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Abstract

We construct oscillating—decaying solutions fbetgeneral inhomogeneous anisotropic elastic-
ity system. We also prove the Runge approximation property for the inhomogeneous transversely
isotropic elasticity system. We apply the oscillg—decaying solutions @nthe Runge approxima-
tion property to the inverse problem of identifying an inclusion or a cavity embedded in a transversely
isotropic elastic medium.
0 2004 Elsevier SAS. All rights reserved.

Résumé
Nous construisons des siibns oscillantes eté&troissantes pour le systérgénéral de I'élasticité

anisotrope inhomogéne. Nous démontrons également la propriété d’approximation de Runge pour le
systeme de I'élasticité inhomogéne transversalet isotrope. Mus utilisons enfin ces résultats pour
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I'identification d’une inclusion ou d’une cavité située dans un domaine élastique transversalement
isotrope.
0 2004 Elsevier SAS. All rights reserved.
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1. Introduction

Special type solutions for elliptic equation or systems have played an important role
in inverse problems since the pioneering work of Calderén [1]. In 1987, Sylvester and
Uhlmann [17] introduced complex geometrical optics solutions to solve the inverse bound-
ary value problem for the conductivity edien. Recently, Ikehata used Calderén type
solutions to the inverse problem of identifying inclusions [6]. We remark that the complex
geometrical optics solutions considered in those papers are available only for operators and
system of operators whose leading part is the Laplacian.

To consider inverse problems for general systems we look for a substitute of the complex
geometrical optics solutions. In this paper we show thabudllating—decaying solutions
we construct can also be useful in inverse problems. Roughly speaking, given a hyperplane,
an oscillating—decaying solutids oscillating very rapidly @ng this plane and decaying
exponentially in the direction transversal to the same plane. They are also complex geo-
metrical optics solutions but with the imagnygpart of the phase function non-negative.
From the point of view of operators these correspond to Fourier integral operators with
complex phase. The first instance that we know of an application of this type of solutions
to inverse problems was in the article [Mhere it was shown that the Laplace—Beltrami
operator can be factorized into forward and backward heat type equations. Solutions of the
forward heat type operator are complex geometrical optics solutions whose phase has non-
negative imaginary part. This type of solutions were also applied in inverse problems for
scalar elliptic equations in [14]. In this papwe construct oscillating—decaying solutions
for the general anisotropic elasticity system.

In Ikehata’s work, the complex geometrical optics solutions are used to defiie-the
dicator function(see [6] for the definition). To implaent the use of oscillating—decaying
solutions to the inverse problem of identifying a cavity or an inclusion, we have to modify
the definition of the indicator function usirlge Runge approximation property. It was first
recognized by Lax [11] that the Runge approation property is a consequence of the
weak unique continuation property. The Ruraggroximation property with constraints
on Dirichlet data for certain anisotropic elasticity whose elasticity tensor is either homo-
geneous or real-analytic was proved in [7,Bje weak unique continuation property is an
obvious fact in these two situations. The unique continuation property or the Runge ap-
proximation property for the general inhomogeneous anisotropic elasticity is not known
at present. In this paper we consider a specase of anisotropy, namely transversely
isotropic elasticity which models many physical situations in elasticity.

It is clear that if the domain is connected, then the weak unique continuation property
is an easy consequence of the uniquenegb®fCauchy problem on any hypersurface.

A general and powerful method of proving the uniqueness of the Cauchy problem was
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initiated by Calderdn as an application of sirguitegral operators or pseudodifferential
operators. His result has been improved by several people. To deal with our problem here,
we extend a generalization of the Calderén uniqueness theorem due to Zuily [20] (or see
the related work [19]) to the system of differential equations with decoupled principal part
(see Theorem 3.1). A key ingredient of the proof is a Carleman estimate which is derived
under some characteristic root conditions. For the case considered here, by imposing some
restrictions on the coefficients of the system, the characteristic root conditions are satisfied
for all but certain directions. Consequently, the uniqueness of the Cauchy problem for the
transversely isotropic elasticity system holds except for some hypersurfaces. It turns out
we can not conclude the weak unique continuation property for this system. However, for
convex inner domains, we are still able to establish the classical Runge approximation
property (without the restriction on the suppof the Dirichlet data). To illustrate some
applications of the oscillating—decaying siiduns and this particalr Runge approximation
property, we will study the inverse problem of recovering the convex hull of an inclusion
or a cavity embedded in an elastic body with transversely isotropic medium.

The rest of this paper is organized as follows. In Section 2, we will describe the con-
struction of the oscillating—decaying solutions flee general anisotropic elasticity system.
In Section 3, we establish the Runge approximation property for the transversely isotropic
elasticity system when the inner domain is convex. Before doing that, we will first review
a generalization of Calderdn’s theorenon® applications of the oscillating—decaying so-
lutions and the Runge approximation property obtained in the previous section to inverse
problems are studied in Section 4.

2. Construction of oscillating—decaying solutions
This section is devoted to the constructiof oscillating—decaying solutions for the
general anisotropic elasticity system.
Assume that
C(x) = (Ciju(x)) € BX(R%) = {f € C®(R3): 3" f € L™(R?), Yo € Z3 }
is the elasticity tensor satisfying
Cijui(x) = Cij(x)  Vx € R3, Vi, j, k, 1 (hyperelasticity

and there exist8 > 0 such that

> Ciju(x)aibjarh; > 8lal’b|>  Vx € R® (strong ellipticity) (2.1)
ijkl

Here and below, all Latin indices are set tofbem 1 to 3 unless othaiise indicated. In
what follows, we denote:

(Vu)p = ojug
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and

(V-G)i = _d;gi; for any matrix functionG = (g;;).
J

Before going to the main theme of the section, we want to define several notations. As-
sume that2 c R? is an open set with smooth boundary and S? is given. Lety € S?
and¢ € S? be chosen so thdi, ¢, »} forms an orthonormal system &©. We then de-
notex' =(x-n,x-¢). Letr eR, 2 (w) =2 N{x-w>t}andX;(w)={x -0 =1} N2
be a non-empty open set. We consider a vector funatign, ; v, (x, 7) = u(x, 1) =
[u(x, 7). u2(x, 7), u3(x, )]T € C®(2,(w) \ 0 Z;(w)) N CO(2(w)) with T > 1 satisfy-
ing:

(2.2)

Leu=V-(C(x)Vu) =0 in 2 (w),
Ul 5, =€ x () O ()b + By bt N, T

where& e S? lying in the span ofy and¢ is chosen and fixedy, (x') € (C8°(R2) with
supfx:) C X (w), Q;(x) is a nonsingular smooth matrix function anet® e C3. More-
over, By, ».1,N,o(x’, ) is @ smooth vector function supported in supp satisfying:

| By bt N T)HLOO(RZ) < %

for some constant > 0. From now on, we use to denote a general positive constant
whose value may vary from line to line. Furthermarg, ; ; v, can be written as

Uy, .b,t,N,w = Wy, bt,N.w + ¥y b,t,Nw
with
’ iTx-E o—T(x-0—1t) A (x'
wx,,b,t,N,w:Xt(x)Qtelrx Se TN AG )b+er,b,l,N,w(x1 7) (23)

andry, ».r, N, Satisfying

—-N-1/2
17 x: 6,08 0l HL(2, (@) < €T /2, (2.4)

where A; (1) € B®(R?) is a matrix function such that all eigenvaluesAy, denoted by
specA,), satisfies spa@d;) C C, = {z € C: Rez > 0}, andy,, ».1,n,» iS @ Smooth vector
function supported in sugp,) satisfying
HafVXz,b,t,N,wHLz(QS(w)) < erl¥1=3/2g-T(=02 (2.5)

for || < 1 ands > ¢, whereA > 0 is some constant depending on Spgg.

Without loss of generality, we consider the special case whete0, w = e3 =
(0,0,1) and choosen = (1,0,0), ¢ = (0,1,0). The general case can be easily ob-
tained from this special case by obvious change of coordinates. DE&fiaelc and
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= e ' L@, wherex’ = (x1,x2) andé’ = (£1, &) with |&/| = 1. Clearly,
is a matrix differential operator. To be precise, the compongptof M is given by:

N

My = —TZZCijkléjéz +1T ZCijkz(lél)aj +7T ZCijkl(léj)al + Zcijklajal

jl jl jl jl
+ Z(aj Cijr)(it&) + Z(ajcijkl)al
j jl
= —72 Z Ciju§j&+7 Z Cizn(&)d3+ 7 Z Cijk3(1€/)3 + Ciar3ds
Jl l J
+1T Z Cijri(§)0; +7 Z Cijia(1§5)0; +Z,Cijklajal
j#3. 1£3,) jl
+ ) @ Cijr) (Té&) + Y (9;Cijr)dy
jl jl

with &3 =0, where}_; = 3", \ (3.3)- Our task is now reduced to solve:
Mv=0. (2.6)

An obvious strategy is to transform (2.6) into a first order system. First of all, we observe
that (2.6) is equivalent to

Mv=0, 2.7)

where M = Cgll\? and the(i, k) entry of C3 is Ciz3. Define (a, b) = ({(a, b);) for
a = (a1,az,a3) andb = (b1, b2, b3), where{a,b);; = Zj, Cijxiajb;. Also, we denote
{a,b)o = (a, b)|,=0. Let P be a differential operator. We define the orderRyfdenoted
by ord P), in the following sense:
—Tx3A(x d(P)—1/2

| P40 )] yogez) < ex®4P T2,
whereRf’r = {x3 > 0}, A(x’) is a smooth matrix function of’ with spe¢A) c C, and
p(x) € Cg"(RZ). In this sense, we can see thabs are of order 191, 3> are of order 0
andx3 is of order—1. Note that the order ofs is simple consequence of the integration
by parts. To verify the order df;, j = 1 or 2, we observe that

x3
0; (efrx3A(x/)(p(x/)) = e*TXSA(”aj(p(x/) _r / efr(xafs)A(x’)ajA(x/)efrsA(x’)(p(x/) ds
0

and therefore

” 9; (e—rst(x’)(p(x/)) ”LZ(Ri) < et Y2,
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Now according to this order, the principal paft (order 2) ofM is:

Mo =—{D3 + 7(e3, e3)g " ((e3. 0)0 + (0. €3)0) D3 + T2(es, e3)g *(0. 0)0}  (2.8)

with D3 = —193 ando = (&1, &2, 0). Notice thatM is obtained by the Taylor's expansion
of M atx3=0, i.e.,

xévfl
(N —1)!

=My+M1+---+M_yNi1+ R, (2.9)

M(x', x3) = M(x’,0) +x393M (x',0) + - - - + BévflM(x’, 0)+R

where ordM;) = j and ordR) = —N. By using (2.9), the system (2.7) is written as

Myy=—M1+---+M_yy1+Rv:=Ff (2.10)
Now we setw; = v andws = —t " 1(e3, e3)oD3v — (e3, o)ov. Then we can compute

D3wy = D3v = —71{e3, e3)61(e3, o)ow1 — T{es, e3)alw2 (2.112)

and

Dawy = —1 Yes, e3)0D3v — (e3, 0)0D3v

=7 es, e3)o{T(e3, e3)g ™ ({e3, 0)0 + (0. €3)0) Dav + T(e3, e3)g (0. 0)ov + £
— (e3, 0)0D3v

= (0, €3)0D3v + T (0, @)ow1 + T ez, e3)o f

= (0, e3)o{—7(e3, €3)g L {es, 0)ow1 — T{es, ea)g w2} + {0, 0)owr
+17 ez, ea)0f

= —7{(0. e3)o(es. 63)51(63, 0)o — (0. 0)ojw1 — (0, e3)o(e3, e3)51w2
+ 17 Hes, e3)of. (2.12)

Combining (2.11), (2.12) and settig = [w1, wo]', we get that
DW—rKW~|—[ 0 } (2.13)
"= v Hes, ea)of |’ '
where
K= [ (e, 63)51(63, 0)o (e3, 63)51 }
(0. e3)oles. e3)g (€3, 0)o — (2. 0)0 (0. ea)oles. ea)g™ ]

Now we observe that containscz derivative ofv up to order 1. By (2.10), we can express
(2.13) as
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D3W =K+ Ko+ +K_y+SW, (2.14)

where ordK ;) = j and ordS) = —N — 1. Notice that the differential operatdf; in-
volves onlyx” derivatives. In additionK is a matrix function independent af and its
eigenvalues are determined from

det()\.l —K)=0
which is equivalent to

det(r?(es, e3)o + A{ (e3. 0)o + (0. e3)o} + (0. 0)0) =0. (2.15)

It follows from the strong ellipticity ondition (2.1) that (2.15) has roo‘r)&;j.E with
:tlmki>o 1<j<3. LetQ := [q1 q2 q3 q1 - 45 » 43 | be a nonsingular matrix with

Ilnearly independent vectoqs;t 1< j <3, chosen from the range r@hy.) of P, respec-
tively, where

= i yg(u —K) tda.
27i

Here I are closedC! curves inC4 := {£ImA > 0} enclosingxf, 1< j < 3. Although

0 is defined only locally, it is not difficult to extend it globally. To do this, by considering
the vector bundle ovees = 0} whose fiber at is the linear span o{fq }/ _1 Cran(Py)

and noting that it is equwalent toxs = 0} x C3, we can find a globally defined smooth
invertible matrixQ = [q1 q2 q3 q1 -4 »q3 1 on{x3z =0} with {q; }3 _1 Cran(Py) (see
for example [16]). Using this matrix functio@, we obtain that

k-oko-|% 2] (2.16)

where sped?i) c C4, respectively. In fact, we can choose:

Q Q
= — |, 2.17
Q [Q/ Q/} ( )

where
[3} =[ai. a5 93]

By virtue of the matrixQ in (2.17), we can see thaf_ = K+ Furthermore, it is readily
seen thap is nonsingular. Now by settm[zy 0w, we get from (2.14) that

D3W = (tK +Ko+---+K_y+8)W, (2.18)
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where omjK )=j and orc(S) -—N — 1.1t should be pointed out thdl’ contains
only x’ derivatives. Add|t|onally,Ko can be divided into terms involvingxs and terms
formed by the differential operator ify with coefficients independent af. Likewise,

K can be grouped into terms containmg; ’+1 *1x3_’_1 andxs_j, respectively, where
—N <j<-1 ~
We have already decoupléd by choosing a suitable matrix functigh. Our next goal
is to decoupleKo, ..., K. We first show how to decoupl€o. Let W = (1 + x3A0 4+
t1BOYWO with A© and B© being differential operators if, (with coefficients in-
dependent of3), then we have that
Daw @ = (1+ x3A@ 4 TﬁlB(O))_l(ﬂ? + Ko+ + 3:) (7 + x3A© + TﬁlB(O))W(O)
+ (I +x34©@ 4 71BO) 4 O F©
=(I —x349 —¢71BO 4. )(tK + Ko+---+5)
x (I +x3AQ 4+ T LBO)YWO 4 (1 = x34® — 15O 1 .. )ia@FO
= {tK + (Ko — tx3AQK + 123K A® — BOK + KB® +iA©)
+K 4 WO,
where orajl?/ 1) = —1 and the remainder contains terms of order at meat To look

at Ko:= KO - rng(O)K + rngA(O) B(O)ff + KBO© +iA© more carefully, we set
Ko=r1x3K01+ Ko and expres&o 1, Ko.2, A? andB© in block forms, i.e.,

> Koe(1,1) Ko(1, 2)}
Kor=| &7 ~ =1 2’
’ [Ko,z(Z, 1) Ko.(2,2)

(0) (0) (0) (0)
o_[AYA LD APQI2 o _ | BY@1L) BY(Q2
A _[A<0>(2,1) A0z )| A BT=1 0057 pO> 2

Then the off-diagonal blocks dfp are given by:
Ko(1,2) = tx3{K01(1,2) — AQ(1L, 2K + K, A9 (1, 2)}
+{K02(1,2)+1A9(1,2) - BO(L, 2K+ KBV (1,2},
Ko(2,1) = tx3{K01(2, ) — AQ2, DK_ + K: A2, 1)}
+{Ko22, 1) +iA?2,1) - BO2 DK+ K+ B?2 1)}

Since speX_) Nspeck.) = @, it is well-known that we can find suitab© (1, 2) and
A©(2,1) such that

Ko1(1,2) —AQ@1L 2K+ K, AQ1,2=K012. 1) - A2 DK_+ K, AQ2,1)
=0
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(see similar arguments in [18]). Having fourd® (1, 2) and A©@ (2, 1), we use the same
argument and determing@ (1, 2) and B© (2, 1) so that

{ Ko2(1,2)+iA®1,2) — BO1,2K_ + K, B®(1,2) =0, 2.19)

K022, 1) +iA®@2, 1) - BOQ2 1)K_+ K, B@2,1)=0.

It should be pointed out that Egs. (2.19) are to be understood in the operator sense. More
precisely, sincef{\o,z(l, 2) and 1?0,2(2, 1) are differential operators i,/ (of order one)

with coefficients independent ag. We will look for B© (1, 2) andB@ (2, 1) as the same

type of differential operator. By computing the related full symbols of Egs. (2.19) and using

the condition sped&_) N spe¢k,) = ¥, we can solve foB©@(1,2) and B©(2,1). To
find A©@ andB(©@, we simply set diagonal blocks of them are zero, i.e.,

© _ 0 AO(1,2) © _ 0 BO(1,2)
A _[A(O)(Z,l) 0 and BZ=|p021 o |

With these matriced @ and B©@, we can see that
DsW@ ={tK + Ko+ K y+---}W© (2.20)
with
7 _ Ko(L, 1) 0
°Zl 0 K22

To proceed further, we would like to decourffé_l. Notice that[?’_1 can be written
asK’; = tafK | + 23Ky, + v K. 5 Here, we can see that’,;, K/, , and
KL1’3 are differential operators ify of order zero, one and two with coefficients indepen-
dent of x3, respectively. By the similar trick, we sél©@ = (1 + x3A® + t~tx3B® 1
12O WD, whereA®, BY andC® are differential operators if,,. Now plugging
WO of above form into (2.20) yields:

D3 ® = (R + Ro+ [/ — txd(AVK — RAD) — 13(BYE — KBY)
~ o HCWR — ReW) 4 205A® 1 ir 1B 4 )W
={tK + Ko+ [tx3(K 1, — APK + KAY) + x3(K ; , — BYK + KBV
+24D) + YK 53— CPK + KCP +iBD)]+.. }wD (2.21)
where the remainder consists of terms with order at meat Therefore, by the same

argument, we can find suitable?, B® andC® such that the off-diagonal blocks of the
order—1 term on the right side of (2.21) are zero. That is, we get that

Dsﬁ/(l) = {‘L’E + I?o~|— E_l—l- . '}W(l)
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~ [Kaa1n _ o0
K—l—[ 0 K_1(2,2)]

Recursively, by defining

W= (1 +x3A© + 17 1BO) (1 + 224D 1 r~1y3BD 1 =20 D) .

(1 +xYTLAW 4 =N g 4 =2, N=10 () V)
with suitableA), B(Y) andCY) for 0< j < N (C©@ =0), we can transform (2.18) into
D3W™N = {tK + Ko+ + K_y+ S}, (2.22)

wherel?,j forall0< j < N are decoupled and off) = —N — 1. Notice that all diagonal
blocks of A¢) andB\) for 1< j < N are zero.
Now in view of (2.22), we consider the equation,
D3d™ = [tKy + KoL D +---+ K_y@, D}s™,

with an approximated solution of the form:

N+1
~(N) ~(N)
oW =3 ot
j=0
Whereﬁ(f;) for0< j < N + 1 satisfy:
~(N ~ (N A(N
DBU(() )= TK+v(() ), v(() )|x3=0= Xt (x")b,

~(N) _ 5 A(N) % ~(N) ~(N) _
D30y =tK40 ) + KoL, Doy 7, 027 [xg=0=0, (2.23)

NG, = (N N ¥ (N (N
D3y =K 0y + XN oK@ nay, 0 la=0=0,

where x, (x") € C§°(R?) andb € C3. Clearly, we have thaﬁéN) = explitxaK) x: (x)b

a;}nd ﬁﬁ) = exp(irx3[?+)f6‘3 exp(—irsI?Jr)I?o(l, 1)13((,N) ds. Furthermore, we can derive
that

[ x5 02 05" ||L2(1R<i> <cr P2

forandg € Z, and multi-indexx. Likewise, we can compute:
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2

00 *3
HU(N) ||L2(R3 /dx / exp(ITX3K+)/qu ItsK+)Ko(1 v, 5V ds dxs
R2 0 0
00 X3 2
< f d’ f ezfxsl< f e Ko(1, 1) 3N>|ds) dx
R2 0 0
00
fdx f _2”3)‘)(3(f62”)‘|1(0(1 Do (N)| ds) dxs
R? 0
o0
— @oi)? f @ [ ZW{ f &4 Ro(1, )" 2 s
0
1 xa€29 | Ro(L, DoV 2 }
o0
- (2m)*2fdx/f|1?o(1, DoS|? dxa
00
+(2T0)~ 1/dx /x3|1<o(1 D% dxa
R2 0
<ct . (2.24)

Notice that the last two equalities of (2.24) are obtained from the integration by parts. To
get the last inequality of (2.24), we make use of(dfe(1, 1)) = 0 and or(dxl/z) =-1/2.
Furthermore, by similar computations in (2.24), one can show that

||x§8 ( )||L2(R3) e P32
Inductively, similar estimates can be obtainedif@f), j=2...,N+1,ie.,
”xﬂaa( (N))”LZ(R ) S cr P

for2<j<N+1.
Therefore, if we sev V) = [“(N)] then

D3V — (zK+ Ko+ 4+ K_y})VM =R

b
V(N)|x3=0 — |:Xt(g ) :| ,
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where

I ﬁ”LZ(Rb e V2

Defining the vector function:
0 =[01, U2, 1a]"

with #; being thejth component of the vecta® (I + x3A© + t1BO) (1 + x2AD 4
r= B 4 772CD) o (142 TEAWN) 41 =LeN B 4 =2, N -1y y (V) and setting
w=expitx" - &7, we can see that

w= Qexpitx’ &) exditx3§+ (x/)))(t @b +explitx’ -y (x, 1)
= Qexplitx’ - &) exp(—tx3(—iK+(x)))x: (x")b + ¥ (x, 7)

and

wlyg=0 =explix’- £ {x: (x) Qb + o(x’, 1)},

wherey satisfies the estimate (2.5) @B, := {x3 > s} N 2 for s > 0 andBo(x’, 7) =
7(x’, 0, 1) is supported in sup,) with ||Bo(-, 7) ||z~ < ct 1. Also, we have that

”Mﬂ”LZ(Qo) § C'L'iNfl/Z.

Notice thatQ as the(1, 1) block of 0 in (2.17) is invertible.
Now letu = w +r = €* ¢ § 4+ r andr be the solution to the boundary value problem

r|3_QO =0.

The existence of solving (2.25) is guaranteed by the Lax—Milgram theorem. Moreover,
we have the following estimate

Il gy <ct VY2,

which is the estimate (2.4) af2p. We now complete the construction of the oscillating—
decaying solution for the case= 0 andw = (0, 0, 1). The oscillating—decaying solution

in the general case can be obtained using an easy change of coordinates. On the other
hand, since the construction of the oscillat-decaying solution is local near any point

on the hyperplan&; (w) and the strong convexity condition is invariant under change of
coordinates, we can construct the osciligtidecaying solution with respect to any curved
hypersurface as well. The only extra work needed to do is to flatten the boundary.
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3. Runge approximation property for the transver sely isotropic system
3.1. Generalization of Calderén’s theorem

To begin, we first review Zuily’s results in [20, Chapter 2]. The purpose is to make this
paper as self-contained as possible. Vebe an open neighborhood of € R”". In this
section we do not specify the dimensior N. In the neighborhood o we define aC*>
hypersurface:

S={xeV:iy@) =y} (3.1)

Let

P(x, D)= P(x, D)+ Q(x, D) (3.2)

be a system of differential operators, where
P(x, D) =diag P1(x, D), ..., Pc(x, D)] (3.3)

is a decoupled system of differential operators with(x, D) = Z\al:m al (x)D% being

an mth order differential operator witlC>° coefficients for every X j < k. Denote

pj(x, ) = Z|a\:m al (x)&% the full symbol of P;(x, D) for 1 < j < k. The lower order
termsQ(x, D) contain bounded coefficients. As usual, the hypersurfaiseassumed to

be non-characteristic fdf at xg, i.e., ]'[’;=l pj(xo, No) # 0, whereNg = d v (xo). Before
stating the main theorem of this section, we want to clearly describe the assumptions on
the characteristic roots. For eaph(x, £), 1 < j < k, we assume that

(C.1) there exist a conic neighborhod®, andm functions{ké (x,&,N)Y,_; which are
C®in (x,§,N) eV x (R"\0) x I'y, with & }t N such that forever§ Y N, p;(x, &+
') is written as

pi. & +TN) = p; . M) [[(r = M (x. £.N))
=1
NV x @®"\0) x I'ng;

(C.2) foranyt,1< £ < m,if Aé (x, &, N) isreal (or complex) at one point, then it remains
real (or complex) at every point;
(C.3) the real roots are simple and the multiplicity of the complex roots is not more than

two.

With the conditions (C.1)—(C.3), we are able to prove the following uniqueness result:

Theorem 3.1. Let P(x, D) be a system of differential operators defined ag3i), where
P(x, D) is of the form(3.3) with C*> coefficients and the lower order terng(x, D)



34 G. Nakamura et al. / J. Math. Pures Appl. 84 (2005) 21-54

contain only bounded coefficients. Assutim&t the characteristic roots condition€.1),
(C.2), and(C.3)hold. Then there exists a neighborhodglof xo such that ifU € C*°(V)
is ak dimensional vectavalued function satisfying

IPU| < Cngm—l |D*U|, x eV, forsome constanf > 0,
3°U|s =0, o <m —1,

thenU vanishes identically ivp.

We sketch the main ideas of the proof ofeldiem 3.1 here. The interested reader is
referred to [20, Chapter 2] for further détain which the scalar case was studied. As in
[20], assumingcp = 0 and using the Holmgren transform:

xi=xi, 1<i<n—1, t={(x, No)+3d|x|% (3.4)
with a suitable constait> 0, the principal part oP becomes:
P(xst; D)Cle):diaqP].(xstvavDl‘)v"'vPk(xstvale)]'

Foreachp;(x,t, &, 7), the fullsymbol ofP; (x, t, Dy, D), 1< j < k, there exist functions
¢/ (x, 1) and{r) (x,, )}, such that

pi.t.g )y =cl @[]z - x.1.6)

(=1

in V x R*\ 0), whereV is a small neighborhood @b, 0) andc/ (x, 1) is aC* function
with ¢/(0,0) # 0 and)\é (x,1,€) is C*® in V x (R" \ 0) with homogeneous of degree
one in&, 1< ¢ < m. Moreover, for anyj, {)\{é (x,t, &)}, satisfy conditions (C.2) and
(C.3). Since the result is local ned, 0), it suffices to assume that the characteristic roots
{Aé}?’:’kl’ j=1 Vanish outside of a small neighborhood(6f 0). Furthermore, it is readily
seen that the new solutidn under the transform (3.4) satisfies

suppU C {(x, 1) e R": 1 > &|lx||?}

for some constarit.
Now the proof of Theorem 3.1 relies on the following Carleman estimate, which was
proved in [20].

Lemma 3.1. [20] For all j, 1< j <k, there exist positive constants Tp, no andr such
that for T < Tp andn > no we have that

T T
T2 2 1 ~T)?
O e P )] R LA
0

| <m—17%
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for anyv € C*°(R") with suppv C {(x,#): 0<¢t < T, |x| <r}.

In view of Lemma 3.1, by taking” andn~1 sufficiently small, if necessary, we can
easily show that

T T
—T)2 2 1 2
> f D DOW |5 ua, O < c<T2 + ;) f ent=1) ||]P’W||§2(R,,,1) dr (3.5)
la|<m—17 0
for any k-dimensional vector-valued functidif € C*°(R") with suppW C {(x,1): 0<
t <T, |x| <r}. Now Theorem 3.1 follows from the Carleman estimate (3.5) by the stan-
dard arguments.
3.2. Transversely isotropic elasticity
Let the bodyB with reference configuratiof® be occupied by a transversely isotropic
medium. More precisely, let the axis of rotational symmetry coincide withrftexis, then
the non-zero components of the elasticity tensgg, (x) are,
C1111, C2222 C3333 C1122 C1133 C2233 C2323 Ci1313 C1212
and they satisfy:
Ci111=C2222. C1133=C2233 C2323=C1313 C1212= (C1111— C1129)/2.

For notational simplicity, we set:

Cuimi=A, Cuz=N, Cuzs=F, Cs3333=C, Ca323=L. (3.6)
Notice that here the elasticity tensGrx) satisfies the full symmetry properties:

Cijui (x) = Cuiij(x) = Cjint(x) Vx €R3, Vi, j kL. (3.7)

Instead of the strong ellipticityondition (2.1), we assume that the elasticity tensor satisfies

the strong convexity condition, i.e., there exits- 0 such that for any real symmetric
matrix £

C(x)E-E >8|E|? forallxe. (3.8)

In terms of (3.8), we obtain that

- 1 - -
A>8 C>5 L>5 S(A-N)>3 (A+N)C —2F2>3§ (3.9)

in x € £2 for somed > 0. Now letu(x) be the displacement vector, then the stationary
elastic equation is given by:
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3
(Lu)i = dy0;=0 inR, 1<i<3, (3.10)
j=1

where the stress-strain relation is:

011 A N F 0 O 0 £11
022 N A F 0 O 0 £22
o3| | F F C 0 O 0 £33
o3|l |0 0O O L O 0 2823
031 0O 0 0O O L 0 2e31
012 0O 0 0 0 0 (A—N)/2 2e12

It should be noted that the strong convexityndition implies the strong ellipticity con-
dition for the elasticity tensor, which ensures that the system of Eqgs. (3.10) is strongly
elliptic.

In this section, we will study the weak unique continuation property and the Runge
approximation property for (3.10). As before, the uniqueness of the Cauchy problem for
(3.10) is key to our investigation. We aim to apply Theorem 3.1 to the case here. Of course,
we first need to diagonalize the principal part of (3.10). A direct way is to use the cofactor
of the principal part. The question is now whether the characteristic roots conditions (C.1),
(C.2) and (C.3) are satisfied? By assuming the elasticity tefigos(x) € C>®(£2) and in
view of (3.8) (or (3.9)), we only have to check the smoothness of the characteristic roots in
(C.1) and the multiplicity conition (C.3). It should be noted #t when the characteristic
roots are not smooth, Plis [15] constructed a fourth order elliptic differential operator for
which the solution of the Cauchy problem is not unique. We will first discuss the multiplic-
ity condition (C.3). It turns out we need to exclude certain directions and put some extra
conditions onA, C, F, L, N in order to guarantee (C.3). The details are contained in the
following lemma.

Lemma 3.2. Let {M, A} be a pair of orthogonal vectors iR3. Consider the characteristic
equation

3
deff Y Cijuekjges il k— 1.2, 3) =0 inp, (3.11)
j.£=1

wheret = (€1, &, £3) = M + pii. Let? := M x il and¢ be the angle betweehand thexs
axis. Then the necessary and sufficient conditions for the characteristic ro¢sldf)to
be at most double ar¢ £ 0, ¢ # 7 and

2L \/E
VAC—F—-2L+#0 or Yo Z;»eo. (3.12)

Proof. The main idea of the proof is taken from Tanuma’s paper [18] (see the Remark
after Lemma in [18]). Let
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3 3
Q=(Qir) = Z Cijkemjmy, R=(Rix) = Z Cijkemjng,

Jt=1 Jt=1

3
T=(Ty) = Z Cijkenjng,
jil=1

wherei, k =1, 2, 3, andm = (m1, m2, m3), N = (n1, n2, n3), then the characteristic equa-
tion (3.11) is equivalent to

de{Q+ (R+R")p+Tp?]=0. (3.13)

From (3.9), we see that (3.13) contains only complex roots and they form conjugate pairs.
Since the axis of rotational symmetry coincides with thexis, the elasticity tensar; j«,
is invariant under the orthogonal transfo@rrotating around thes axis, i.e.,

cosy sind O
O= (—sin@ cosd O).
0 0 1

Therefore, the multilicities of the characteristic roots for (3.13) are invariant under the
same transforr® onm andi. Moreover, the multiplicities are also invariant to the rotation
of the vectorsm andi on the plane spanned Hyn, i}. Thus, it suffices to prove this
proposition for

r_h:(coabaoa_S”](ﬁ)’ ﬁz(oa 17 0)7
wheref = (sing, 0, cosp) (see [18]). Let; =m; + pn;,i =1, 2,3, then

£1=C0Sp, &2=p, £3=—sing. (3.14)

Now we have that
def{Q+ (R+R')p +Tp?]

3
= de-( Y Cijrekjke il k— 1,2, 3) =[W/2A - N)(&f +&5) + L&5]

je=1
x [AL(£2 + &2)° + (AC — F2 = 2F L) (82 + £2)&2 + CL£S]
—0. (3.15)

We takep1, p2, p3 to be three roots of (3.15) with positive imaginary part. petsatisfies:

%(A — N) (&2 +82) + L&Z = %(A — N)(p®+cog¢) + LsiPp=0  (3.16)
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and p», p3 satisfy:

AL(E? +£8)* + (AC — F? - 2F L) (% + €2)62 + CLES
= (E2+ &2+ GED)? + Jeb = (p? + coL + GsiP )* + I sint ¢ =0, (3.17)

where
AC — F2-2FL
G=———— 3.18
2AL ( )
and
—(AC — F3(JAC + F + 2L)(v/AC — F — 2L)
J= . (3.19)
4A212
We first prove the necessity.¢f= 0 or¢ = 7, then from (3.16) and (3.17) we have that
p1= p2=p3=1i,i.e., atriple root. Now assume that
2L C
VvAC—-—F—-2L=0 and ——— —,/—=0.
A—N A

Itis clear that/ = 0 and

. /C .
p1=p2=p3=|\/co§¢+ Zsmzqﬁ
is also a triple root.

Next we want to prove the sufficiency. Suppose that 0, . If /JAC — F — 2L #0
(note thatL > 0), thenJ # 0. Thus, from (3.17), we must have thap # p3 and
the multiplicity is at most two. The last case we need to discusg i 0,7 and
VAC — F —2L =0, but 2L/(A — N) # /C/A. It immediately follows from (3.16)
and (3.17) thatp; # p2 = p3. Hence, the multiplicity is at most two. The proof of the
lemma is now complete. O

In the next lemma, we will give some sufficient conditions on which the smoothness of
the characteristic roots is guaranteed.

Lemma 3.3. Let V be an open neighborhood ®f € £2 and I'y, be any conic neighbor-
hood ofNg € R3. Assume that

VAC—-F—-2L=0 (3.20)
or

VAC-F—-2L>0 and F+L>0 (3.21)



G. Nakamura et al. / J. Math. Pures Appl. 84 (2005) 21-54 39

for all x € V. Then the roots satisfying the characteristic equatfdril)as defined in
(C.l)areC®in (x,£,N) eV x (R®\ 0) x 'y, with £ f \V.

Proof. To prove this lemma, we only need to check the expression of the characteristic
equation (3.11). From (3.15) in the proof of Lemma 3.2, we have that

3
detl > Cijrekjées i), k—1,2, 3)

j =1
= [(1/2)(A — N) (&2 + £2) + LEZ]
x [AL(E? +£3)° + (AC — F2 - 2F L)(£2 + £2)&5 + CL&3]
= AL[1/D(A - N) (] +&3) + LeF (60 + 65 + G8) + vd]. (322

whereG andJ are given in (3.18) and (3.19), respectively. In view of (3.9), we see that
the first factor in (3.22),

(1/2)(A — N)(E2 + &5) + L&S,

represents a second order strongly elliptic operatdt.iNow if the condition (3.20) holds,
thenG = \/C/A > 0 andJ = 0. We immediately obtain that the second factor in (3.22)
is (512 + 522 + G§32)2, which represents the principal symbol of the square of a second
order strongly elliptic operator. Even though we may have a triple root in this case, the
smoothness of the characteristic roots is obvious.

Next, we discuss the condition (3.21). It follows from (3.9) and (3.21) that

AC — F? —2FL > 2FL +4L? =2L(F +2L) > 0,
AC — F?>AFL+A4L?=4L(F+L)>0

and therefore(G > 0, —J > 0. Furthermore, through straightforward computations, we
can see that

G2 — (=J) = (1/4A%L?){(AC — F2—2FL)?
— (AC — F?)(VAC + F +2L)(VAC — F —2L)}
= (1/4A%L?)(4ACL?) =C/A >0, VxeV. (3.23)

Therefore, the second factor in (3.22) becomes:

(2 +E2+Ged) v uel
=(E+E+(G+ V(=)&) (EL +& + (G — V(=)&) (3.24)
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From (3.23) we obtain thaf + /(—J) > 0 forx € V. Therefore, (3.24) represents the
principal symbol of the composition of twaecond order strongly elliptic operatorsiinin
other words, the characteristic equation (3.11) can be treated as the principal symbol of the
composition of three second order strongly elliptic operatoig.iflence, the smoothness
of the characteristic roots can be easily verifiedi

With the help of Lemmas 3.2 and 3.3, we are at the position of proving the uniqueness
theorem of the Cauchy problem for the system of Egs. (3.10).

Theorem 3.2. Letxge R3andV be a neighborhood ofg. Assume tha = {x: ¥ (x) =
¥ (xp)} is aC*> surface withNg = dy(xp) satisfying

No is not perpendicular to thes axis (3.25)

Let the elasticity tenso€;;x¢ with non-zero components defined(By6)be C> satisfying
(3.9)and(3.21)or (3.9)and

2L [C
VAC—F-2L=0 and —\/= #0, 3.26
TN Va7 (3.26)

in V. Then ifu is a C* function inV solving the following Cauchy problem

(3.27)

Lu=0 inv,
%uls =0 || <1,

thenu vanishes identically in some neighborhodgof xo.
Proof. Let P(x, D) be the principal part of with symbolp(x, £§) = (pik(x, §)), where
3
pik(x,8) = Z Cijke(x)&j&.

J=1

Let ¢ (x, &) be the cofactor op(x, &) with the corresponding operat@r(x, D), which is
a fourth order strongly elliptic system. It is not hard to see that

R(x,D):=Q0L=r(x,D)I +1l.o.t,
with principal symbol
3
r(x.€) =det< Y Cije &k i 4, k— 1,2, 3).
j=1

Now one can see thatis also a solution to the following new Cauchy problem:
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Rx,D)u=0 inV,
{8"‘u|5=0 lo| <5. (3.28)

Note that the Cauchy data in (3.28) is easily obtained from (3.27) sfrisenoncharac-
teristic nearxp. In view of (3.25) and (3.21) (or (3.26)), it follows from Lemma 3.2 and
Lemma 3.3 that the characteristic roots conditions (C.1), (C.2) and (C.3) are satisfied for
R(x, D) nearNy. By using Theorem 3.1, we obtain thatanishes in some neighborhood
ofxp. O

In Theorem 3.2, we see that the uniqueness of the Cauchy problem for (3.10) near
directions perpendicular to the axis can not be proved by the techniques used in Sec-
tion 2. Neither can the weak unique continuation property for (3.10) be inferred from
Theorem 3.2. In spite of this fact, for convex inner domains, we are still able to prove the
classical Runge approximation property for (3.10) without the restriction on the support of
the Dirichlet data. Similar results for s@elliptic operators can be found in [11,13] (or
in [10] where the application of the classical Runge approximation property to the inverse
conductivity problem was discussed). It should be noted that the classical Runge approxi-
mation property for (3.10) does not follow directly from the results in [11] or [13] because
we do not have the uniqueness of the Cauchy problem for (3.10) near every direction.

Theorem 3.3. Let O and £2 be two open bounded domains witf” boundary inR3 such
that O is convex and C 2. Assume that the coefficiemsC, F, N, L of the transvers_ely
isotropic elasticity tensor ar€ > (£2) and satisfy(3.9)and(3.21)(or (3.26))for all x € £2.
Letu € H1(0) satisfy
Lu=0 1inoO.
Then for any compact subsktc O and anye > 0 there existd/ € H(£2) solving,
LU=0 ing2,
such that

”U _I/l”Hl(K) < E€.

Proof. Let K be a compact subset ifi such thatk C int(K) and 2 \ K is connected.
Applying the interior estimate t&/ — u satisfyingL(U —u) =0in int(K), we have that

19 _””Hl(K) §K||U—M||L2(1?)

for some constant > 0 (see for example [2]). Therefore, proving this theorem is equiva-
lent to showing that

X={w w=vlg, ve H(2), Lv=0in2}
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is dense in
Y ={w: w=vlg, ve HY(0), Lv=0in 0}

in terms osz(I?)v. By the Hahn—Banach theorem, this is equivalent to the following state-
ment. If f € L2(K) such that

(fiw)p2gy=0 forallwinX, (3.29)
then
(fiw)2gy =0 forallwiny. (3.30)

Now let f € L2(K) satisfy (3.29) and define:

f— f in I?, N
“ |10 inR\K.
Let z be the solution of:
u=20 onos2,

then for anyv € H1(£2) with Lv = 0 in £2 we have that
Ofo'de=ff-vdx=f£ﬁ-vdx=/o(ﬁ)v-vds, (3.32)
F4 2 2 QR
where
o(i)v =(CVi)v,

which is known as the surface traction. It follows from (3.32) th&fi)v = 0 on 3s2.
Combining this result with (3.31), we obtain thats the solution to:

Li=f in £,
u=00@mmv=0 onoas.

In other words, o2 \ K, we have that

Li=0 in2\ K,
{ﬁ o (3.33)

o()v=0 onoas.

Now we are going to show that
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0“2 =0 onao for |a| < 1. (3.34)

If (3.34) is true, then

/f-vdx:/ﬁﬁ-vdx:O
Fe )

for anyv € HX(0) with Lv =0 in O; therefore, (3.30) holds.

To prove the statement (3.34) by Theorem 3.2, it is easier and clearer to work on a simple
domain such as a ball rather than the general donraifiherefore, we pick a domaif?
with Lipschitz boundary such tha? ¢ B 2, whereB is an open ball. Suppose that
the coefficientsA, C, F, N, L are extended t@, still denoted by the same notations, such
that they remairC> in 2 and satisfy (3.9), (3.21) or (3.9), (3.26) for alE 2. Letd be
defined by:

_Ja) ing,
(p(x)_{o in 2\ 2,

then

/¢-£(pdx:/ﬁ-£(pdx:/£ﬁ~<p+ / (G(ﬁ)V-(p—G((p)V-ﬁ)dS:O

O\K 2\K 2\K A(2\K)
for any test functiorp € Cg°(§ \ K). Thereforep satisfies:
L& =0 in$2\ K inthe sense of distribution

In view of ii|se = 0 and the definition ofp, we obtain® € H1(s2 \ K). By the elliptic
regularity theorem [2], we get thdt € C*°(£2\ K). Therefore, solving (3.33) is equivalent
to solving the Cauchy problem:

{,ccp:o inB\ K, (3.35)

0°®@ =0 ondBfor|a| <1

Now we denote cd(v) the closed convex hull ok . It is obvious that C()I’(V) C O. Let
I';, T €0, 1], be a continuous deformation of surfaces such that

(i) for eacht €[0,1], I'; is aC* surface contained iB \ co(f) with boundaryd I';
liesindB \ w, wherew is the equator 04 B, i.e., the normal vector tdB atx € w is
perpendicular to thes axis;

(i) for eacht € [0, 1], the surfacd; contains no normal vector perpendicular to iae
axis;
(i) IoC 9B\ w.
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With the definition of I';, combining Theorem 3.2 and Fritz John’s arguments [9], we
can show that> vanishes on any set swept out By for = € [0, 1]. It is readily seen
that each poink € B \ co(K) can be covered by suitably choséh satisfying (i)—(iii).
Therefore, we conclude thdt =0 in B \ co(K), in particular, (3.34) holds. The proof is
now complete. O

4. Detecting the convex hull of inclusionsor cavitiesin atransversely isotropic body

As an application of what we have established in the previous sections, we study the
inverse problem of determining the convex hull of an inclusion or cavity embedded in a
transversely isotropic body. We first consider the inclusion case.

4.1. Reconstruction of inclusions

As before, let2 € R® be a bounded domain with smooth boundary. Assumefthata
subset of2. We calledD an inclusion embedded 2. Here we do not assunie c §2 or
D is open. Suppose that the elasticity tenSgx) takes the form:

C(x) =Co(x) + xpH (x),

whereCo(x) € B®(R®) is a transversely isotropic elasticity tensor satisfying (3.7), (3.8)
and the assumptions in Theorem 3,3, is the characteristic functio® and H(x) €

L (D) is a fourth-rank tensor so that the whaléx) satisfies (3.7) and (3.8) with possibly
different constané. Then, for anyf € H'/2(3£2), there exists a unique weak solution to
the boundary value problem:

{Ecw —V.(Cx)Vw)=0 ingQ,
wlye = f.

We now define the Dirichlet-to-Neumann map, : H/2(32) — H~1/2(3£2) by the for-
mula

<AD(f),g>=fCVw Vud,
2

whereg € HY2(3£2) andv is any function inH1(£2) with v|ye = g. Here we assume

that bothD and H are unknown. We are interested in the inverse problem of determining
the information of the inclusio® by the knowledge ofA p (1) for infinitely many . We

want to remark that the same inverse problem associated with the anisotropic elasticity
system has been studied in [7] where the reference elasticity t€gsisrassumed to be
homogeneous. In which case, the Runge approximation property is trivial. For the case
considered here, we have a special type of Runge approximation property whose inner do-
main is required to be convex (see TheoreB).3This Runge approximation property is not
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enough to solve the inverse problem of determining the full informatiob oNeverthe-
less, with the help the oscillating—decayinggmns, we can prove that one can determine
the convex hull ofD by Ap (f) for infinitely many f.

To begin, we define® an open ball inR2 such that2 ¢ B. Assume that? c R3 is
an open set with Lipschitz boundary satisfyiigc 2. Defined as beforep € S2 and
{n, ¢, w} forms an orthonormal basis &, Supposeg = hp(w) = infyepx - w = xp - w,
wherexg = xg(w) € dD. For anyr < tp ande > 0 sufficiently small, let

’ iTx-E —T(x-0—(t—8))Ar_e(x’
Uy, ¢ bt—eNao(X, T) = Xr—e(x )Qtfeelm fgrrlre—(=aNAi—)p t Vxi—e.bt—e.N.w
+rX[75,b,I76,N,a)

be the oscillating—decaying solution fdic, in B,_:(w) == BN {x -w >t — ¢} as con-
structed in Section 2, wherg_.(x') € C°(R?) andb € C3. Here A;_.(x') is in fact
given by —il?+(x) with x € X;_.(w) = BN {x - =1t — ¢} (see (2.16)). Related to
Uy,_o.bi—s,N.o(X, T), We can establish,

A
Uy bt N, T) = x(x)) Q€T 5@ T DA Ly N+ T bt Nw

which is an oscillating—elcaying solution forCc, in B;(w). Let &g > 0 be a suffi-
ciently small given number. We takg_.(x") = x;(x") = x (x") for all 0 < ¢ < &g, where
X € CSO(RZ) with supfx) C ﬂ0<£<£0 I, %, _.(w). Herell, ¥, _.(w) denotes the projec-
tion of X;_. (w) onto the{x - w =t} plane. Before going further, we want to show that for
anyt, uy,_, b i—s N,w(X, T) CONVErgesta,, » ; v »(x, T) in an appropriate senseas> 0.
Indeed, sinc&q(x) € B> (R3), we can see that for any.
Yi—e (x/) Qt_aeirx~§e—r(x-w—(t—s))At,g(x’)b _5> Xe (x/) Qteirx-Se—r(xm—t)A,(x’)b

in H?(B,(w)). (4.1)

Likewise,y,,_, »:—e, N,o IS Obtained by solving the system (2.23) with coefficients depend-

ing smoothly ore. Using the property of continuous dependence on parameters in ordinary
differential equations, one can easily deduce that forany

Ve bt—e N~ VybtNow N H2(By(@)). (4.2)
On the other hand, we recall thgt_, ,.i—¢ n,0 € H&(Bt,g (w)) satisfies:
Loy bi—eNw) = =8 Log(i—e () Qr_p@™ e o= (=N Ay,
+ Vyesbi—e.Nw) 1N Bi_g(). (4.3)
SinceCy is infinitely smooth and so is the right hand term of (4.3), by the elliptic regularity
theoremr,,_, b./—¢ N0 IS infinitely smooth onB; . (w) U (3 Bi—¢ (w) \ 0 X —s (w)). So itis

clear that

Faeebi—eN.ol 5@ —> 0N Hl/z(zt ().
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Denotez, =ry,_, .b,1—e,N,o — I'y.b.t,N,0- ThEN We have that

{ ECOZS =fe in By (w),
ZelaB,w) — 0 in HY2(3B,(w)),

where|| fe ll L2(p, (w)) = 0 due to estimates (4.1) and (4.2). By the elliptic regularity theo-
rem, we therefore deduce that

ze -0 in HY(B(w)),

€ . 1
Fxi—ebt—e.N.w = Ty, bt.Nw 1N H (Bt (w))

In summary, we have proved that, for any

ux,,g,b,t—a,N,w(xa T) _€> ux,,b,t,N,a)(xa 7) in Hl(Bt (a))) (44)

Obviously, B; _. (w) is a convex set ane2; (w) C B;_, for all t < tg. Thus, by Theo-
rem 3.3, we can see that there exist a sequence of funations =1, 2, ..., such that

e j 2ty o bi—eNw INHY(2:(), (4.5)

whereii, ; € Hl(ﬁ) satisfy Lcyite, j =0 in Q for all e, j. Define the indicator function
I(t, x¢, b, t, w) by the formula:

I(Tv le bs tv (l)) = |Im |Im <(AD - AO)ﬁe,ﬂdQ» ﬁé‘,jldﬂ) (46)

e—>0j—00

Here A is the Dirichlet-to-Neumann map relatedfge, in £2, i.e.,

(Ao(f). &) = f CoVu - Vud,
2

whereu is the solution to:

{Ecou —V.(CoVu)=0 ing,
ulao=rf

andg € HY2(3£2) andwv is any function inH1(£2) with v|; = g. We assume thall
satisfies the jump condition:

H(x)E - E > C,|E|? for aimost allx € D, (8,,) and for all real symmetric matrig
4.7)
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or

H(X)E - E < —Ca,|E|2 for almost allx € D, (5,,) and for all real symmetric matrik,
(4.8)

where
D,(8,) = {x eD: hp(w)<x -w<hp(w) —G—Sw} with0 <4, « 1

andC,, is a positive constant. Additionally, in dealing with the inverse problem, we assume
that D satisfies the following condition: for eaeh e S?, there exist,, > 0, &, > 0 and
Pw € [0, 1] such that

1
—gsPe L ,u({x eD: x-w=n +s}) LcpsPe foralls € (0, &y), (4.9)
Cw

wherep is the surface measure. Note that the assumptidd f quite similar to the one
used by lkehata in [5]. It is not hard to check thadip € C? and has nonzero curvature
everywhere, the satisfies (4.9) wittp,, = 1. In addition to (4.9), we assume tha, (8,,)
satisfies theone propertyfor all sufficiently smalls,,. The purpose of imposing the cone
property is to validate Korn's inequality ),. Now the characterization of the convex hull
of D is based on the following theorem:

Theorem 4.1. () If # < 1o, then for anyy, € C*(R?) and b € C3, we have that
I(t, x¢,b,t,w) > 0ast — oo;

(ii) If t = 1o, then for anyy,, € Cg° (R?) with x4 = (xo0- 1, x0-¢) being an interior point
of supfx,,) and 0 # b e C3, we get that I (z, xs, b, to, )| = ct P (ast — oo) for
some positive constant

Proof. We first recall a formula established in [4]:

f{Co_l — (Co+ H) M CoVu - CoVudy < ((Ap — Ao)ulsg. ulsg)
D

ngVu-de, (4.10)
D

whereu satisfiesCcyu =0 in £2. HereC(;1 and(Co + H)~ ! are called the compliance
tensors (see [3]). Notice that, 1 (also(Co + H)1) satisfies the estimate (2.1) with pos-
sibly different constand. Using (4.4), (4.5) and (4.10), we can obtain thatfaf 7o and
any x, € CS*(R?), b e C3,
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/{Co_l —(Co+ H)_l}COVuX,,h,,,N,w(x, 1) - CoVity, b1 N,w(x, 7)dx
D

g I(T’ Xts ba ta C()) < f Hvux,,h,t,N,w(xa T) : V”x;,b,t,N,a)(xa T) d'x (4‘11)
D

Itis readily seen that

/{Cal —(Co+ H)il}covux,,b,t,N,w(xv 7) - CoViy, bt,Nw(X,T) dx
D

<c / |Vuxt,b,,,N,w(x,t)|2dx (4.12)
21(@)

and

/Hvux,,h,t,N,w(X, 7)- V”x;,b,t,N,a)(xa 7) dx
D

2
<c / |Vuxt,;,,t,N,a,(x,r)| dx. (4.13)
Qi)

Now if ¢ < g, We substitute:,, .+ v.w = Wy, b1, N0 + Typ.b.t, N0 With wy, b+ N o DEINgG
described by (2.3) into (4.12), (4.13) and use estimates (2.4), (2.5) to obtain that

|I(t, Xt,b,t,a))| Ler N1

for T > 1, which immediately implies (i). To prove (ii), we first consider the jump condi-
tion (4.7) of H. Using the formula,

(Cot = (Co+ H)Y)CoVu - CoVu
= H(Co+ H) YCoVu - (Co+ H) *CoVu
+Co*H(Co+ H)YCoVu - H(Co+ H) 1CoVu (4.14)

(see [7] for the derivation of (4.14)), the jump condition (4.7) and the strong convexity
conditions for corresponding elasticity and compliance tensors in (4.14), we get that

(Cot = (Co+ H)™Y)CoVu - CoVu > ¢| SymVul? forallx € Dy(8,), (4.15)

where Sym is the symmetric part of the matrik. Combining the first half of (4.11) and
(4.15) yields:
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I(Tv Xtov b, t07 U))

= [ {Cal —(Co+ H)il}COVMXrO,b,to,N,w(xv 7)- Covux,o,b,to,N,w(xv ) dx

D\Dy,(8w)

+ / {Cal —(Co+ H)il}covux,o,b,to,N,w(xv 7)- Covux,o,b,to,N,a)(xa 7)dx

Dy (3)
= {Cal — (Co+ H)il}COVMXrO,b,to,N,w(xv 7)- Covux,o,b,to,N,w(xv T) dx
D\ Dy (30)
2
+c / |SymVuX,0,b,t0,N,w(x, 1')| dx, (4.16)
Dy (80)

whereux,o,b,,o,N,w(x, 7) is the associated oscitlag—decaying solution of ¢, in By, (w).
Argued as above, we can show that fop> 1,

{Cot = (Cot H)Y M CoViuy bioN.w . T) - CoVity, b1 N.w(x, T) dx
D\Dyy(5,)
Ler 2N (4.17)

To deal with the other term on the right side of (4.16), we will use the condition (4.9)
on D. Let 0< § < min{é,, &,} be chosen such thdd,(8) C {x: x'=(x -n,x-¢) €
SUPM(x1,)s X - @ = to}, then using Korn's inequality we can obtain that for> 1:

2
/ |SymVuX,0,b,t0,N,a,(x,r)| dx
D, (8w)

> / |SYMVity, b1, (6, )| Pl
Dy (3)
=c / |VuX,0,b,to,N,w(X, r)|2dx —c / |”x,0,b,to,N,w(X, ‘L')|2dx
Dy (8) Do (%)
=c / |V(Xto Qtoei”'ge*r(x‘wftomfo(x/)b + Yxig:b10.N.0 + Tyy.b.10.N @) |2 dx

Dy (8)

/ iTx-£ ~—T(x-w—10) Asr (x” 2
—c / |Xt0Qtoeltx€e T(x-w—tg) tO(X)b‘I'V)(;O,h,to,N,CO+rXt01h1t0sNﬁa’| dx

D, (3)
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> ct? / (| Qe "o A0p | + | Qe T 071040 A, b|2) dr

Dy (9)
—cT / |efr(x~w7to)A,0|2dx
Dy (8)
—T(x-w—1g)A
—CT ”e T0Ti0) b ||L2(Dw(g)) || Vyxto,h,to,N,a)(xa 7:) ”LZ(Dw(g)) - C/T

> C'L’Z / |Qt0efr(x~w7to)A,ob|2dx . / |efr(x‘cufto)A,0|2dx
Dy () Dy ()

—cT ||efr(x~a)flo)Ato ||L2(Dw(5)) ” VthoqhatOsNaa’(x’ 7) ”LZ(Dw(g)) —c/t. (418)

In deriving (4.18), we have used the fact thigt= 1, || = 1 and¢ 1 ». Now we want to
treat the first term on the right side of (4.18). Using the first half of (4.9), we have that

8

/ |Qtoef1:(x~a)fl‘o)Azob|2 dx =/ / |QtoeerAtob|2ds dM
Dy, (8) 0 {xeD: x-w=tg+s}

§
>f / |0 [7F]em o[ b1 ds de
0 {xeD: x-w=tg+s}

5
c e %t dsdu  (for somex > 0)

WV

0 {xeD: x-w=tg+s}

5
=c/u({xeD: x~w=to+s})e72”)‘ds
0

5 i
> (C/Cw)/sp“’672”l ds = (c/cw)rflfpw /gpmefzi)\ ds
0 0
> e, (4.19)

To treat the second term on the right side of (4.18), we use the second half of (4.9) and the
fact that spe,,) C C, to obtain:
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5
_r(x-w— 2 T
/ |e o ’O)Af0| dxgc/ TSk ({xeD X -w= to+s} sPog TSk
0

D, (8)

O\m:

et ipe, (4.20)
Consequently, combining (4.20) and (2.5) gives:

[T om0 Lo 0 [V Vg0 0 D 2, ) S et P20 (4.20)

Now substituting estimates (4.19), (4.20) and (4.21) into (4.18), we immediately get that

f |Vuxt0,;,,,0,N,a,(x, t)|2dx > crlpo (4.22)
Dy (80)
for > 1. Finally, combining (4.16), (4.17) and (4.22) yields:

I(T, X1, b, 10, w) 2 cti P ast — oo.

Next, for the case of jump condition (4.8), we use the second half of (4.11), i.e.,

1(T, Xi9: b, 10, ) < / HN Uy b.10.N,0 (X T) - Vity, b.io,N0(x, T) dx
D

=/HSymVux,o,b,to,N,w(x,t)~SymVuX,o,b,ro,N,w(x,t)dx,

and proceed in the same way. The proof of (ii) is now complete.

In view of Theorem 4.1, we can give an algorithm for reconstructing the convex hull
of an inclusionD by the Dirichlet-to-Neumann map p as long asd and D satisfy the
described conditions.

Reconstruction algorithm.

(i) Give w € S? and choose), ¢, £ € S? so that{n, ¢, w} form a basis ofR3 and¢ lies
in the span of) and¢;

(i) Choose a starting such that2 c {x - w > t};

(iif) Choose a ballB such that the center a8 lies on{x - w = s} for somes < ¢t and
2 C B,(w) (note that in this cas@ N {x - w =t} =: X;(w) C IT, Z,_.(w) for all
sufficiently smalle); take 0 b € C3;

(iv) Choosey, € CS°(R?) such thaty, > 0 in X () andy, = 0 0nd X ();

(v) Construct the oscillating—decaying soluti@gihb,,,gw,w in B;_¢(w) With x;_, =
x: and the approximation sequentg; in £2,
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(vi) Compute the indicator functioii(z, x;, b, ¢, w) which is determined by boundary
measurements;
(vii) If I(z, xs,b,t,w) — 0ast — oo, then choose > r and repeat (iv), (v), (vi);
(viii) If I(z, x¢,b,t', w) - 0 for somey,, thent’ =19 = hp(w);
(ix) Varying w € S? and repeat (i)—(viii), we can determine the convex hulDof

4.2. Reconstruction of cavities

Let domains@, D and the elasticity tensarp be described as in Section 4.1. However,
here we assumB C £2. For anyf € HY?(3£2), there exists a unique solutiarto:

Lc,v=0 in2\D, 4.23
{vm — £, (CoVu)vlyp =O; (4.23)
also, there exists a unique soluti@rsolving:
{,ccouzo in2\ D, (4.24)
ulpe = f,

wherev is the unit outer normal té D. Associated with (4.23) and (4.24), we can define
the Dirichlet-to-Neumann mag p and Ag, respectively, by:

(Ap(f). g)= / CoVv - Vb dx
2\D

and

(A0(f), g) = / CoVu - Vi d,
2

wherew € H1(£2 \ D) with @30 = g andw € H1(£2) with w|;2 = g. The inverse prob-
lem considered here is to determibefrom A p (f) for infinitely many f € H/2(3£2).
As in the inclusion case, we define the indicator function:

I(t, X, b.t,w) = lim_lim ((Ao — Ap)iie,jlag, e, jlag)-

e—>0j—00
Here we also assume thBAtsatisfies the estimate (4.9). Then we can show

Theorem 4.2. (i) If ¢ < 1o, then for anyy, € C(R?) and b € C3 we have that
I(t, x:,b,t,w) > 0ast — oo;

(ii) If t = 10, then for anyy,, € Cg"(RZ) with x; = (x0- 1, x0- ¢) being an interior point
of supfx,,) and 0 # b e C3, we get that I (, xs, b, to, )| > ¢t P (ast — oo) for
some positive constant
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Proof. We recall that

((Ao—ADp)f. f)= / CoV(v—u)-V(v—u)dx + f CoVu-Vudx, (4.25)
2\D D

wherev andu are solutions to (4.23) and (4.24), respectively. The formula (4.25) leads to

1
y / | Symv”x,,b,t,N,w|2dX < I(Ts Xts bv t, CO)
D
<8//|SymVuX,,b,,,N,w|2dx (4.26)
D

for some positive consta#t (see [8]). Now the rest of the proof is carried out as in that of
Theorem4.1. O

Using Theorem 4.2, it is clear that theyalithm described above can be used to recon-
struct the convex hull of a cavity.
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