524 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 33, NO. 3, JUNE 2003

An w-Automata Approach to the image area has nonzero size. It seems that finite automata are not ap-
Representation of Bilevel Images propriate for representing image objects of zero size, such as “points”
and “lines.” To overcome such a deficiency in image representation,
Yih-Kai Lin and Hsu-Chun Yen in w-automata (i.e., automata on infinite strings) a string of infinite

length is used to capture the essence of a “pixel.” The coordinates of

a point in the plane can be treated as a two-dimensional (2-D) vector

: huiie ; : of real numbers in Euclidean space. Since any real number can be rep-
device for representing bilevel images. A major advantage of our approach, s . h .

as opposed to using the conventional finite automata, lies in that-au- resented by an infinite string over an appropriate alphabet, it becomes

tomata are capable of representing image objects of zero size, such as linesPossible to use’-automata to represent some zero-sized images (such
and points. To demonstrate the feasibility of our approach, we also show as lines) as well as images with scattered “noises” of zero size. In a

how a number of image processing operations, includinghift, flip, rota-  (ecent paper [6], the question of which images can be encoded as fi-

tion, complement, boundary, difference, union, intersecticaand size can be . L . . .
effectively carried out in the framework of w-automata. In particular, the nite automata with infinite resolution has been investigated. One prac-

size of an image represented by aw-automaton is measured based on the tical advantage of producing zero size objects is to present line-like im-

theory of Markov chains. In comparison with other automata-based image ages against finite automata which are designed for the representation

representation schemes reported in the literature, our approach is capable of silhouette-like images. In [5], image operations of “zooming” and

of supporting arlcherse't of operations, which can be performed on the au- “placement” are implemented by the “quotient” and “concatenation”

tomata directly and easily. . . . ) Lo .
operations, respectively, while the affine transformation is carried out

Index Terms—ew-automata, image representation. through the so-calledeneralized sequential machines.

Motivated by the work of [5] (also [4]), in this paper we focus on
those bilevel images representable by a special type-afitomata
calledBuchi automatd7], a model that has been extensively studied

As a modeling tooffinite automatehave played an importantrole in in the literature (see, e.g., [7] and [8]). Taking advantage of several
various areas of computer science and the related disciplines. Asig@iewn results as well as results derived in this paper conceBiicbi
from their usefulness in formal languages and complexity theory, dtitomata we are able to show how a variety of image processing op-
has recently been shown that finite automata can also play a constetions (including size, complement, and boundary which were not
tive role in digital image compression (see, e.g., [1]-[4]). By exploitingtudied in [5]) are carried out in a unified framework based upeaau-
self-similarities within images, evidence has suggestedfifis® au- tomata. As we shall see later that in comparison with [5], our approach
tomata serving as an image compression tool, are capable of signii-capable of supporting a richer set of operations, and such operations
cantly reducing the amount of memory needed to encode bilevel (i.gre performed on the automata directly (rather than using transducers).
black-and-white) images. The model weighted finite automatl] Among the new results is the measuremersiné=of infinite resolu-
has been proposed to encode and process gray-tone images. Thetigg@amages represented by deterministic Biichi automata. For this end,
of using finite automata to encode bilevel images is the following. Bye reduce the computation of image sizes togtubabilistic reacha-
recursively subdividing an image area into four quadrants, a subimagigty problemin the theory ofMarkov chainswhich, in turn, leads to
can be addressed by a string, ..., ¥, where each:; belongs to an an effective procedure for measuring the sizes of images encoded by
alphabet of four letters (representing the four quadrants)zarep-  deterministic Biichi automata. Although the computation of integrals
resents the granularity of the subdivision. The subdividing procedysgoposed in [3] suits for counting the size of an image represented by
continues until quadrants are either entirely black or entirely whitg.weighted finite automaton, in this paper, we propose a new way of
In this setting, an image can then be associated wigmguageL in  measuring the size of an image based on the theory of Markov chains.
such a way that a string is in L if and only if the corresponding More will be said about the comparison between these two approaches
subimage addressed byis “black.” To support the applicability of in Section IV. We also show the relationship between image represen-
such a strategy, [3] has shown that various image processing appligdion schemes based on finite automata and Biichi automata. As op-
tions can be effectively performed in the frameworkngfighted finite  posed to the transducer-based images operations, each of our image
transducersWeighted finite transducers act as language transducersdperations is performed on the automata directly.
accepting inputlanguages (interpreting the originalimages) then generthe remainder of the paper is organized as follows. In Section II,
ating target languages (interpreting the target images). Since weighiiggl definition of Biichi automata and their connection to bi-level im-
finite automata and weighted finite transducers deal with words of figes are introduced. Several basic results concerning Biichi automata
nite length, an infinite resolution image is interpreted as the “limit” ofre given in Section Ill. By using these results a number of image pro-
images defined by weighted finite automata of increasing resolutiorzessing operations can be effectively carried out in the framework of

To deal with images of infinite resolution, an alternative approach-automata (Section V).
is to usew-finite transducerg5] to process bilevel images. An-fi-
nite transducer defined in [5] is a device which maps a deterministic
Bichi recognizable language into another deterministic Biichi recog- Il. PRELIMINARIES
nizable language. In a language accepted by a conventional finite au-

H H ) V‘* V‘u)
tomaton, a string is of finite length, meaning that the correspondinﬁe'ven ara_lp_habe1(|.e., afinite setofymbol3X, X N and%™ denote
the sets of finite words and-words, overt, respectively. Ans-word

overX is an infinite string written in the formy, w- . . . wherew; € X.
Manuscript received August 17, 2000; revised September 9, 2001. A prelikt R denote the set of real numbegsthe set of rational numbers and
inary version of this paper was presented at Computing: The Australian The@yhe set of integers. L&t* denote the set of vectors breal numbers,

Symposium 2000. ) . QF the set of vectors of rational numbers and” the set of vectors
The authors are with the Department of Electrical Engineering, N%-f L

Abstract—We usew-automata(i.e., automata over infinite words) as a

. INTRODUCTION

tional Taiwan University, Taipei 106, Taiwan, R.O.C. (e-mail: klin@cobra: integers. . L .
ee.ntu.edu.tw; yen@cc.ee.ntu.edu.tw). Although we mainly focus on 2-D digital images and numbers in
Digital Object Identifier 10.1109/TSMCB.2003.811123 base 2, our results can be easily extended to higher dimensions and
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Fig. 1. Quadtreerepresentationofanimage.(a)Addressesofsomesubsqua\ (0,0, (0,0, (0,0, (0,0), (0,0), (0,0), (0,0)
and (b) the corresponding quadtree. (1,0 1,0) (1,0 (1,0 (1,0 (1,0 (1,0)

0,0),
E(l)(l); ©,1), 2?8 Fig. 3. Approximation of a slope line and the corresponding FA.
(1.1) (1,0) (1 ‘
' ' (z:, y:) € 2. For example, point1/3, 1/3) can be mapped into
(0,0) (0,0) “(0, 0)(1, 1)(0, 0)(1, 1)(0, 0)(1, 1)....” In this setting, images
. . @ with infinite resolution can be represented as sets-gfords overt?.

Throughout the rest of this paper, we are interested in those images
which can be characterized Wiichi automata which define the
Fig. 2. Diminishing triangles and the corresponding FA. so-calledw-regular languages. Since a real number might have two
possible encodings (e.g., “0.1000000...” and “0.0111111..." both
other bases. In this paper, the locations of image pixels are referreddpresentl /2 in binary), we restrict ourselves to languages which
by their quadtree addresses in the following way. A quadtree represertiude either both the encodings of a real number or none of them.
tation of an image is based on the successive subdivision of the giverA nondeterministic Buchi automatonss a 5-tuple B =
image into four quadrants. The four quadrants form the subtrees of the S, 4, so, F'), where X is a finite set ofinput symbols S is
root representing the original image. The formal definition of quadtreasfinite set ofstates so (€5) is theinitial state, 6(CS x ¥ x 5)
can be found in [9]. The address of a node in a quadtree is a siringlefines thetransition relation and F/(C.S) is the set offinal states
over the alphabet = {0, 1} [i.e., {(0, 0), (0, 1), (1, 0), (1, 1)}]. Note that Biichi automata are a special type «ofutomata. A
Given a square area, the empty strinig chosen as the address of thaleterministic Blichi automatds a Biichi automaton whose transition
whole square. The four quadrants of the square addressedhaye relation is restricted to a functiof: S x ¥ — S. Notice that
w- (0, 0),w-(0, 1),w-(1, 0),andw- (1, 1) as their addresses, wherenondeterministic Blichi automata are strictly more powerful than their

“.” denotes the string concatenation operation. The example showrditerministic counterparts. L&8 = (X, S, 6, so, F') be a Bichi
Fig. 1 illustrates the addresses of several subsquares and the c@wematon ang¢ = w;ws - -- be anw-word overX. A run of B on
sponding quadtree. o = wywsq - -+ is an infinite sequence of states= rqr; - - - such that

The use ofinite automatao encode (and compress) images is noty, = so and(r;, wit1, ri41) € 6, fori > 0. A run is said to be
new. Results along this line of research can be found in [1]-[4]. The esuccessfulor accepting if there exist infinitely many; > 0 such
coding is done in such a way that the @t 1}? is treated as the input thatr; € F. B acceptss-word o if B has a successful run en Let
alphabet of a finite automaton, and a string:s - - - «. (x; € {0, 1}?) L(B) = {¢ € X*|B accepts o }. If there is a Biichi automatoR
is accepted iff the corresponding square represented,by---x,  suchthaf = L(B), L is said to be BlichiecognizableA generalized
(in terms of the quadtree address) is “black.” Fig. 2 demonstrateBachi automatoris a 5-tuple(X, S, &, so, F'), whereX, S, § andso
picture of diminishing triangles (given in [4]) together with the correare identical to that of a Buchi automaton, afid= {F4, ..., Fi}
sponding finite automaton. Fig. 3 illustrates the finite automaton “affor somek) such thatf; C S, 1 < i < k. A runis successful
proximating” a line, and clearly, by using the multi-resolution concepfaccepting) if for each < i < %k, some state i; appears infinitely
more states are required in order to get an approximation of higher reften in the run. It is known that the classes of languages recognized
olution. The inability to faithfully encode a line (which has zero size) iby generalized Bichi automata and Bichi automata are identical
exactly the pitfall of a finite automaton not only accepts strings of finitg8]. Unless stated otherwise, Blichi automata are assumed to be
length, and each string represents a square of nonzero size. To omendeterministic throughout this paper.

come this shortcoming, in this paper we usdinite automatawhich In our subsequent discussion, Buchi automata are also viewed as di-
accepts strings of infinite length) to encode bi-level images. Relategtted graphs, in which nodes and edges represent states and transi-
results can be found in [5]. tions, respectively. Thimitial stateis annotated by an incoming arrow,

Without loss of generality, 2-D square images are assumed to be nohereas thdinal statesare highlighted by double circles. Given two
malized in the sense that the ranges ahdy coordinates areiff), 1]. nodesu andwv in a directed grapl&, we writew — v to denote
The transformation between the real coordinates and the associdkedexistence of a path from to v in G. A directed graph(V, E)
quadtree addresses of a pixel is rather straightforward-l-et{0, 1}. is strongly connected for every pair of nodes: andv, v — v and
Given a pointp = (2 = 227" + 22272 + 2327% 4+ ---, y = v < u. A strongly connected componiit of a directed grapli’ is a
1270 4+ 272 4+ 327 4+ ) € [0, 1), the corre- strongly connected subgraph which is maximal (i.e., no other strongly
sponding quadtree address (81, y1)(2z2, y2)(zs, y3)..., where connected subgraph @ properly containg'). A subgraphV', E')
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Fig. 5. Buchi automato? representing the ling = (1/2).

Note, however, that the class of languages recognized by determin-
istic Biichi automata is not closed under complement.

Given two infinite stringss andw’ over the alphabef0, 1}*, we
write w + w' to denote the string encoding the sum of the numbers
represented by andw’. We also writel, + L' (L, L' C ¥“)to denote
{w+ W' |w € L, w' € L'}, In what follows, we show that the “sum”
of two Buchi recognizable images remains Bichi recognizable.

Theorem 3: Given two Blichi automataB’ = ({0, 1}, §’, &',
s0, F') and B” = ({0, 1}, S", 8", s4, F"), a generalized Buchi
automatonB can be constructed to recognifZe= {w' + w''|w’ €
L(B'),w" € L(B)"},i.e.,L = L(B")+ L(B").

Proof: (Sketch) To a certain extent, our construction is a modifi-
Fig. 4. Liney = (1/2). cation of the so-called “product automata” approach which has many
applications in automata theory (see [11]). A state in the constructed
of a directed grapt{V, E) is anend componenif the subgraph is automatonB is atriple ¢1, 72, rs), wherer; andr» represent states of
strongly connected and if € V' and(u, v) € E, thenv € V' as B’ andB", respectively, ands(€{0, 1}) is a flag used for recording
well. (Notice that a node without any outgoing edges is considered @@ “carry bit” of the summation up to the position associated with state

end component.) pair (1, r2). A transition between two states simulates an addition of
two digits. To give the reader a better feeling for how the construction
I1l. BILEVEL IMAGES AND BUCHI AUTOMATA functions, consider Fig. 6 in which the sumof010111...and011111...

is performed. Here, the real numbers 0.010111... and 0.011111... are

In this section, we focus on those bilevel images which can be ch presented by the automata shown in Fig. 6(a). The corresponding

ac_tenzgd _by Buchi automata, as well as on hOV\_' conventional OIC)'ﬁr'gment of the constructed automaton is depicted in Fig. 6(b). Take
ations in image processing can be carried out in the framework ', transition c. w 1)i(d v, 1) for example [see Fig. 6(c)]. What

formal languages. To give the reader a better feeling for how Buichi . . .
B e . it means is that if the summation up to state gdir =) has a carry,
automata can be used to “compress” images, consider an example il-

lustrated by Figs. 4 and 5, in which a lipe= (1/2)z (which con- then adding the two bits associated with transitiedsd andwiw,
tains infinite points) is “encoded” in a succinct fashion by a Biichi adggether with the carry-in bit, will result in a carry-out (to the left),

tomatonB (which consists of only two states). Notice that the poin‘f"hlle the resul_tlng bit IS 0. . .
©=001101110 101 ow,.,] is in Z(B) (i.e., on the line), bu zi: is Now we are in a position to describe the automaBowhich accepts

y=000 110 11_1 QlO 101--- . = X L B — I8 R 1 R 5, < F ,
not. In fact, it is easy to see that for a point to be on the line, the first ({0, 1}, 5. 6, 50, F), where

component: equals the left shift of the second compongitbecause s0 = (so. 50 0); , .
v = 2), 2) S ={(r1,r2, 73)|r1 € S, 5 € 5" andrs € {0, 1}};
In view of the above example, a natural question to ask is whether3) The transition relations is defined as follows: For each
a more general form of lines can be encoded by Biichi automata (&~ 72> 73) € S, 8'(r1,a") € 8',8"(r2.a") € S", we have
recent result [10] answers the above in the affirmative. More precisel§, (71: @), 8" (r2, a”), r5) € 8((r1, r2, 73), a), provided that
we have the following. rs = (@' +a” +73) mod 2 anda is the remainder ofa’ + a” + r%)
Theorem 1[10]: For arbitrary@ € 22 andb € @, the set of strings divided by 2;
7 (overT = {0, 1}?) satisfying@ - # = b is recognizable by a Biichi 4) F' = {F' x 5" x {0, 1}, §' x F" x {0, 1} }.
automaton where-* is the inner product. The correctness of the construction is straightforward. [ |
What Theorem 3.1 says is that given an equafion? = b, there Even though the above theorem deals with the alphfhet}, itis
exists a Biichi automaton recognizing the set of strings encagingstraightforward to generalize the result to the alphdbet }*. Hence,
The interested reader is referred to [10] for details of the proof. ~ we have the following.
For an encoding scheme to be useful, it must be able to support varCorollary 1: The sumof two Blichi recognizable images remains
ious image processing operations effectively. For this end, our subBéichi recognizable.
quent discussion will reveal the applicability of awautomatascheme ~ Corollary 2: Given a Biichi automatonB = ({0, 1}*, S. 6,
to those basic image processing operations summarized in Table I.so, F) and# € Q?, we can construct &iichi automatonB..,, to
In order to deal with image processing operations in the framewoakceptL = {I + w|l € L(B)}, wherew encodest.
of w-automata, we require a few results concerning the closure prop- Proof: Clearly,w (which encodeg’) can be accepted by a Biichi
erties of the languages accepted by Biichi automata. The first one Rugomaton, our result then follows immediately from Corollary |
well known result (see [7] and [8]). As we shall see later, the shift operation is carried out based upon
Theorem 2: The class of languages recognized by Blichi automattae result of Corollary 2. The reader is referred to [5] how the theory
is closed under union, intersection, difference, and complement.  of affine transformations used for implementing the shift operation.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 21, 2009 at 02:38 from IEEE Xplore. Restrictions apply.



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 33, NO. 3, JUNE 2003

() )G () ()

0 1 0 1 1
+> 0 1 1 1 1
R R
carry  carry
*
0
® ©

527

Fig. 6. Addition of two real numbers. (a) Automata representing the two numbers, (b) fragment of the constructed automaton, and (c) the coweiept of carr

In some image processing applications, the ability to calculate cer-
tain geometric properties, suchsige is important. Given a determin-
istic Blichi automaton which represents an image, we now propose a
method to calculate th&izeof the image area. For this end, we use the

theory ofMarkov chaingo capture the essence of imagiees
A Markov chainM is a 4-tuple(S, P, si, F), where S is the

set of statess: (€S5) is the initial state,P”: S x S — [0, 1]

defines the transition probability function satisfying the condition

that for a given state, the sum of its outgoing probabilities equals (a)l
one, andF is the set of accepting states. Thebability measure (?’0)’ 0,0),0,1),
of a sequence of states = si, ..., 54, denoted byPr(s), is (1.0) (1,0),(1.1)

P(s1, s2) X +-+ X P(sk—1, s;). Such a probability measure can be
extended to the set CCEPT (M) = {o|o is an infinite computation
from s; which visits some state iR infinitely many timeg using the
theory of Markov chains in a standard way. We defihé M) = the

probability measure cA CCEPT (M ). The reader is referred to [12] oD,

for more background on probability theory and Markov chains. ((Il(i))
The idea of using Markov chains to capture the sizes of images (en-

coded by deterministic Biichi automata) is illustrated in Fig. 7, in which

an image [Fig. 7(a)] is represented by a deterministic Blichi automaton (0,0),(0,1),

[Fig. 7(b)]. Now a Markov chain, as illustrated in Fig. 7(c), is con- (1,0),(1,1)

structed in such a way that the “probability” along a transition of the
Markov chain reflects the ratio of the image sizes before and after the

transition is taken. For example, the transitbllc{fb in Fig. 7(c) has

probability1/4, for the associated transiticm%w)b in Fig. 7(b) refers

to the lower left-hand subimage, whose size is one quarter of the orig-
inal image. The transformation of a deterministic Blichi automaton to
the corresponding Markov chain is straightforward, and the details are
left to the reader. Now thsizeof an image is defined to be the ac-
cepting probability of the corresponding Markov chain which models
the image. (Recall that in this paper we only consider images in the unit
square aref), 1] x [0, 1].)

For ease of expression, an ordering is given to the set of sfates (©)
i.e.,S = {si, s2, ..., sm}. The one-step transition probability is or-
ganized into a one-step transition matrix Fig. 7. How to compute “size?” (a) Triangle, @}FA, and (c) Markov chain.
P11 P12 Tt Pim
P = pav P2z Pam in whichp;; = P(s;, s;). 1 <4, j < m. Notice that for each row,

: : . : >_j=, pi; = 1. AMarkov chain isrreducibleif none of its subsets of
Pl Pm2  ccc DPmm states also forms a Markov chain (i.e., none of its subgraphs is an end
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component). States that are members of an irreducible set are called
recurrent and the remaining states dransient We let7 be the set
of transient states ar be the set of recurrent states. Take Fig. 7 for (07
example. In Fig. 7(c), statesandd are recurrent, while the rest [(a) (1,
and (b)] are transient, i.e., a and b are not recurrent.
To compute the accepting probability of a Markov chain, we require ) (0,0):1
the following lemma. L, 3 @ 0,1
Lemma 1: Given a Markov chaini/ = (S, s, P, F) and an end
components’(CS) with S’ N F # , then for eachr € ', Pr, {o|
runc = rrirz ..., €ncounters some state fninfinitely often} = 1.
(Thatis, the set of “accepting” computations frerhas probability 1.)  In this example7 = {a, b}, R1 = {c}, R2 = {d}. SinceR. is
Proof: (Sketch) Suppose, to the contrary, that there were @n the only irreducible set which contains an accepting state, the size of
S’ such that the probability measure of the set of accepting compte image equi'ﬁiT?p which can be computed in the following way:

—_ =

Fig. 8. Weighted finite automaton encoding the image shown in Fig. 7(a).

tations fromr is less than 1. Given ® C §’, let Cp be the set of f(*)
infinite computations from- such that along each of such computa- Frr, = ol
tions, the set of states that appear infinitely many times is exdztly ; ,f*;

Since there are only finitely mangs, aD’ C §’ with D'NF = () and .
Pr(Cp) (i.e., the probability measure 6f5/) >0 must exist. Clearly, == Prr) Prr,
nodes inD' (together with their incident edges) must form a strongly 0
connected component. We claim tHat is also an end component. If = ({

this is not the case, there must be an edge lealiihgand hence, the

probability for the computation to stay i’ forever is zero (a known ( [

ja]

RO W]

| S

\/
|
-

| — |

s O

| S

result which is relatively easy to show). As a resilif, must be iden-
tical to S’ (otherwise, it is impossible for both’ and S’ to be end
components)—contradicting the assumption thatn F = . This L
completes the proof. [ | _ [1 2 ]
With the help of Lemma 1, in order to finBr(3{) for a given 2
Markov chain, it suffices to compute the probability of reaching [

those end components that contain some accepting states. Such a
problem is known as th@robabilistic reachability problenin the
theory of Markov chains. Given two statésand j, let f") be  Thus, the size of the black area in Fig. 7(a) equlg = 1/s.

the probability of reaching from i in no more than: steps. Let  To show the differences between our model and weighted finite au-
£ = lim,_ f{"). Using a known result concerning Markov chaintomata [1], [2], we encode the image shown in Fig. 7(a) into a weighted
[12], F5r = (f,;(y*‘]?),-,g, jer can be computed as follows: finite automaton and then compute the “integral” using weighted finite
transducers. The integral of a bilevel image coincides with the size of
the image.

We now briefly describe the preliminaries of weighted finite au-
tomata and weighted finite transducers (see [1], [3] for more details.)
whereP 7 stands for the one-step transition probabilities betweehfunction f: ¥* — R is used to assign a real number, interpreted as a
states in7 andP rx represents the one-step transition probabilitiegray level, for each pixel in difference resolution addressed by a string

Frr=0-Pr7) 'Prz

from states ir7 to states ink. in ©*. Functionf is calledaverage preserving 3° .. f(wr) =
Using Lemma 1, we have the following. |Z]- f(w) forallw € *. Intuitively, function f defines serial images
Theorem 4: Given a Markov chail = (S, P, s1, F) at different resolutions when it is average preserving. A weighted fi-
nite automaton (WFA} can be used to define such a functipn.e.,
* flei,za, ..., 21)=1- Wy, - W,,---W,, - F,wherel € R'*™
Pr(M) = Z fs(l,)j is(the initial distr?bution,F 1e R™*! is th)é final distribution, and
JEU:':1 Z; W,, € R™*™ foralll < i < k, #; € ¥ are weight matrices. In-

tuitively, function f(w) is the sum of the weights of all paths labeled
where{Z,, T, .... T} is the set of all ireducible sets (i.e., end com- T_he weight of_a path is multlpl_lc_:atlon of the initial dlstrlbu_tlon on
ponents) such that N F # ¢, forall 1 < i < k. the_flrst state, yvelghts of thet_rans!tlt_)ns on the path, and the flna_ll distri-
bution on the final state. A weight finite transducer (WFT) is a finite au-

With the above theorem, in conjunction with the close connectign L LN
T ! . . . qomaton with input alphabél, , output alphabet., initial distribution
between deterministic Biichi automata (encoding bilevel images) an

1Xn £ H H H nx1 H H T
Markov chains, the size of a deterministic Blichi recognizable ima%gexﬂj - final distribution " € R ! and weight matnx_esh, 5 €
. foralla € ¥y andb € ¥,. Given a WFT, the weighted rela-
can be effectively measured.

tion f7: 7 x &7 — Ris defined b 2 ag, biby - by) =
For example, consider the image shown in Fig. 7(a) for which tr}veT -1W ; H W, . -F wh)grg(f(élrfz ; ?L ; 26 5, kb)_ c
ayp,ap  ag, by Vap, by "4 > 0 vyl Ve

transition matrix of the corresponding Markov chain is the foIIowing:v2 Note that the above defines asfree transducer i.el. .. W,
andWV. ;, are zero matrices forall € ¥,b € ¥,. Given a multireso-

0+ 30 lution functionf: ¥ — R and aweighted relatiofr: ¥} x £3: — R,
o L 1 1 afunctiong: ¥3 — R is defined byg(t) = >, .. f(5)fr(s, t) for
P= 2 4 1 . 1
= allt € ¥3.
00 10 Following the above definitions we encode the image shown in
0 0 0 1 Fig. 7(a) into a WFA shown in Fig. 8.
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TABLE |
LIST OF BASIC OPERATIONS INIMAGE PROCESSING(THE RATIONAL NUMBER IN THE DEFINITION OF BOUNDARYSPECIFIES THE“T HICKNESS' OF THE BOUNDARY.
THE SiZE OPERATION APPLIES TOIMAGES REPRESENTABLE BYDETERMINISTIC BUCHI AUTOMATA ONLY)

name notation | definition meaning
x /
shift sh sh : Image x Q@ — Image L )
x2 | by
resize s rs : Image x 2F = I'mage L
|| P
flip fl fl: Image — Image
b —|F
rotation ro ro : Image — Image
complement | comp comp : Image — I'mage
| — [
boundary bn bn : Image x Q — Image
X —
difference diff dif f : Image x Image — Image h h b
x —
union un un : Image x Image — Image h h *
X h Lo
intersection | inter inter : Image x Image — Image h -
o 4
size size size : Image — R
In Fig. 8, the edge from statesto j is labeled byx: (W), ;. + > FU0.0)G, (kD)
The pairl;, F; labeled in staté is the initial and the final distribu- i3, k1640, 1}
tions, respectively, for stata For example, string0. 0)(0, 1) cor- I =L 1
responds to the /4 x 1/4 pixel whose gray-level i9/2 = 1 x fr((0, 0)(G, g (R, 1), (1 1)(1, 1)(L 1) = 5.

1 x 1/2.In[3], a WFT computing the integrgf| [/ f(x, y)dxdy Intuitively, g((1, 1)(1, 1)(1, 1)) is the sum of the gray levels of ten
is purposed. For bilevel image;fo1 fol f(x, y)dx dy has the same pixels. Thus, the accuracy of the gray level of a pixel, computing
meaning as “size.” In fact, the final distribution at the left-most statiteom the original image, dominates the “size” computed by applying
1/8 (corresponding to the gray level of the whole image) is exactintegral (represented as a WFT) on WFA. For example, if the
the “size” of the image. Here, we illustrate the computation of thiinal distribution of the left-most (middle) state is/6 (2/3), then
“size” by [ [ f(x,y)dxdy. For simplicity, the resolution is set g((1, 1)(1, 1)(1, 1)) = 1/6.

to 2%, i.e., the unit square is divided in® x 2 subsquares. From

the WFA shown in Fig. 8, we havgé((0, 0)(0, 0)(i, j)) = 1 for IV. | MPLEMENTATIONS OF IMAGE OPERATIONS

i, 7 € {0,1}; £((0,0)(7, 7)(0,0)) = 1fori,j € {0,1} and
i ®j = 1; £((0,0)(, j)(k, 1)) = 1/2fori, j, k, 1 € {0, 1},
i @j =1,andk ©1 = 1 where D" denotes “XOR.” By computing

In this section, we show how each of the image processing opera-
tions defined in Table | can be performed in the framework of Biichi

B . o automata.
fU o f(w. y)dvdy, the image size s Theorem 5: The set of operations listed in Table | can be imple-
g((1, 1)(1, 1)(1, 1)) mented effectively using an automata approach. (Notice thatitiee
o operation applies to images representable by deterministic Blichi au-
= Z f(g) ) fT(sV (1 1)(1~ 1)(19 1)) tomata only.)
s€x? Proof: « shift: imagex @Q? — image
= Z £((0,0)(0, 0)(7, j)) Given an image (represented by a Biichi automdpand a vector
i, 5€{0,1} # € @2, Corollary 2 shows the feasibility of shifting the image encoded
- fr((0, 0)(0, 0)(4, 5), (1, 1)(1, 1)(1, 1)) by B by vector. L
. L * resize: imagex2” — image,k € Z
+ M;{;l} F((0, 0)¢i, (0, 0) Let B = ({0,1}% S, &, so, F) be an automaton accepting the
i@y=1 input image. It suffices to show the cases for= 1 and —1. First,
- fr((0, 0)(4, 7)(0, 0), (1, 1)(1, 1)(1, 1)) considerk = 1 (i.e., enlarging the image by a ratio of 2 along both
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S

Fig. 9. Procedure of resize. %

= andy axes). Suppos&—s,., r € {0, 1}* (i.e., s, r € {0, 1}7,

represent the four immediate successors)f It is easy to observe
that B o) = ({0, 112, S, 6, 5(0,0), F) encodes an image which —\
is the enlargement of the, 0)-subimage by a ratio o x 2. See ﬁw
Fig. 9. Then, it is easy to see thatsize(B, 2) = B, ¢). (Notice ‘
that the enlargements of the remainiftg 1), (1, 0), (1, 1)-subim-
ages are beyond the boundary of fAel] x [0, 1] area.) Now con-
siderk = —1 (i.e., shrinking the image by a ratio of 2 along bath _ ) )
andy axes). We defind3, » = ({0, 1)2, SU {sy}. 6. sh, F) such Fig. 10. Computing the boundary of an image.

7 (0,0)

thats’ = §U{sy, —so}. (Thatis,B; - is obtained fromB by adding
a new initial states) together with transition), ™ so.) B, ,, clearly 1m9(B) are the images represented #yand B, respectively. (That
encodesesize(B, 1/2). is, the two images are identical.)
. flip: imageﬁ/image Proof: Let A = (%, 5,48, s0, F). B is constructed as
By interchanging the symbgD, 0) with symbol(0, 1) and symbol (& 5, & so, F), wheres = 8" U{(s, a, s)|s € F} (i.e., for each of
(1, 0) with symbol(1, 1) in thew-automaton encoding the input imagethe final states, a self loop is attached for every input symbdl The

M, the resulting automaton encodgiip( 1) along thez-axis. Flip-  COTTECtness of the construction is rather obvious. -
ping along they-axis is done similarly. By unwinding the computation of an-automaton to the desired
. rotate: imégex{90°. 180°, 270°} — image depth specified by the error bound, the following result is easy to ob-

It suffices to consider rotating the input imag@°® in the clock- t&in- Dueto Space limitations, the detgils are omitted. _
wise fashion. Like the flipping casé(° rotation can be achieved by 1heorem 7: Given anw-automatond and an error boun, a fi-
interchanging the four input symbols in a circular fashion0) —  Nite automator3 can be constructed such thlatig(A) ~. Img(B),

(0, 1) = (1, 1) — (1, 0) — (0, 0). whereImg(A) andImg(B) are the images representedtyandB,
« complement, difference, union, intersection respectively.
According to Theorem 2, the class of languages accepted by Biichi

automata is closed under complement, difference, union, intersection, V. CONCLUSION

implying the feasibility of the associated image processing operationsWe have proposed a novel approach, based on the thearyaof

-Rbourlllda;]ry: |nr1]age<Q _>| magi in th ) i tomata, to represent bi-level images. The usefulness of this approach
(Recall that the rational number in the operation specifies trPﬁls further been demonstrated by showing a rich set of image oper-

“;hic_kness”oofbthe b(()) u: d?ry') LSE l_ae(;a Ii@'lckhi aslétomatorégcceptingations to be performed easily in the framework of awautomata.
F € 'mgfile[ - bl % [d’B,]‘bor a desire t chr_Teh. €Q g/;ﬂhan In particular, we have shown that by applying the theory of Markov
image ', we exten y constructing a Buchi automataf that chains, the size of an image is easily computable. As far as computing

o - ,
rSecoglglzeTgt(B) N L(BB )+ L(F()jl(guararjteedh by_ Corollarde).himage size is concerned, our approach provides an alternative to the
ee Fig. 10(top row). By repeatedly rotating the image and t e|'ﬁtegral" operation reported in the literature for weighted finite au-

performing th? above shift operation, the bou_ndaryij can be tomata. In our future research, it is of interest to see how color images
computed asfif (B, un(un(un(ext(B). ext(flip(ro(ro(B)))),  can pe dealt with in the framework ofautomata.

ext(flip(B))), ext(ro(ro(B))))). See Fig. 10 for a series of such

operations and how the boundary of an image (with the desired

thickness) is extracted. ACKNOWLEDGMENT
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The classical UC Lagrange method cannot solve the problem due to
Optimal Generation Scheduling Based on AHP/ANP cqmbinatorial explosion. Accordingly, as an initial approach t.o solve
this complex problem, we attempt to find a method for solving UC
James A. Momoh and Jizhong Zhu considering network limitation and generation bids as a daily opera-
tional planning problem. This approach supports the decision making
effectively of ranking units in terms of their values by using the ana-
Abstract—This paper proposes an application of the analytic hierarchy |ytic hierarchy process (AHP) and the analytic network process (ANP)
process (AHP) and analytic network process (ANP) for enhancing the selec- o oyniques. The scheduled generation over time is studied as input into

tion of generating power units for appropriate price allocation in a compet- . . . L
itive power environment. The scheme addresses adequate ranking, priori- (€ optimal power flow (OPF) problem for optimal dispatch within the

tizing, and scheduling of units before optimizing the pricing of generation network and generation constraint.

units to meet a given demand. In the deregulated environment, the clas-  This paper proposes application of the AHP [6], [8] and the ANP [7]
;‘Sf;)'gg'”géﬁgg” é‘;"mfr‘;i?a‘z'r"'gbﬁ]é”fnutg'rggtri‘é:\%ﬂgé‘gg’;@ﬁr;t'solr:)i‘% for enhancing the selection of generating power units for appropriate
demand, genera’ting cost curve, bid/sale price, unit up/down cost, and the P"C€ aII_o_catlon n the der_egulated power Ind_ustry. It is different from
relative importance of different generation units, the scheme can be imple- the traditional unit commitment problem, which can be solved by di-

mented to address the technical and nontechnical constraints in unit com- rectly using the optimization methods.
mitment problems. This information is easily augmented with the optimiza-
ion scheme for an effectiv imal ision. Th heme pr i ;
Index Terms—Analytic hierarchy process, analytic network process, The basic concept of proposed optimal generation scheduling is as
deregulated power industry, optimization, unit commitment. follows:
First, it is assumed that the ranking of generating units, and their
priority as well as demand is known. As a result, the preferred genera-

|. INTRODUCTION tors for competitive scheduling and pricing will be known. Therefore,

Since generators cannot instantly turn on and produce power, Jhﬁ number of generators whose fuel consumption constraints must be
commitment must be planned in advance so that enough generatiogdgsidered can be reduced considerably. This reduces the difficulties
always available to handle system demand with an adequate res@hhit commitment and optimal power flow. The proposed scheme ad-
margin in the event that generators or transmission lines go outdgesses adequate ranking and prioritizing of units before optimizing the
load demand increases. Unit commitment handles the unit generaffi§ing of generation units to meet a given demand. By incorporating
schedule in a power System for m|n|m|z|ng the Operating cost and S&{e interaction of factors, such as load demand, generating cost curve,

isfying the prevailing constraints such as load demand and systemRisl/sale price, unit up/down cost, and the relative importance of dif-
ferent generation units, the scheme can be implemented to address the
" - ed June 1. 1999: revised March 26. 2001 Thi ‘ technical and nontechnical constraints in unit commitment problem.
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