
Abstract. We establish a strong impossibility theorem of a rational social
choice that the proximity preservation (also called weak proximorphismWPX)
and the diagonal surjectivity are logically inconsistent. The result is valid for
finite or infinite alternatives, discrete or continuous. It generalizes the Baigent
theorem, largely weakening his antecedent. For continuum set of alternatives,
we clarify the notion of WPX by showing (1) WPX almost implies the conti-
nuity, (2)WPX is almost rigid. These observations raise the issue whetherWPX
is a natural condition for a social welfare function. A splitting reformulation of
the proximity preservation which is weaker but rational is suggested.

1 Introduction

Chichilnisky (1982) showed in a topological framework that there exits no
social welfare function which is continuous, unanimous and anonymous.1

Analogous to it, Baigent (1987) introduced for the finite discrete case of
alternatives a notion of proximity preservation to substitute the continuity
condition and showed that the proximity preservation, the unanimity and
anonymity are also logically inconsistent.

In this paper, we extend Baigent’s result by proving (see Theorem 2) that
the proximity preservation (WPX) and the diagonal surjectivity (DS) are
inconsistent; this is an improvement because the hypothesis of anonymity
is dropped and the diagonal surjectivity2 is considerably weaker than the
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1 For precise definitions, see [3] or Appendix I.
2 The diagonal surjectivity means that the social welfare function maps unanimous
profiles of individual preferences onto social preferences.
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unanimity. Even stronger, our result is valid also for the case of infinite
alternatives, discrete or continuous.

The result (Theorem 2) in its appearance is a strong impossibility theorem
of rational social choice. However, it also forces us to question whether the
proximity preservation is a natural condition to be imposed on a social
welfare function. Indeed, it states that a condition as weak as the diagonal
surjectivity is enough to preclude the proximity preservation. The argument is
purely geometric, involving essentially no concept of social choice theory.
Consequently, could one say that a condition is natural, or even rational,
when it hardly respects simple geometry?

From a version of structuralism, we consider the proximity structure first
introduced by Baigent (1987) and define (see 1.1) a function proximorphic if it
preserves the proximity structure in a canonical way. The proof of Theorem 1
provides a short and clear argument to show how a diagonally surjective
function is not proximorphic. Baigent defined proximity preservation in a
weaker sense; we call a function satisfying his condition weakly proximorphic
in this paper. Theorem 2 deals with weak proximorphisms as an extension of
Theorem 1 for N � 3, where N is the number of the individuals in the society.
Its proof is essentially the same, but technically more subtle and tedious than
that of Theorem 1.

Since for social choice theory, the number N is usually assumed to be at
least three, Theorem 3, which treats N ¼ 2 is purely of geometric interest. It
shows that a diagonally surjective weak proximorphism must be simple, i.e
the elements of the preference space must be equally distanced from each
other and the map is simply a permuted projection (see Definition 2.1).

The latter part (Sect. 3 and Sect. 4) of this paper is devoted toward
clarifying the notion of proximity preservation on continuum spaces. As the
proximity preservation and the continuity are designed to be analogous, we
first compare their geometric behaviors on canonical spaces, such as on the
P -spaces (see Definition 3.1) with countable bases, and in particular on
the Euclidean spaces. It is proved (in Theorem 4 and Corollary 1) that the
proximity preservation implies the continuity on the canonical spaces. In the
framework of Chichilnisky where the range space is a P -space but has no
countable base, the extreme case that the social welfare function (SWF) is
totally discrete (or even scattering) may occur. Theorem 5 states that on each
component of the Chichilnisky space, a SWF preserving proximity is either
continuous or scattering. In particular, if a SWF is assumed to be onto (i.e.,
to have no taboo), then the proximity preservation implies continuity. The
converse is clearly false, since the proximity preservation is almost rigid but
the continuity allows a large extent of elasticity.

In Sect. 4, we show a series of theorems for completion. They examine
more closely the geometry of weak proximorphisms. We introduce the notion
of path-minimizing, and show that the proximity preservation yields almost
what we call ‘‘similarity’’ in the elementary geometry. In particular, there is
no function F mapping a domain of the Euclidean space Rn into Rm, n > m,
which preseves proximity, unless F is trivial. Again, this reveals that the
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proximity preservation is a strict condition even in a pure geometric view-
point.

We add the last section for concluding remarks, where the recent works by
Grafe and Grafe[5] and by Ecker and Lane[4] are also discussed. As the
rationality of the proximity preservation is concerned, a splitting form which
is weaker but rational is formulated. The reformulation makes the proximity
preservation more like a type of the Pareto principle than an analogy of the
continuity.

The author would like to express his gratitude to the referee for the advice
to extend Theorem 1 to the infinite case and to relate proximity preservation
with continuity. The original manuscript of this paper considered only the
case of finite alternatives.

2 Impossibility theorems

Given two metric spaces ðX ; dÞ, ðY ; dÞ and a function F : X ! Y , we say that
F is proximorphic (relative to the given metric d and d), if

dðx; yÞ � dðx; zÞ implies dðF ðxÞ; F ðyÞÞ � dðF ðxÞ; F ðzÞÞ; ð2:1Þ
for any x; y; z in X . We write ‘‘F satisfies PX relative to d; d’’ for simplifi-
cation.

For a metric space W with metric d, sometimes denoted by ðW ; dÞ for
specification, let W N be the product space of N copies of W with the L1-
product metric dN defined by

dN ðða1; . . . ; aN Þ; ðb1; . . . ; bN ÞÞ ¼
XN

i¼1
dðai; biÞ: ð2:2Þ

A function F : W N ! W is called diagonally surjective if F maps the diagonal
points of W N onto W , i.e., F ðDÞ ¼ W , where D is the diagonal set
fða; a; . . . ; aÞ 2 W N ; a 2 W g. The diagonal surjectivity is denoted by DS.

Theorem 1. Let W be a set containing more than one element and let
F : W N ! W ;N > 1, be diagonally surjective. Then F is not proximorphic,
relative to any given metric d of W and its L1-product metric dN .

Proof. Clearly, there exist two diagonal points ða; a; . . . ; aÞ and ðb; b; . . . ; bÞ
in W N with distinct images

F ða; a; . . . ; aÞ 6¼ F ðb; b; . . . ; bÞ:

Denote them by x0 ¼ ða; a; . . . ; aÞ; xN ¼ ðb; b; . . . ; bÞ. Consider
x1 ¼ ða; a; . . . ; a; bÞ 2 W N :

By the surjectivity DS, there exists a diagonal point y ¼ ðc; c; . . . ; c; cÞ 2 W N ,
with F ðyÞ ¼ F ðx1Þ. We have
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dN ðy; x1Þ ¼ dN ða; a; . . . ; a; bÞ; ðc; c; . . . ; c; cÞð Þ
¼ ðN � 1Þdða; cÞ þ dðc; bÞ � dða; bÞ ¼ dN ðx0; x1Þ:

(The first inequality is by the triangular inequality and the last equality fol-
lows from d(a,a)=0.) Suppose F is proximorphic, we have

0 ¼ d F ðyÞ; F ðx1Þð Þ � d F ðx0Þ; F ðx1Þð Þ
and hence F ðx0Þ ¼ F ðx1Þ. Let x2 ¼ ða; a; . . . ; a; b; bÞ 2 W N . It is clear that
dN ðx1; x2Þ ¼ dN ðx0; x1Þ. Again by F proximorphic,

dðF ðx1Þ; F ðx2ÞÞ ¼ dðF ðx0Þ; F ðx1ÞÞ ¼ 0;

and we have F ðx2Þ ¼ F ðx1Þ ¼ F ðx0Þ. Do this process inductively, it is shown
that F ðxN Þ ¼ F ðx0Þ, leading to a contradiction. The proof is completed.

Example 2.1 We construct a nontrivial example for which F : W 2 ! W is
proximorphic but not diagonally surjective. This will show that the
assumption of diagonal surjectivity could not be dropped in Theorem 1. Let
W � fa; b; c1; c2; . . . ; chg with h � 9 be a discrete set consisting of hþ 2 ele-
ments, and let the metric d of W be defined by

dða; bÞ ¼ 100; dða; ciÞ ¼ 90; dðb; ciÞ ¼ 10;

dðci; cjÞ ¼
0; i ¼ j

1; i 6¼ j;

�

8i; j 2 f1; 2; . . . ; hg. Let X1;X2; . . . ;X9 denote the nine sets in W 2:

fða; aÞg; fðb; bÞg; fða; bÞg; fðb; aÞg;
fðci; aÞ; i ¼ 1: . . . ; hg; fðci; bÞ; i ¼ 1; . . . ; hg
fða; ciÞ; i ¼ 1: . . . ; hg; fðb; ciÞ; i ¼ 1; . . . ; hg
fðci; cjÞ; i; j ¼ 1; . . . ; hg;

respectively. Define F : W 2 ! W by F ðxÞ ¼ ci, 8x 2 Xi; i ¼ 1; 2; . . . ; 9. Evi-
dently, F is proximorphic, while not diagonally surjective.(For instance, the
element a is not contained in the image of F ).

Baigent (1987) defined the notion of proximity preservation in the fol-
lowing weaker sense. Given a set W , a metric d on W and a function
F : W N ! W ;N > 1. We say that F is weakly proximorphic relative to d, if

dN ðx; yÞ < dN ðx; zÞ implies dðF ðxÞ; F ðyÞÞ � dðF ðxÞ; F ðzÞÞ; ð2:3Þ
for any x; y; z in W N . (Note that the inequality ð�Þ in the antecedent of (2.1) is
here replaced by the strict inequality ð<Þ.) Sometimes we write ‘‘F satisfies
WPX relative to d’’ for simplication. Baigent defined that a social welfare
function F : W N ! W preserves proximity when (2.3) is valid, i.e. when F is
weakly proximorphic relative to the given metric of W . The natural question
is to determine whether Theorem 1 still holds for a weak proximorphism F .

For N ¼ 2, the answer is negative, since we may have an example of
F : W 2 ! W which is diagonally surjective andweaklyproximorphic as follows.
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Example 2.2 Let W be a space in which all pairs of the elements are equally
distanced with metric d, i.e. dða; bÞ ¼ dða0; b0Þ for any two pairs a 6¼ b and
a0 6¼ b0 in W . Let F : W 2 ! W be defined by the projection map to the second
coordinate, i.e.

F ða; bÞ ¼ b; 8a; b 2 W :

Clearly F is diagonally surjective. Also F satisfies WPX relative to d. In fact,
suppose the contrary, then there exist x; y; z in W 2 such that

d2ðx; yÞ < d2ðx; zÞ and dðF ðxÞ; F ðyÞÞ > dðF ðxÞ; F ðzÞÞ:
Since W is equally distanced, the only possibility is that

dðF ðxÞ; F ðyÞÞ 6¼ 0; but dðF ðxÞ; F ðzÞÞ ¼ 0;

which yields that F ðxÞ 6¼ F ðyÞ and F ðxÞ ¼ F ðzÞ. Denote x ¼ ða; bÞ, then
z ¼ ðc; bÞ. Let y ¼ ða0; b0Þ then b 6¼ b0. By d2ðx; yÞ < d2ðx; zÞ, we have

dða; a0Þ þ dðb; b0Þ < dðc; aÞ
which implies c 6¼ a. Since the elements of W are equally distanced,
dðc; aÞ ¼ dðb; b0Þ. We have

dðc; aÞ � dða; a0Þ þ dðb; b0Þ < dðc; aÞ;
which is a contradiction. Hence F satisfies WPX.

However, we will show for N � 3 that DS still precludes WPX, and for
N ¼ 2 the only possibility is basically the case described in Example 2.2.

Definition 2.1. Given a metric space W ¼ ðW ; dÞ and F : W N ! W , we call F is
simple if all the pairs of the elements of W are equally distanced, and F is a
permuted projection, i.e. there is some i such that F ðp1; . . . ; pN Þ ¼ pðpiÞ, where p
is a permulation among elements of W .

Theorem 2.3 Let W be a metric space containing more than one element and
F : W N ! W ;N > 2, be diagonally surjective, Then F does not preserve prox-
imity in the sense of Baigent (or equivalently, F is not weakly proximorphic
relative to the given metric d and L1-product metric dN ).

Proof. The proof is essentially the same with Theorem 1, by some modifi-
cations. Suppose F is weakly proximorphic. We will show a contradiction.
Clearly, there exist two distinct a; b in W such that F ða; a; . . . ; aÞ 6¼
F ðb; b; � � � ; bÞ. Given a natural number l < N . Consider

xl ¼ ða; a; . . . ; a; b; b; . . . ; bÞ 2 W N

3 The proof of Baigent’s Theorem given in his paper (1987) seems to have a problem
when N is an odd number. Our proof of Theorem 2, when viewed as a generalization
of Baigent’s Theorem, automatically fixes the gap.
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with first l coordinates taking a and the rest taking b. By DS, there exists
y ¼ ðc; c; . . . ; cÞ 2 W N with F ðyÞ ¼ F ðxlÞ. Since

dN ðxl; yÞ ¼ ldða; cÞ þ ðN � lÞdðb; cÞ
> dða; cÞ þ dðb; cÞ as 1 � l � N � 1

� dða; bÞ ¼ dN ðxl; xlþ1Þ;

(noting that N > 2 is necessary to obtain the strict inequality in the last
formula). We have

0 ¼ dðF ðxlÞ; F ðyÞÞ � dðF ðxlÞ; F ðxlþ1ÞÞ;
by WPX. Hence F ðxlÞ ¼ F ðxlþ1Þ. Similarly F ðxl�1Þ ¼ F ðxlÞ. Therefore,

F ða; a; . . . ; aÞ ¼ F ðxN Þ ¼ F ðxN�1Þ ¼ . . . ¼ F ðx0Þ ¼ F ðb; b; . . . ; bÞ;
which contradicts F ða; a; . . . ; aÞ 6¼ F ðb; b; . . . ; bÞ.
Theorem 3. Given W , F as in Theorem 2, except now N ¼ 2. The only case in
which F preserves proximity in the sense of Baigent is when F is simple.

Proof. See Appendix II.

3 Continuity

In this section, we deal with the maps on continuum metric spaces, and
consider the relationship between the proximity preservation and continuity.
In general, the continuity of a map means the preservation of infinitesimal
proximity which is simply topological, while the proximity preservation is
defined metrically. Indeed, proximity preservation concerns the orders of
finiteness (e.g., 3 < 5) under the map, while the continuity differentiates the
order of infinitesimal smallness from orders of finiteness(e.g., oð1Þ < 1=9).

The two notions appear irrelevant to each other . This is seen by the
observation that a rubber-bending which is a continuous map preserving the
infinitesimal proximity may easily break the proximity, i.e. continuity does not
imply proximity preservation. On the other hand, onemay show that proximity
preservation does not imply continuity, by constructing a scattering function
whichmaps all of the elements in the domain into a totally discrete subset of the
range such that the image points are distanced from each other in at least a
constant range(see Defition 3.2). However, we prove that the scatterness
example is the only case that a proximity preservation is not continuous.

Definition 3.1. A topological space X is called a P-space if each component of
X is path-connected and isolated.4

4 See for example [8] Kelley (1955). A component of X is a maximal connected set of X .
A path of X means a continuous map from an interval into the space X . A set Y in X is
path-connected, if 8x; y in Y , there is a path c : ½a; b� ! Y such that cðaÞ ¼ x; cðbÞ ¼ y. A
set Y in X is isolated if Y is open and closed in X .
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Example 3.1. A discrete space is a P-space. An open set of an Eulidean space
Rn or of a Hilbert space is a P-space.

Example 3.2. The Chichilnisky space is a P-space. Let Qn be a cube in Rn.
According to Chichilnisky (1982, [3]), a preference v on Qn is defined by an
unit continuous vector field on Qn except on a singular subset of Qn where
v ¼ 0. Define the metric dc by

dcðv;wÞ ¼ maxfjvðxÞ � wðxÞj; x 2 Qng ð3:1Þ
The totality Pc of the preferences on Qn, equipped with the metric dc which
defines a topology of Pc, is called the Chichilnisky space. Given v 2 Pc, the
subset Kv of Qn consisting of all the points on which v is zero, is called the
singular set of v, and Qn � Kv the regular set of v. Given v;w 2 Pc. If v and w
have different singular sets, then dcðv;wÞ � 1. Two preferences v and w are in
the same component of Pc, only when their singular sets are identical. But the
converse is not true. For a counter example, let n ¼ 2, consider
Q2 ¼ fx ¼ ðx1; x2Þ 2 R2; jxij � 1g, and v;w defined by

vðxÞ ¼
x
jxj ; x 6¼ 0
0; x ¼ 0

�
wðxÞ ¼ ð1; 0Þ; x 6¼ 0

0; x ¼ 0

�

We have dcðv;wÞ ¼ 2 and Kv ¼ Kw, but v and w belong to different compo-
nent. Clearly, two components of Pc are distanced by at least 1 from each
other. Hence each component Pc is isolated. The path-connectedness of
components of Pc is evident.

Example 3.3. Every product space with N copies of P-spaces is also a
P-space.

Theorem 4. Let X and Y be P-spaces with metrics d and d respectively. Let Y
have a countable (topological) base5. If a map F : X ! Y is weakly proxi-
morphic6 (i.e. satisfies WPX), relative to the given d and d, then F is continuous.

Proof. Given x 2 X , we will show that F is continuous at x. We say that F is
discrete at x if 9e0 > 0 such that 8x0 2 X with x0 6¼ x, we have

dðF ðx0Þ; F ðxÞÞ � e0:

The positive number e0 is called a scale of the discreteness of F . There occur
two cases:

5 A base of a topological space X is a family U of open sets which generates the
topology of X, i.e. any open set in X is a union of open sets of U. For examples, an
Euclidean space and even the product space of its countably many copies have a
countable base.
6 It means that F satisfies: dðx; yÞ > dðx; zÞ ) dðF ðxÞ; F ðyÞÞ � dðF ðxÞ; F ðzÞÞ; 8x; y; z 2
X . This is a generalization of (2.3) where X=Y N . One may refer to the original
definition of Baigent [2].
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Case 1. F is not discrete at x, i.e. 8e > 0; 9x0 2 X with x0 6¼ x, such that
dðF ðx0Þ; F ðxÞÞ < e:

Choose d0 ¼ dðx0; xÞ. Then

dðx; xÞ < d0 ) dðx; xÞ < dðx0; xÞ:
By WPX, we have dðF ðxÞ; F ðxÞÞ � dðF ðx0Þ; F ðxÞÞ < e. This proves F contin-
uous at x for Case 1.

Case 2. F is discrete at x:

Step 1. Let X a denote the component of X containing x. We claim that F is
uniformly discrete on X a with scale e0, i.e. 8x 2 X a, F is discrete at x and the
scale e0 is independent of x. it suffices to consider only x 6¼ x. Given x0 2 X
with x0 6¼ x, if

dðx; x0Þ > dðx; xÞ;
then by WPX, dðF ðxÞ; F ðx0ÞÞ � dðF ðxÞ; F ðxÞÞ � e0. For the rest x0 2 X with
x0 6¼ x, and

dðx; x0Þ � dðx; xÞ:

Connect x to x by a path c and select points x1; x2; � � � ; xk on c such that

dðx; x0Þ > dðx; x1Þ > dðx1; x2Þ > . . . > dðxk�1; xkÞ > dðxk; xÞ:

By successively applying WPX, we have

dðF ðxÞ; F ðx0ÞÞ � � � � � dðF ðxk; F ðxÞÞÞ � e0:

Hence F is discrete at any point x in X a. Furthermore, the scale e0 is inde-
pendent of x. The claim is proved.

Step 2. If X a is a singleton set (i.e. containing exactly one element x), then X a

is isolated by the definition of P-space. It is automatically true that F is
continuous at x. On the other hand, if X a is not a singleton set, then X a is an
uncountable set, since X a is path-connected and the image of a nontrivial path
is an uncountable set. By Step 1, we have shown that for any x 2 X a, there is
no point of X other than x itself is mapped into the e0-neighborhood of F ðxÞ.
Hence there e0-neighborhoods of F ðxÞ, x 2 X a, are disjoint from each other. It
yields that Y has uncountable disjoint nonempty open balls of radius e0,
contradicting to the hypothesis that Y has countable base. Therefore Case 2 is
impossible.

Thus we have shown that F is continuous at x. The proof is completed.

Corollary 1. Let U m be an open set in Rm and F : Um ! Rk is weakly proxi-
morphic (relative to a given metric which is topologically equivalent to the
Euclidean metric). Then F is continuous.
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Proof. Since Um is a P-space and Rk has a countable base, Theorem 4 is
applicable to this case.

Definition 3.2. Given Z � X and F : X ! Y , X and Y being metric spaces, we
call F scattering on Z, if 8x 2 Z and 8x0 2 X with x 6¼ x0, we have

dðF ðxÞ; F ðx0ÞÞ > r; ð3:2Þ
where r is called the scale of the scattering.

Let Z � X and F : X ! Y . Clearly, F is scattering on Z with scale r, iff F is
uniformly discrete on Z with the same scale r. The proof of Theorem 4 yields
the following corollary.

Corollary 2. Let F : X ! Y , X and Y being P-spaces. If F is weakly proxi-
morphic, then given any component Xa of X , F is either continuous on Xa or
scattering on Xa.

Theorem 5. Let F : P N
c ! Pc;N > 0, be weakly proximorphic, where Pc is the

Chichilnisky space. Then for a given component Xa of P N
c , F is either continuous

on Xa, or scattering on Xa with scale r=1. In particular, given a social welfare
function F : P N

c ! Pc where F is onto, we have

F is weakly proximorphic ) F is continuous ð3:3Þ

Proof. Step 1. Denote ~0 ¼ ð0; � � � ; 0Þ 2 P N
c . We may consider without loss of

generality that Xa 6¼ f~0g, since ~0 is an isolated point in P N
c and therefore F is

automatically continuous at ~0. We note that

dN
c ð~p; ~qÞ � 2N ; 8~p; ~q 2 Xa;

and 2N is the diameter of P N
c (i.e. the maximal distance among elements in

P N
c ). By Corollary 2, F is either continuous or scattering on Xa. If F is not

continuous on Xa, we claim that the scattering scale r is 1. Let ~p 2 Xa. Denote
the component of Pc containing F ð~pÞ by Ya. Consider the set

B � f~r 2 Xa; F ð~rÞ 62 Yag:
Since F is scattering on Xa and Ya has only a countable base, Xa � B contains
at most countable elements. But Xa is an uncountable set. Hence B is dense in
Xa and there exist elements in B which are arbitrarily close to ~p in P N

c . Given
~q 2 X , we may select ~r 2 B with

dN
c ð~p; ~qÞ > dN

c ð~p; ~rÞ: ð3:4Þ
By F weakly proximorphic, we have dcðF ð~pÞ; F ð~qÞÞ � dcðF ð~pÞ; F ð~rÞÞ. But F ð~rÞ
belong to a component different from Ya. Any two components of Pc are
distanced from each other by 1. So dcðF ð~pÞ; F ð~qÞÞ � 1 as claimed.
Step 2. It is not difficult to see that Pc has a base with cardinality @2. In
particular, Pc has no countable base. Hence (3.3) can not be proved directly
by applying Theorem 4. However, when F is onto, F is clearly not scattering
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on a given component of P N
c . By Step 1, this yields that F is continuous on

each component of P N
c and the proof of Theorem 5 is completed.

4 Rigidity

It is interesting to learn more about the proximity preservation. We establish
a series of theorems in this section. The object is two folded. The theorems
depict the geometry of the proximity preservation on general metric spaces
which would clarify more closely the role of proximity preservation in social
choice theory. Also, the theorems show that a weak proximorphism is almost
a rigid motion (only up to a dilation).

Definition 4.1. A path in a metric space X is a continuous map c : ½a; b� ! X ,
where ½a; b� is an interval in R1. A subpath c1 of c is the restriction of c to a
subinterval ½a1; b1� of ½a; b�. A path c of X is called minimizing if for any subpath
c1 : ½a1; b1� ! X , and for any point z on c1 (i.e. z ¼ c1ðcÞ; c 2 ½a1; b1�), we have

dX ðx1; zÞ þ dX ðz; y1Þ ¼ dX ðx1; y1Þ;
where x1 ¼ c1ða1Þ; y1 ¼ c1ðb1Þ. A pair fx; yg of points in X is called path-min-
imizing, if there exists a minimizing path c connecting x to y. A metric space X is
called path-minimizing if all pairs of points in X is path-minimizing.

A convex domain in Rn, a convex set in a Hilbert space, a connected
complete surface, or a complete Riemannian manifold, are obvious examples
of path-minimizing metric spaces. However, the circle S1 with metric d de-
fined by the restriction of Euclidean metric in R2 is not path-minimizing. It is
not difficult to prove the following theorems. The details of the proofs are
sketched in Appendix III.

ET (Equivalence Theorem). Given an onto map F : X ! Y , where X and Y
are path-minimizing metric spaces, we have the equivalence that F is weakly
proximorphic if and only F is proximorphic.

PMP(Path-minimizing Preservation). Let F : X ! Y be given as in ET. If F
is weakly proximorphic, then F ðcÞ is a minimizing path in Y for any mini-
mizing path c in X .

We remark that if F is not assumed to be onto, the path-minimizing
preservation may not be true. This is seen by considering F : R1 ! R2, where
F ðxÞ ¼ e2pix; i ¼

ffiffiffiffiffiffiffi
�1
p

.

Definition 4.2. A map F : X ! Y , X and Y being metric spaces, is called similar
if there exists a constant c � 0 such that

dY ðF ðxÞ; F ðyÞÞ ¼ c � dX ðx; yÞ; ð4:1Þ
8x; y in X . We call the constant c the dilation coefficient.

If c 6¼ 0 and F is onto, then the condition that F is similar means that F is
isometric (i.e. F is a rigid motion), up to a dilation of the metric space Y (or
X ). Therefore the similarity is a very strict condition upon F .
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ST (Similarity Theorem). Let F : X ! Y be given as in ET, and let F be
weakly proximorphic. Then F is similar.

TT (Triviality Theorem). Let F : U ! Rm, U being a domain in Rn, n > m.
Then F never preserves proximity (i.e. F can never be weakly proximorphic),
unless F maps the whole domain U into a single point in Rm.

Proof. By ST, F is similar. However, two Euclidean spaces of different
dimensions are not similar, unless the similarity map is trivial (i.e. c=0).

As the Chichilnisky space Pc and its product P N
c are not path-minimizing,

we have to extend the study so that it deals with social welfare functions on Pc.

Definition 4.3. A metric space X is locally-minimizing if for any x 2 X , there
exists a neighborhood U of x in X which is path-minimizing.

Notice that Pc is not even locally minimizing. In fact, consider v and w in
ðn� 1Þ-sphere Sn�1, regarded as two constant unit vector fields on Qn � Rn.
Clearly, for any u 2 Sn�1,

jv� wj < jv� uj þ ju� wj;

if they are all distinct. Therefore, Pc is not locally path-minimizing. But if we
replace the Chichilnisky metric dc by the angular metric dh which is defined by

dhðp; qÞ ¼ max
x2Qn

cos�1hpðxÞ; qðxÞi; ð4:2Þ

8p; q 2 Pc, then Pc, as well as P N
c , are locally path-minimizing, although they

are still not path-minimizing. The notation hpðxÞ; qðxÞi in (4.2) denotes the
Euclidean inner product, and cos�1 takes the principal value in the range [0,p].

Example 4.1. Consider v;w in Pc as follows. Let the alternative set be the
square Q2 ¼ fx ¼ aþ bi 2 C; 0 � a � 1; 0 � b � 1g � R2. Define

vðxÞ ¼ eihðxÞ; hðxÞ ¼ 3p
2

� �
sin pa; and wðxÞ ¼ 1 2 C;

for any x ¼ aþ bi 2 Q2. Then hvðxÞ;wðxÞi ¼ cos hðxÞ and by (4.2),

dhðv;wÞ ¼ max
x2Q2

cos�1hvðxÞ;wðxÞi ¼ max
x2Q2

~hðxÞ;

where ~hðxÞ means the principal value of the arccos at cos hðxÞ, such that
0 � ~hðxÞ � p. Clearly, dhðv;wÞ ¼ p, since the maximal value of ~hðxÞ is attained
at a0 ¼ 1

p sin
�1 2

3. Consider a path cðtÞ ¼ eith, for 0 � t � 1. Then cðtÞ is a path
connecting w to v. It is not minimizing, since if we take t ¼ 2

3, for example, and
let u ¼ cð23Þ, then

dðv; uÞ þ dðu;wÞ ¼ p
2
þ p > dðv;wÞ:
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This similar situation happens actually for any path connecting w to v.
Therefore the component of Pc, even relative to dh, are not path-minimizing in
general.

However, the angular metric dh determines the same topology for Pc as
that given by the Chichilnisky metric dc. Also, a social welfare function
F : P N

c ! Pc is a (weak) proximorphism relative to dh if and only if F is a
(weak) proximorphism relative to dc. Therefore the replacement of dc by dh

does not change the essence of Pc, in our consideration.
We conclude this paper by establishing the following theorem. The proof

is also given in Appendix III.

LST (Local Similarity Theorem). Let F : P N
c ! Pc, be a social welfare

function in the Chichilnisky framework. If F has no taboo(i.e. F is onto) and
it is weakly proximorphic relative to dc (or dh), then F is a local similar map
relative to the angular metric dh with the dilation coefficient c ¼ 1

N.

5 Concluding remarks

It is nice that Baigent called my attention to the recent interesting works by
Grafe and Grafe [5] and by Eckert and Lane [4], during the preparation of the
final version of this paper. My argument of criticism about the proximity
preservation is not applicable to their formulation. In [4], the ordinal prox-
imity preservation is considered, where the distance is not even metrical.
Ecker and Lane obtained a strong impossibility theorem that the ordinal
proximity preservation which satisfies anonymity is imposed. Grafe and
Grafe showed in [5] that the distance preservation, the unanimity and ano-
nymity are inconsistant, where the distance on the space of profiles is defined
by a general partially congruent metric which is not necessarily dN as in (2.3)
introduced by Baigent. Both [4] and [5] assume anonymity, which is not taken
here in this paper. As impossibility theorems, those in [4], [5] and Theorem 2
of this paper are the generalization of Baigent’s theorem, on behalf of Bai-
gent’s original work. However, as long as the rationality of the proximity
preservation is concerned, I have a feeling that all the known definitions in
whatever sense (of [4], [5], or of Baigent’s) are over-demanding. The geometric
reasoning is roughly sketched as follows. Given a social welfare function
F : ðXI ; dÞ ! ðY ; dÞ, which satisfies the proximity preservation in any of the
above sense (abbrev. PP in the following). Consider the preimage F �1ðyÞ for
a given y 2 Y . Let A, B 2 F �1ðyÞ be distinct. Then any C 2 XI , which is
sufficiently close to A, e.g. dðA;CÞ < dðA;BÞ, lies in F �1ðyÞ by PP. In this way,
F �1ðyÞ would enlarge itself until it covers the whole XI , if some additional
mild condition (e.g. the anonymity or the diagonal surjectivity) is satisfied to
support the existence of the assumed C. This plausible reasoning although not
rigorous however reveals the essence of the proximity preservation. It may
apply even for non-congruent metrics such as d3 ¼ maxfdi; i 2 Ig in [5]. In the
formulation of the proximity preservation, it seems to me that the integrated
distance on the profile space should be reconsidered. Perhaps it is more
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reasonable to define the proximity preservation by comparing the component
distance of individual preferences, i.e. by setting

dðAi;BiÞ > dðAi;CiÞ; 8i) dðF ðAÞ; F ðBÞÞ � dðF ðAÞ; F ðCÞÞ; ð5:1Þ

instead of letting dðA;BÞ > dðA;CÞ in the hypothesis. I think that the change
is crucial in social choice theory.

A good impossibility theorem involving PP should have the formulation
of PP to match at least two criterions:

1. Independence of the chosen metrics d and d – this should be required, since
there is no distance a priori given.

2. Existence of abundant possible examples of a SWF satisfying PP – thus PP
can be called a rational principle.

Criterion 1 is important, because if the impossibility theorem is valid only
when the distance is chosen in a specific way, then it hardly concludes that a
rational social choice is impossible, since comparison of the distances in PP
become artificial. The results in [4] and [5] fit Criterion 1 satisfactorily.
Especially, Eckert and Lane formulated d and d in a large class of binary
relations, which are non-metrical and not even weak orders, and therefore
make the impossibility theorem greatly successful at this point. However, in
Baigent’s original formulation of PP, the integrated distance d which is the L1-
norm dN is perhaps too specific, while d, used as the individual and social
distance, ranging over all possible distances, has no restriction. Criterion 2
says that a rational principle should not be too strict. It is one of the main
task of this paper to show that PP in the original formulation (2.3) seems not
to match this criterion, e.g. we have shown that a social welfare function
satisfying PP in the sense of Baigent is almost rigid (see ST and LST in x4).
The above reasoning stated in the first paragraph of this section also suggests
that PP defined in the sense of [4] and [5] is not easy to be satisfied unless F is
trivial (e.g. imposed). This happens especially when Y is absolutely ‘‘smaller’’
than XI , which is the canonical case considered in social choice theory, e.g.,
Y ¼ X, smaller than XI in their dimensions. We have constructed in Example
2.1 a non-trivial social welfare function, but it has to be strangely peculiar
which I wonder nevertheless is a typical case. One would convince himself
that SWF satisfying PP is ‘‘rare’’, if he has ever tried to construct a non-trivial
example.

On the other hand, the proximity preservation PP is not an analogy of
continuity. This has been shown in the beginning paragraphs of 3, by that the
levels of the orders which they compare are different. PP is originally intended
to capture the idea that ‘‘small changes in individual preferences should not
lead to large changes in the social preferences’’ (see [2], [4]). A symmetric
statement that large changes in individual preferences should not lead to small
changes in the social preferences immediately follows by the formulation of PP.
However, the symmetric statement is not true for continuous map in general.
Look at a nice continuous function F : RN ! R with N > 1. Let A, B belong to
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a level set F �1ðyÞ, y 2 R. In general, the change from A to B can be very large,
but the change from F ðAÞ to F ðBÞ is as small as zero. More precisely, choose
C 62 F �1ðyÞ, so close to A that dN ðA;CÞ < dN ðA;BÞ. Such point C exists if F is
not trivial. Then by PP, dðF ðAÞ; F ðCÞÞ � dðF ðAÞ; F ðBÞÞ ¼ 0 and F ðAÞ ¼ F ðCÞ.
Therefore C 2 F �1ðyÞ, which is a contradiction.

In summary, the reason of re-formulating PP into the splitting form ð5:1Þ
is the following.

1. Specific integrated distance d on profiles is not a priori given.
2. PP in the original formulation is too strict and there are rare nontrivial

social welfare functions satisfying PP.
3. PP and continuity are not analogous.
4. PP in the splitting form (5.1) free of the integrated distance would avoid the

weak points (1) and (2) and still reasonable. The splitting form is more
related to a type of Pareto principle or to a weaker form of unanimity than
to continuity: i.e. given three profiles A;B;C, if for every individual i,
ðAi;CiÞ is closer to each other than ðAi;BiÞ, so it happens for the corre-
sponding social preferences.

The splitting re-formulation of the proximity preservation is much weaker but
clearly rational.

Appendix

I. Review of definitions:

Given X a set which denotes the set of alternatives. By a preference p on X we
mean a binary relation � on X , such that

(i)(Completeness) 8x; y 2 X , either x ‡ y or y � x or both,
(ii)(Transitivity) 8x; y; z 2 X , x � y and y � z ) x � z.

The totality F of all the preferences on X is called the preference space. Let
V ¼ fv1; v2; . . . ; vNg be a finite set of individuals who act as voters in a social
aggregation process. By a profile

~p ¼ ðp1; p2; . . . ; pN Þ
we mean an N-tuple of individual preferences pi, where for each i, pi 2 P is the
preference of the voter vi. The totality of profiles is denoted by P N . A social
welfare function F is a function

F : P N ! P : ðI:1Þ
We review the following definitions.

(1) F is called unanimous, if F ðp; p; � � � ; pÞ ¼ p; 8p 2 P .
(2) F is called anonymous, if F ðp1; p2; . . . ; pN Þ ¼ F ðpr1

; pr2
; . . . ; prN Þ,

8ðp1; p2; . . . ; pN Þ 2 P N and 8 permutation r of the indices 1; 2; . . . ;N .
(3) F preserves proximity (relative to a given metric on P ) if
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dN ð~p; ~qÞ < dN ð~p; ~rÞ ) dN ðF ð~pÞ; F ð~qÞÞ � dN ðF ð~pÞ; F ð~rÞÞ; ðI:2Þ

8~p; ~qi; ~r 2 P N where dN is defined by

dN ð~p; ~qÞ ¼
XN

i¼1
dðpi; qiÞ: ðI:3Þ

(If P is a topological space, the metric d is required to respect the topology of
P ). This definition is introduced by Baigent (1987). In this paper, a social
welfare function F is also called weakly proximorphic, if it preserves prox-
imity.

II. Proof of Theorem 3 in Sect. 1:

Suppose F is weakly proximorphic, relative to a metric d of W . We show that
F is simple, in the following steps:

Step 1. Given any two distinct elements a; b in W , it is claimed that

F ða; bÞ ¼ F ða; aÞ or F ðb; bÞ:
By DS, there exists c 2 W such that F ða; bÞ ¼ F ðc; cÞ. If the claim (II.1) is not
true, then c 6¼ a and c 6¼ b

d2ðða; bÞ; ðc; cÞÞ ¼ dða; cÞ þ dðb; cÞ
> dðb; cÞ ¼ d2ðða; bÞ; ða; cÞÞ:

By WPX, 0 ¼ dðF ða; bÞ; F ðc; cÞÞ � dðF ða; bÞ; F ða; cÞÞ: Hence F ða; bÞ ¼
F ða; cÞ. Similarly, F ða; bÞ ¼ F ðc; bÞ. However, we have

d2ðða; cÞ; ðc; bÞÞ ¼ dða; cÞ þ dðc; bÞ > dðc; bÞ
¼ d2ððc; bÞ; ðb; bÞÞ:

Again by WPX, we have F ðc; bÞ ¼ F ðb; bÞ. Hence F ða; bÞ ¼ F ðc; bÞ ¼ F ðb; bÞ,
a contradiction.

Step 2. Given a 6¼ b in W , if F ða; bÞ ¼ F ða; aÞ, we claim that
F ðb; aÞ ¼ F ðb; bÞ. It is seen by Step 1 that F ðb; aÞ ¼ F ða; aÞ or F ðb; bÞ. Sup-
pose that F ðb; aÞ ¼ F ða; aÞ. By applying WPX as the previous standard way
on the two pairs fðb; aÞ; ða; bÞg and fðb; aÞ; ðb; bÞg, we have F ðb; aÞ ¼ F ðb; bÞ
as claimed.

Step 3. Given a 6¼ b in W , if all the four points ða; aÞ; ða; bÞ; ðb; aÞ and ðb; bÞ
are mapped by F to a same point n in W , we say that the lattice La;b collapses
to n. Now we claim that there is no lattice collapsing to a point. But it suffices
to show that if a lattice La;b collapses to n 2 W , then all the lattices collapse
to n and therefore F ðW N Þ ¼ fng, contradicting to the diagonal surjectivity
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and W 6¼ singleton set . In fact, given c; d 2 W ; c 6¼ d, we will show first that
the lattice La;c collapses to n. By Step 1 and 2, one of ða; cÞ and ðc; aÞ should
be mapped to F ða; aÞ ¼ n. Let F ða; cÞ ¼ F ða; aÞ. Applying WPX on the two
pairs fða; cÞ; ðb; aÞg and fða; cÞ; ðc; cÞg, we have F ða; cÞ ¼ F ðc; cÞ. Therefore
n ¼ F ða; aÞ ¼ F ða; cÞ ¼ F ðc; cÞ and clearly La;c collapses to n. Similar argu-
ment applies for the case that F ðc; aÞ ¼ F ða; aÞ. By transitivity, Lc;d also
collapses to n.

Step 4. By Step 3, there is no lattice La;b collapsing. Hence 8a; b 2 W with
a 6¼ b, we have F ða; aÞ 6¼ F ðb; bÞ. This implies F is diagonally injective (de-
noted by DI). We now claim that all elements in W are equally distanced.
Suppose the contrary, there exist a; b; c 2 W such that

dða; bÞ > dða; cÞ and dða; bÞ � dðb; cÞ;
by choosing a; b with longest distance among the three. By Step 1, we may let
F ða; bÞ ¼ F ða; aÞ. Applying WPX on the two pairs fða; bÞ; ða; aÞg and
fða; bÞ; ðc; bÞg, we see that F ðc; bÞ ¼ F ða; bÞ ¼ F ða; aÞ. Applying again WPX
on the two pairs fðc; bÞ; ða; aÞg and fðc; bÞ; ðb; bÞg, we obtain

F ðb; bÞ ¼ F ðc; bÞ ¼ F ða; aÞ;
contradicting to the diagonal injectivity.

Step 5. It remains to show that F is a permuted projection. Let
a; b 2 W ; a 6¼ b. By Step 1, we may assume without loss of generality that
F ða; bÞ ¼ F ða; aÞ.

We claim:

(i) F ða; xÞ ¼ F ða; aÞ; 8x 2 W ,
(ii) F ðx; yÞ ¼ F ðx; xÞ; 8x; y 2 W .

Suppose (i) is false. By Step 1, F ða; xÞ ¼ F ðx; xÞ, By Step 2, F ðx; aÞ ¼ F ða; aÞ.
Applying WPX on the two pairs fða; bÞ; ðx; aÞg and fða; bÞ; ðb; bÞg, we have
F ðb; bÞ ¼ F ða; bÞ, which means La;b collapsing to F ða; aÞ, contradicting to the
fact stated in Step 3. Thus (i) is proved. To claim (ii), we see from (i) and Step
2 that F ðx; aÞ ¼ F ðx; xÞ; 8x 2 W . But this yields F ðx; yÞ ¼ F ðx; xÞ; 8x; y 2 W , by
applying (i) again. This proves (ii). The proof of Theorem 3 is completed.

III. Proofs of the theorems in Sect. 4:

We sketch the proofs of the theorems as follows. For the equivalence theorem
ET, it needs only to apply the continuity theorem (Theorem 4) and use a
standard argument of the e-d calculus. To show path-minimizing preservation
PMP, we consider a minimizing path c0 in X . Suppose F ðc0Þ is not mini-
mizing. Then there is a subpath c0 ¼ F ðcÞ of F ðc0Þ with end points x0 and y0

and we can find z0 on c0 such that

dY ðx0; z0Þ þ dY ðz0; y0Þ > dY ðx0; y0Þ
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where z0 ¼ F ðzÞ; x0 ¼ F ðxÞ; y0 ¼ F ðyÞ, c is a subpath of c0 connecting x to y in
X , and z is on c. We have

dX ðx; zÞ þ dX ðz; yÞ ¼ dX ðx; yÞ: ðIII:1Þ
Since Y is also path-minimizing, there is a minimizing path a connecting x0 to

y0 in Y . Choose a point w0 on a, such that the following two ratios are equal:

dY ðx0;w0Þ : dY ðw0; y0Þ ¼ dY ðx0; z0Þ : dY ðz0; y0Þ: ðIII:2Þ
By F onto, there exists w 2 X such that F ðwÞ ¼ w0. Clearly,

dY ðx0;w0Þ þ dY ðw0; y0Þ ¼ dY ðx0; y0Þ < dY ðx0; z0Þ þ dY ðz0; y0Þ:
By (III.2), dY ðx0;w0Þ < dY ðx0; z0Þ and dY ðw0; y0Þ < dY ðz0; y0Þ. Then we have

dX ðx;wÞ < dX ðx; zÞ and dX ðw; yÞ < dX ðz; yÞ;
since F is proximorphic by ET. Hence

dX ðx;wÞ þ dX ðw; yÞ < dX ðx; zÞ þ dX ðz; yÞ ¼ dX ðx; yÞ;
contradicting to the triangular inequality of the metric dX . This completes the
proof of PMP. To claim the similarity theorem ST, we have to show that for
a given pair fx; yg in X , if dY ðF ðxÞ; F ðyÞÞ ¼ c � dX ðx; yÞ with c � 0, then

dY ðF ðzÞ; F ðwÞÞ ¼ c � dX ðz;wÞ; ðIII:3Þ
for all z;w in X . Consider minimizing paths c, a, and b which respectively
connect x to y, x to z and z to w. We first claim that

dY ðF ðxÞ; F ðuÞÞ ¼ c � dX ðx; uÞ; 8u on c: ðIII:4Þ
Assume that the numbers dX ðx; uÞ and dX ðx; yÞ are commensurable, then
there exist u1 on c such that

dX ðx; uÞ ¼ mdX ðx; u1Þ and dX ðx; yÞ ¼ ndX ðx; u1Þ; ðIII:5Þ
with two integers m and n. In fact, we subdivide c with subdivision points
u1; u2; . . . ; um; . . . ; un, such that

dX ðx; u1Þ ¼ dX ðu1; u2Þ ¼ . . . ¼ dX ðun�1; unÞ
where u ¼ um; y ¼ un. By ET, F weakly proximorphic implies F is proxi-
morphic. Since F ðcÞ a minimizing path, we can show that

dY ðF ðxÞ; F ðyÞÞ ¼ n � dY ðF ðxÞ; F ðu1ÞÞ:
and

dY ðF ðxÞ; F ðuÞÞ ¼ m � dY ðF ðxÞ; F ðu1ÞÞ ¼
m
n
� dY ðF ðxÞ; F ðyÞÞ

¼ m
n
ðc � dX ðx; yÞÞ ¼ c � dX ðx; uÞ; ðIII:6Þ

where the last equality follows from (III.5). Hence (III.4) is proved, by
applying the continuity of F to cover the general u. Next, we claim (III.3).
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Assume dX ðx; yÞ; dX ðx; zÞ and dX ðz;wÞ are commensurable. Then there exist u1

on c, v1 on a and w1 on b such that

dX ðx; yÞ ¼ k � dX ðx; u1Þ; dX ðx; zÞ ¼ l � dX ðz; v1Þ; dX ðz;wÞ ¼ p � dX ðz;w1Þ;
where k; l; p are integers. By the same reasoning as above, we can show (III.3),
which would complete the proof of ST.

Finally, the local similarity theorem LST is a direct application of the
similarity theorem. The dilation coefficient c is constant on any given com-
ponent of P N

c . It is not difficult to show that c ¼ 1
N. The argument is based on

the onto assumption of F .
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