capture the sizes of images (en-
coded by deterministic Büchi automata) is illustrated in Fig. 7, in which
an image [Fig. 7(a)] is represented by a deterministic Büchi automaton
[Fig. 7(b)]. Now a Markov chain, as illustrated in Fig. 7(c), is con-
structed in such a way that the “probability” along a transition of the
Markov chain reflects the ratio of the image sizes before and after the

transition is taken. For example, the transitiona
1=4
!b in Fig. 7(c) has

probability1=4, for the associated transitiona
(0; 0)
! b in Fig. 7(b) refers

to the lower left-hand subimage, whose size is one quarter of the orig-
inal image. The transformation of a deterministic Büchi automaton to
the corresponding Markov chain is straightforward, and the details are
left to the reader. Now thesizeof an image is defined to be the ac-
cepting probability of the corresponding Markov chain which models
the image. (Recall that in this paper we only consider images in the unit
square area[0; 1] � [0; 1].)

For ease of expression, an ordering is given to the set of statesS,
i.e.,S = fs1; s2; . . . ; smg. The one-step transition probability is or-
ganized into a one-step transition matrix

P �

p11 p12 � � � p1m
p21 p22 � � � p2m

...
...

. . .
...

pm1 pm2 � � � pmm

Fig. 7. How to compute “size?” (a) Triangle, (b)!-FA, and (c) Markov chain.

in whichpij = P (si; sj); 1 � i; j � m. Notice that for each rowi,
m
j=1 pij = 1. A Markov chain isirreducible if none of its subsets of

states also forms a Markov chain (i.e., none of its subgraphs is an end
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component). States that are members of an irreducible set are called
recurrent, and the remaining states aretransient. We letT be the set
of transient states andR be the set of recurrent states. Take Fig. 7 for
example. In Fig. 7(c), statesc andd are recurrent, while the rest [(a)
and (b)] are transient, i.e., a and b are not recurrent.

To compute the accepting probability of a Markov chain, we require
the following lemma.

Lemma 1: Given a Markov chainM = (S; s1; P; F ) and an end
componentS0(�S) with S0 \ F 6= ;, then for eachr 2 S0, Pr; f�j
run� = rr1r2 . . ., encounters some state inF infinitely ofteng = 1.
(That is, the set of “accepting” computations fromr has probability 1.)

Proof: (Sketch) Suppose, to the contrary, that there were anr 2
S0 such that the probability measure of the set of accepting compu-
tations fromr is less than 1. Given aD � S0, let CD be the set of
infinite computations fromr such that along each of such computa-
tions, the set of states that appear infinitely many times is exactlyD.
Since there are only finitely manyDs, aD0 � S0 withD0\F = ; and
Pr(CD ) (i.e., the probability measure ofCD )>0 must exist. Clearly,
nodes inD0 (together with their incident edges) must form a strongly
connected component. We claim thatD0 is also an end component. If
this is not the case, there must be an edge leavingD0, and hence, the
probability for the computation to stay inD0 forever is zero (a known
result which is relatively easy to show). As a result,D0 must be iden-
tical to S0 (otherwise, it is impossible for bothD0 andS0 to be end
components)—contradicting the assumption thatD0 \ F = ;. This
completes the proof.

With the help of Lemma 1, in order to findPr(M) for a given
Markov chainM , it suffices to compute the probability of reaching
those end components that contain some accepting states. Such a
problem is known as theprobabilistic reachability problemin the
theory of Markov chains. Given two statesi and j, let f (n)i; j be
the probability of reachingj from i in no more thann steps. Let
f
(�)
i; j = limn!1 f

(n)
i; j . Using a known result concerning Markov chain

[12], F�TR = (f
(�)
i; j )i2T ; j2R can be computed as follows:

F
�
TR = (I�PT T )

�1
PTR

wherePT T stands for the one-step transition probabilities between
states inT andPTR represents the one-step transition probabilities
from states inT to states inR.

Using Lemma 1, we have the following.
Theorem 4: Given a Markov chainM = (S; P; s1; F )

Pr(M) =

j2 I

f
(�)
s ; j

wherefI1; I2; . . . ; Ikg is the set of all irreducible sets (i.e., end com-
ponents) such thatIi \ F 6= ;, for all 1 � i � k.

With the above theorem, in conjunction with the close connection
between deterministic Büchi automata (encoding bilevel images) and
Markov chains, the size of a deterministic Büchi recognizable image
can be effectively measured.

For example, consider the image shown in Fig. 7(a) for which the
transition matrix of the corresponding Markov chain is the following:

P �

0 1
4

3
4

0

0 1
2

1
4

1
4

0 0 1 0

0 0 0 1

:

Fig. 8. Weighted finite automaton encoding the image shown in Fig. 7(a).

In this example,T = fa; bg, R1 = fcg, R2 = fdg. SinceR2 is
the only irreducible set which contains an accepting state, the size of
the image equalsf (�)a; d, which can be computed in the following way:

FTR =
f
(�)
a; d

f
(�)
b; d

=(I � PT T )
�1PTR

=
1 0

0 1
�

0 1
4

0 1
2

�1
0

1
4

=
1 � 1

4

0 1
2

�1
0

1
4

=
1 1

2

0 2

0

1
4

=

1
8

1
2

:

Thus, the size of the black area in Fig. 7(a) equalsf
(�)
a; d = 1=8.

To show the differences between our model and weighted finite au-
tomata [1], [2], we encode the image shown in Fig. 7(a) into a weighted
finite automaton and then compute the “integral” using weighted finite
transducers. The integral of a bilevel image coincides with the size of
the image.

We now briefly describe the preliminaries of weighted finite au-
tomata and weighted finite transducers (see [1], [3] for more details.)
A functionf : �� 7! is used to assign a real number, interpreted as a
gray level, for each pixel in difference resolution addressed by a string
in ��. Functionf is calledaverage preservingif

x2� f(wx) =
j�j � f(w) for all w 2 ��. Intuitively, functionf defines serial images
at different resolutions when it is average preserving. A weighted fi-
nite automaton (WFA)A can be used to define such a functionf , i.e.,
f(x1; x2; . . . ; xk) = I �Wx �Wx � � �Wx � F , whereI 2 1�m

is the initial distribution,F 2 m�1 is the final distribution, and
Wx 2 m�m for all 1 � i � k; xi 2 � are weight matrices. In-
tuitively, functionf(w) is the sum of the weights of all paths labeled
w. The weight of a path is multiplication of the initial distribution on
the first state, weights of the transitions on the path, and the final distri-
bution on the final state. A weight finite transducer (WFT) is a finite au-
tomaton with input alphabet�1, output alphabet�2, initial distribution
I 2 1�n, final distributionF 2 n�1, and weight matrixesWa; b 2
n�n for all a 2 �1 andb 2 �2. Given a WFT, the weighted rela-

tion fT : ��1 � ��1 7! is defined byfT (a1a2 � � � ak; b1b2 � � � bk) =
I �Wa ; a �Wa ; b � � �Wa ; b �F , where for1 � i � k,ai 2 �1, bi 2
�2. Note that the above defines an"-free transducer i.e.,W"; ", Wa; ",
andW"; b, are zero matrices for alla 2 �1, b 2 �2. Given a multireso-
lution functionf : ��1 7! and a weighted relationfT : ��1���2: 7! ,
a functiong: ��2 7! is defined byg(t) =

s2� f(s)fT (s; t) for
all t 2 ��2 .

Following the above definitions we encode the image shown in
Fig. 7(a) into a WFA shown in Fig. 8.
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TABLE I
LIST OF BASIC OPERATIONS INIMAGE PROCESSING(THE RATIONAL NUMBER IN THE DEFINITION OF BOUNDARYSPECIFIES THE“THICKNESS” OF THEBOUNDARY.

THE SIZE OPERATION APPLIES TOIMAGES REPRESENTABLE BYDETERMINISTIC BÜCHI AUTOMATA ONLY)

In Fig. 8, the edge from statesi to j is labeled byx: (Wx)i; j .
The pairIi; Fi labeled in statei is the initial and the final distribu-
tions, respectively, for statei. For example, string(0; 0)(0; 1) cor-
responds to the1=4 � 1=4 pixel whose gray-level is1=2 = 1 �
1 � 1=2. In [3], a WFT computing the integralx

0

y

0
f(x; y) dx dy

is purposed. For bilevel images,1
0

1

0
f(x; y) dx dy has the same

meaning as “size.” In fact, the final distribution at the left-most state
1=8 (corresponding to the gray level of the whole image) is exactly
the “size” of the image. Here, we illustrate the computation of the
“size” by 1

0

1

0
f(x; y) dx dy. For simplicity, the resolution is set

to 23, i.e., the unit square is divided into23 � 23 subsquares. From
the WFA shown in Fig. 8, we havef((0; 0)(0; 0)(i; j)) = 1 for
i; j 2 f0; 1g; f((0; 0)(i; j)(0; 0)) = 1 for i; j 2 f0; 1g and
i � j = 1; f((0; 0)(i; j)(k; l)) = 1=2 for i; j; k; l 2 f0; 1g,
i � j = 1, andk � l = 1 where “�” denotes “XOR.” By computing
x

0

y

0
f(x; y) dx dy, the image size is

g((1; 1)(1; 1)(1; 1))

=

s2�

f(s) � fT (s; (1; 1)(1; 1)(1; 1))

=
i; j2f0; 1g

f((0; 0)(0; 0)(i; j))

� fT ((0; 0)(0; 0)(i; j); (1; 1)(1; 1)(1; 1))

+

i�j=1

f((0; 0)(i; j)(0; 0))

� fT ((0; 0)(i; j)(0; 0); (1; 1)(1; 1)(1; 1))

+

i�j=1; k�l=1

f((0; 0)(i; j)(k; l))

� fT ((0; 0)(i; j)(k; l); (1; 1)(1; 1)(1; 1)) =
1

8
:

Intuitively, g((1; 1)(1; 1)(1; 1)) is the sum of the gray levels of ten
pixels. Thus, the accuracy of the gray level of a pixel, computing
from the original image, dominates the “size” computed by applying
integral (represented as a WFT) on WFA. For example, if the
final distribution of the left-most (middle) state is1=6 (2=3), then
g((1; 1)(1; 1)(1; 1)) = 1=6.

IV. I MPLEMENTATIONS OFIMAGE OPERATIONS

In this section, we show how each of the image processing opera-
tions defined in Table I can be performed in the framework of Büchi
automata.

Theorem 5: The set of operations listed in Table I can be imple-
mented effectively using an automata approach. (Notice that thesize
operation applies to images representable by deterministic Büchi au-
tomata only.)

Proof: • shift: image� 2 ! image
Given an image (represented by a Büchi automatonB) and a vector

~x 2 2, Corollary 2 shows the feasibility of shifting the image encoded
by B by vector~x.

• resize: image�2k ! image,k 2
Let B = (f0; 1g2; S; �; s0; F ) be an automaton accepting the

input image. It suffices to show the cases fork = 1 and�1. First,
considerk = 1 (i.e., enlarging the image by a ratio of 2 along both
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Fig. 9. Procedure of resize.

x andy axes). Supposes0
r
!sr; r 2 f0; 1g2 (i.e., sr; r 2 f0; 1g2,

represent the four immediate successors ofs0). It is easy to observe
that B(0; 0) = (f0; 1g2; S; �; s(0; 0); F ) encodes an image which
is the enlargement of the(0; 0)-subimage by a ratio of2 � 2. See
Fig. 9. Then, it is easy to see thatresize(B; 2) = B(0; 0). (Notice
that the enlargements of the remaining(0; 1); (1; 0); (1; 1)-subim-
ages are beyond the boundary of the[0; 1] � [0; 1] area.) Now con-
siderk = �1 (i.e., shrinking the image by a ratio of 2 along bothx
andy axes). We defineB1=2 = (f0; 1g2; S [ fs00g; �

0; s00; F ) such

that�0 = �[fs00
(0; 0)
! s0g. (That is,B1=2 is obtained fromB by adding

a new initial states00 together with transitions00
(0; 0)
! s0.) B1=2 clearly

encodesresize(B; 1=2).
• flip: image! image
By interchanging the symbol(0; 0) with symbol(0; 1) and symbol

(1; 0)with symbol(1; 1) in the!-automaton encoding the input image
M , the resulting automaton encodesflip(M) along thex-axis. Flip-
ping along they-axis is done similarly.

• rotate: image�f90�; 180�; 270�g ! image
It suffices to consider rotating the input image90� in the clock-

wise fashion. Like the flipping case,90� rotation can be achieved by
interchanging the four input symbols in a circular fashion(0; 0) !
(0; 1) ! (1; 1) ! (1; 0) ! (0; 0).

• complement, difference, union, intersection
According to Theorem 2, the class of languages accepted by Büchi

automata is closed under complement, difference, union, intersection,
implying the feasibility of the associated image processing operations.

• boundary: image� ! image
(Recall that the rational number in the operation specifies the

“thickness” of the boundary.) LetF be a Büchi automaton accepting
the image[0; b] � [0; b], for a desired thicknessb 2 Given an
imageB0, we extendB0 by constructing a Büchi automatonB that
recognizesext(B) = L(B0) + L(F ) (guaranteed by Corollary 2).
See Fig. 10(top row). By repeatedly rotating the image and then
performing the above shift operation, the boundary ofB0 can be
computed asdiff(B; un(un(un(ext(B); ext(flip(ro(ro(B))))),
ext(flip(B))); ext(ro(ro(B))))). See Fig. 10 for a series of such
operations and how the boundary of an image (with the desired
thickness) is extracted.

• size: image! R
The size of a deterministic Büchi recognizable image can easily be

computed as the consequence of Theorem 4.
For related results concerning affine transformation, the reader is re-

ferred to [5] and [6]. In particular, it was shown in [6] that the set of
images encodable as!-automata is closed under rational affine trans-
formations, they are also listed below for the sake of completeness.

Two given imagesF andF 0 are said to besimilarwithin error bound
� if area(diff(F; F 0)) � �. In this case, we writeF �� F

0. In what
follows, we show the connection between the image compression ap-
proaches based upon the conventional finite automata and the!- finite
automata.

Theorem 6: Given a finite automatonA, an!-automatonB can
be constructed such thatImg(A) �0 Img(B), whereImg(A) and

Fig. 10. Computing the boundary of an image.

Img(B) are the images represented byA andB, respectively. (That
is, the two images are identical.)

Proof: Let A = (�; S0; �0; s0; F ). B is constructed as
(�; S; �; s0; F ), where� = �0 [ f(s; a; s)js 2 Fg (i.e., for each of
the final states, a self loop is attached for every input symbola). The
correctness of the construction is rather obvious.

By unwinding the computation of an!-automaton to the desired
depth specified by the error bound, the following result is easy to ob-
tain. Due to space limitations, the details are omitted.

Theorem 7: Given an!-automatonA and an error bound�, a fi-
nite automatonB can be constructed such thatImg(A) �� Img(B),
whereImg(A) andImg(B) are the images represented byA andB,
respectively.

V. CONCLUSION

We have proposed a novel approach, based on the theory of!-au-
tomata, to represent bi-level images. The usefulness of this approach
has further been demonstrated by showing a rich set of image oper-
ations to be performed easily in the framework of our!-automata.
In particular, we have shown that by applying the theory of Markov
chains, the size of an image is easily computable. As far as computing
image size is concerned, our approach provides an alternative to the
“integral” operation reported in the literature for weighted finite au-
tomata. In our future research, it is of interest to see how color images
can be dealt with in the framework of!-automata.
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Optimal Generation Scheduling Based on AHP/ANP

James A. Momoh and Jizhong Zhu

Abstract—This paper proposes an application of the analytic hierarchy
process (AHP) and analytic network process (ANP) for enhancing the selec-
tion of generating power units for appropriate price allocation in a compet-
itive power environment. The scheme addresses adequate ranking, priori-
tizing, and scheduling of units before optimizing the pricing of generation
units to meet a given demand. In the deregulated environment, the clas-
sical optimization techniques will be insufficient for the above-mentioned
purpose. Hence, by incorporating the interaction of factors such as load
demand, generating cost curve, bid/sale price, unit up/down cost, and the
relative importance of different generation units, the scheme can be imple-
mented to address the technical and nontechnical constraints in unit com-
mitment problems. This information is easily augmented with the optimiza-
tion scheme for an effective optimal decision. The scheme proposed is tested
using the IEEE 39-bus test system.

Index Terms—Analytic hierarchy process, analytic network process,
deregulated power industry, optimization, unit commitment.

I. INTRODUCTION

Since generators cannot instantly turn on and produce power, unit
commitment must be planned in advance so that enough generation is
always available to handle system demand with an adequate reserve
margin in the event that generators or transmission lines go out or
load demand increases. Unit commitment handles the unit generation
schedule in a power system for minimizing the operating cost and sat-
isfying the prevailing constraints such as load demand and system re-
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serve requirements over a set of time periods [1]–[5]. Optimization
techniques such as augmented Lagrangian relaxation, dynamic pro-
gramming, and the branch–and–bound algorithm have been used to
solve the classic unit commitment problem. In the deregulated power
industry, the unit commitment problem is, in general, very complicated
with a large number of possible decision variables such as load demand,
generating cost curve, time-varying bid price of generation power, and
the relative importance of different generation units. The classical op-
timization techniques are insufficient for handling these factors. Thus,
in recent power system operation, it is necessary to modify the conven-
tional unit commitment (UC) planning of thermal units with network
constraints and the value of generator bidding as additional constraints.
The classical UC problem is aimed at determining the startup and shut-
down schedules of thermal units to meet forecasted demand over cer-
tain time periods (24 h to 1 week) and belongs to a class of combina-
torial optimization problems. The methods [10], [11] that have been
studied so far fall into roughly three types: heuristic search, mathemat-
ical programming MP, and hybrid methods.

Although these techniques are effective for problem posed, they do
not handle network constraints and bidding issues. The paper proposes
future UC requirements in a deregulated environment where network
constraints, reliability, value of generation, and variational changes in
demands and other costs may be factors.

The classical UC Lagrange method cannot solve the problem due to
combinatorial explosion. Accordingly, as an initial approach to solve
this complex problem, we attempt to find a method for solving UC
considering network limitation and generation bids as a daily opera-
tional planning problem. This approach supports the decision making
effectively of ranking units in terms of their values by using the ana-
lytic hierarchy process (AHP) and the analytic network process (ANP)
techniques. The scheduled generation over time is studied as input into
the optimal power flow (OPF) problem for optimal dispatch within the
network and generation constraint.

This paper proposes application of the AHP [6], [8] and the ANP [7]
for enhancing the selection of generating power units for appropriate
price allocation in the deregulated power industry. It is different from
the traditional unit commitment problem, which can be solved by di-
rectly using the optimization methods.

Explanation of Proposed Scheme

The basic concept of proposed optimal generation scheduling is as
follows:

First, it is assumed that the ranking of generating units, and their
priority as well as demand is known. As a result, the preferred genera-
tors for competitive scheduling and pricing will be known. Therefore,
the number of generators whose fuel consumption constraints must be
considered can be reduced considerably. This reduces the difficulties
of unit commitment and optimal power flow. The proposed scheme ad-
dresses adequate ranking and prioritizing of units before optimizing the
pricing of generation units to meet a given demand. By incorporating
the interaction of factors, such as load demand, generating cost curve,
bid/sale price, unit up/down cost, and the relative importance of dif-
ferent generation units, the scheme can be implemented to address the
technical and nontechnical constraints in unit commitment problem.
This information is easily augmented with the optimization scheme for
effective optimal decisions. The scheme consists of the three following
stages:

1) ranking of units in terms of their values by AHP/ANP;
2) checking the constraints by rule–based method;
3) solving optimization problem by interior point optimal power

flow.
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