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Abstract. In this paper we prove the strong unique continuation property for a Lamé system
with Lipschitz coefficients in the plane. The proof relies on reducing the Lamé system to a first
order elliptic system and suitable Carleman estimates with polynomial weights.
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1. Introduction

In this work we are concerned with the local behavior of weak solutions to a Lamé
system in the plane open connected domain � ⊂ R

2 with Lipschitz coefficients.
Let λ(x) and µ(x) be Lamé coefficients in W 1,∞(�) satisfying

µ(x) ≥ δ0 > 0 and λ(x)+ 2µ(x) ≥ δ0 > 0 ∀ x ∈ �. (1.1)

The Lamé system, which represents the displacement equation of equilibrium, is
given by

div(µ(∇u+ (∇u)t ))+ ∇(λdivu) = 0 in �, (1.2)

whereu = (u1, u2)
t is the displacement vector and (∇u)jk = ∂kuj for j, k = 1, 2.

In this paper, we will prove the strong unique continuation property (SUCP) for
solutions of the Lamé system (1.2). More precisely, if u ∈ W

1,2
loc (�) satisfying

(1.2) vanishes of infinite order at a point x0 ∈ �, i.e.
∫

|x−x0|<R
|u|2dx = O(RN) for all N as R → 0,

then u ≡ 0 in �.
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Results on the weak unique continuation for the Lamé system in R
n, n ≥ 2,

have been proved by Dehman and Robbiano for λ(x), µ(x) ∈ C∞(�) [3], Ang,
Ikehata, Trong and Yamamoto for λ ∈ C2(�), µ(x) ∈ C3(�) [2], and Weck
for λ(x), µ(x) ∈ C2(�) [15], [16]. For the Lamé system with residual stress,
the weak unique continuation were proved by Nakamura and Wang [11] (n ≥ 2
with twice differentiable coefficients), while the strong unique continuation were
established recently by C. Lin [10] (n = 3 with twice differentiable coefficients).

Especially, we would like to mention a recent result by Alessandrini and Mor-
assi [1] who proved the (SUCP) for the Lamé system whenn ≥ 2 andλ(x), µ(x) ∈
C1,1(�). Their proofs are based on ideas developed by Garofalo and Lin [4], [5].
As indicated in the title of the paper, we prove here the (SUCP) for the Lamé sys-
tem in the plane with λ(x), µ(x) ∈ W 1,∞(�), which is clearly an improvement
on the regularity assumption used in [1] when n = 2. Besides, we will approach
this problem along a more “classical” line which is based on Carleman’s ideas.

One key component in our approach is the reduction of the system (1.2) to
a first order elliptic system of two variables. Unlike methods used in [1] (or [2],
[16], [11]) where a reduction was performed by introducing an auxiliary function
v = divu. In this situation, at leastC1,1 coefficients are needed in order to guaran-
tee that the lower order terms have essentially bounded coefficients. Our reduction
is carried out by using an auxiliary function ∂1u+T ∂2uwith appropriate matrix T .
The crucial point is that our new system contains only first derivatives of the Lamé
coefficients, which are inherited from writing (1.2) into a non-divergence form.
This observation enables us to reduce the smoothness requirement on coefficients.
However, it should be pointed out that our new system is not uncoupled in the
principle part, which creates a new difficulty in proving the (SUCP). Inspired by
the idea in [16], our strategy to overcome this difficulty is to use several suitable
Carleman estimates.

The way of reducing the Lamé system employed here was motivated by a
recent paper by Nakamura and Wang [12] in which they proved the weak unique
continuation for the general anisotropic elasticity system in the plane. It turns out
the weak unique continuation for the Lamé system in the plane with Lipschitz
coefficients is an immediate consequence of Nakamura and Wang’s result [12].

Before leaving this section, we would like to mention several key issues in
deriving Carleman estimates. Since we will be working with the reduced sys-
tem (see (2.13)) rather than the original system (1.2). We need to prove that if
the solution of (1.2) vanishes of infinite order at x0, then so is the solution of
(2.13). This is clearly true if λ and µ are smooth enough. Since we only consider
λ,µ ∈ W 1,∞(�) here, we want to present some arguments due to Hörmander [7]
to justify this matter. Next, we derive two Carleman estimates with polynomial
weights |x|−β, β > 0. Combining these Carleman estimates with vanishing prop-
erty, we can show that the solution of (2.13) actually vanishes exponentially as
exp(−B/|x−x0|) at x0 (see (3.6)). This decay rate allows us to use more singular
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weights exp((log |x|)β) in deriving another set of Carleman estimates, which play
a key role in proving the (SUCP). Similar ideas were also used in [10] and [14].

2. First order elliptic system

This section is devoted to transform the system (1.2) into a first order elliptic
system. To begin, let us express (1.2) in the matrix form, namely,

�11∂
2
1u+�12∂1∂2u+�22∂

2
2u+Q(u) = 0, (2.1)

where

�11 =
(
λ+ 2µ 0

0 µ

)
,�12 =

(
0 λ+ µ

λ+ µ 0

)
,�22 =

(
µ 0
0 λ+ 2µ

)

and

Q(u) = ∇λ(divu)+ (∇u+ (∇u)t )∇µ.
From (1.1) it follows that�11 and�22 are invertible (in fact, positive definite).

We now define W = (w1, w2)
t = (u, ∂1u+ T ∂2u)

t , where

T =
(

0 1
−1 0

)
.

Thus, we can compute
{
∂1w1 = ∂1u = (∂1u+ T ∂2u)− T ∂2u = −T ∂2w1 + w2,

∂1w2 = ∂2
1u+ T ∂1∂2u.

(2.2)

Furthermore, it follows from (2.1) that

∂2
1u = −�−1

11 (�12∂1∂2u+�22∂
2
2u+Q(u)). (2.3)

Using the definition of w2, we immediately see that

∂2w2 = ∂1∂2u+ T ∂2
2u,

which implies

∂1∂2u = −T ∂2
2u+ ∂2w2. (2.4)

Plugging (2.4) into (2.3) yields

∂2
1u = −�−1

11 �12(−T ∂2
2u+ ∂2w2)−�−1

11 �22∂
2
2u−�−1

11 Q(u). (2.5)
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Now substituting (2.4) and (2.5) into the second equation of (2.2) we have that

∂1w2 = −�−1
11 �12(−T ∂2

2u+ ∂2w2)−�−1
11 �22∂

2
2u−�−1

11 Q(u)

−T 2∂2
2u+ T ∂2w2

= −(T 2 −�−1
11 �12T +�−1

11 �22)∂
2
2u+ (T −�−1

11 �12)∂2w2 −�−1
11 Q(u).

(2.6)

By the relations ∂1u = ∂1w1, ∂2u = −T −1∂1w1 + T −1w2, and denoting

� =
(

0 µ
λ 0

)
,

we can see that

Q(u) = (∂1�11 + ∂2�)∂1u+ (∂2�22 + ∂1�
t)∂2u

= (∂1�11 + ∂2�)∂1w1 + (∂2�22 + ∂1�
t)(−T −1∂1w1 + T −1w2)

= (∂1�11 + ∂2�− ∂2�22T
−1 − ∂1�

tT −1)∂1w1 + (∂2�22 + ∂1�
t)T −1w2

= A∂1w1 +Hw2, (2.7)

where
A := ∂1�11 + ∂2�− ∂2�22T

−1 − ∂1�
tT −1

and
H := (∂2�22 + ∂1�

t)T −1.

Note that A,H are in L∞(�) and in general not zero.
Now it is readily seen that T satisfies

�11T
2 −�12T +�22 = 0

or equivalently

T 2 −�−1
11 �12T +�−1

11 �22 = 0. (2.8)

Replacing Q(u) in (2.6) by (2.7) and taking (2.8) into account, we have that

∂1w2 = (T −�−1
11 �12)∂2w2 −�−1

11 (A∂1w1 +Hw2).

Consequently, we get from (2.2) that
{
∂1w1 + T ∂2w1 − w2 = 0

�−1
11 A∂1w1 + ∂1w2 + (�−1

11 �12 − T )∂2w2 +�−1
11 Hw2 = 0

Equivalently, in the matrix form, we have that

E∂1W + F∂2W +GW = 0, (2.9)
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where

E =
(

I 0
�−1

11 A I

)
, F =

(
T 0
0 �−1

11 �12 − T

)
, and G =

(
0 −I
0 �−1

11 H

)
.

The matrix E is obviously invertible. We immediately deduce the following first
elliptic system from (2.9)

∂1W + J∂2W +MW = 0 (2.10)

with

J = E−1F =
(
T 0
K �−1

11 �12 − T

)
and M = E−1G =

(
0 −I
0 �−1

11 (A+H)

)
,

where
K = −�−1

11 AT ∈ L∞(�).
We want to further simplify the elliptic system (2.10). To this end, we first

observe that

�−1
11 �12 − T =

(
0 − µ

λ+2µ
λ+2µ
µ

0

)
.

It is not hard to check that T and �−1
11 �12 − T are diagonalizable. Indeed, direct

computations show that(
i 0
0 −i

)
=
(

1√
2

−i√
2

1√
2

i√
2

)(
0 1

−1 0

)( 1√
2

1√
2

i√
2

−i√
2

)
(2.11)

and (
i 0
0 −i

)
=
(−ia(λ+2µ)

2µ
a
2

ia(λ+2µ)
2µ

a
2

)(
0 −µ

λ+2µ
λ+2µ
µ

0

)( iµ

a(λ+2µ)
−iµ

a(λ+2µ)
1
a

1
a

)
, (2.12)

where a =
√
(

µ

λ+2µ)
2 + 1. In view of (2.11) and (2.12) , we define an invertible

matrix

P(x) =




1√
2

1√
2

0 0
i√
2

−i√
2

0 0

0 0 iµ

a(λ+2µ)
−iµ

a(λ+2µ)

0 0 1
a

1
a




and set W = PV . Then from (2.10) we obtain that

∂1V + J̃ ∂2V + M̃V = 0, (2.13)

where

J̃ =
[

diag(i,−i) 0
K diag(i,−i)

]
and

M̃ = P−1∂1P + P−1J∂2P + P−1MP ∈ L∞(�).
It should be noted that the lower left block K can not be eliminated by this diag-
onalization process since T and�−1

11 �12 − T have exactly the same eigenvalues.
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Therefore, to prove the (SUCP) for (1.2) via the reduced system (2.13), we have
to deal with the coupled principle part, i.e.K 
= 0. Also, we want to mention that
J̃ is not normal. For the first order elliptic system similar to (2.13) with a normal
matrix J̃ , a strong unique continuation result was proved by Ōkaji [13]. It should
be pointed out that the unique continuation property is not always true for general
first order elliptic systems in two variables (see [9]).

3. Local behavior of V

In this section, we will prove that if a solution u of (1.2) vanishes of infinite order
at x0, then DαV for |α| ≤ 1 vanishes exponentially as exp(−B/|x − x0|) at x0.
Without loss of generality, from now on we take x0 = 0. To get this exponentially
decaying property, we need two Carleman estimates, which will be derived below.
But, we first want to show that

Lemma 3.1. Let u ∈ W 1,2
loc (�) be a solution of (1.2) vanishing of infinite order at

0, then so is Dαu for |α| ≤ 2.

Proof. Here we will follows closely Hörmander’s arguments [7, page 6–8]. Al-
though Hörmander’s arguments are given for the second order elliptic operator,
they can be applied to the Lamé system (1.2) with the strong ellipticity condition
(1.1) without essential modifications. First of all, by the regularity theorem with
Lipschitz coefficients, we know that u ∈ W

2,2
loc (�) [6, Theorem 2.1]. Therefore,

following Hörmander [7, Corollary 17.1.4.] we have that for all |α| ≤ 2∫
|x|<R

|Dαu|2dx = O(RN) for all N as R → 0.

�

Lemma 3.1 immediately implies that DαV vanishes of infinite order at 0 for

|α| ≤ 1. That V vanishes of infinite order allows us to use the polynomial weights
|x|−β , β > 0, in the Carleman estimates. However, this is not strong enough to
establish the (SUCP). Thus, we would like to enhance the decaying property of
V in order to accommodate more singular weights in Carleman estimates. To this
end, we will derive two Carleman estimates with polynomial weights.

Let L± = ∂1 ± i∂2 be the first order scalar elliptic operators. We first recall a
Carleman estimate proved by Ōkaji.

Lemma 3.2. [13, Lemma 3.2] For any s ∈ N + 1/2 and v ∈ C∞
0 (R

2 \ {0}) we
have ∫

|x|−2s−2|v|2dx ≤ 4
∫

|x|−2s |L±v|2dx. (3.1)

Since the system (2.13) is coupled, we need another Carleman estimate to
handle this situation.
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Lemma 3.3. For any s > 0 and v ∈ C∞
0 (R

2 \ {0}) we have∫
|x|−2s |∇v|2dx ≤ 2

∫
|x|−2s |L±v|2dx + 16s2

∫
|x|−2s−2|v|2dx. (3.2)

Proof. Let v = vR + ivI then

|L±v|2 = |∂1v ± i∂2v|2 = |∂1v|2 + |∂2v|2 ∓ 2Re(i∂1v∂2v̄)

= |∂1v|2 ∓ 2(∂1vR∂2vI − ∂1vI ∂2vR)+ |∂2v|2. (3.3)

Using the integration by parts and the inequality 2|a||b| ≤ ε−1|a|2 + ε|b|2 with
0 < ε < 1, we can estimate

|
∫

|x|−2s(∂1vR∂2vI − ∂1vI ∂2vR)dx|

= | −
∫
∂1(|x|−2s)vR∂2vIdx +

∫
∂2(|x|−2s)vR∂1vIdx|

≤
∫

|2s|x|−2s−2x1vR∂2vI |dx +
∫

|2s|x|−2s−2x2vR∂1vI |dx

≤ 2
∫
(s|x|−s−2|x1vR|)(|x|−s∂2vI |)dx

+2
∫
(s|x|−s−2|x2vR|)(|x|−s |∂1vI |)dx. (3.4)

Applying the inequality 2|a||b| ≤ ε−1|a|2 + ε|b|2 with 0 < ε < 1 twice on the
right side of (3.4) gives

2|
∫

|x|−2s(∂1vR∂2vI − ∂1vI ∂2vR)dx|

≤ 2ε−1
∫
(s|x|−s−2|x1vR|)2dx + 2ε

∫
(|x|−s∂2vI |)2dx

+2ε−1
∫
(s|x|−s−2|x2vR|)2dx + 2ε

∫
(|x|−s |∂1vI |)2dx

≤ 2ε−1
∫
s2|x|−2s−4|x1|2|v|2dx + 2ε

∫
|x|−2s |∂2v|2dx

+2ε−1
∫
s2|x|−2s−4|x2|2|v|2dx + 2ε

∫
|x|−2s |∂1v|2dx

≤ 2ε−1
∫
s2|x|−2s−2|v|2dx + 2ε

∫
|x|−2s(|∂1v|2 + |∂2v|2)dx. (3.5)

Now choosing ε = 1
4 and combining (3.3), (3.4) and (3.5), we get that

2
∫

|x|−2s |L±v|2dx ≥
∫

|x|−2s(|∂1v|2 + |∂2v|)2dx − 16s2
∫

|x|−2s−2|v|2dx,

from which (3.2) follows. �
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Remark 3.1. The estimates (3.1) and (3.2) remain valid if v ∈ W 1,2
loc (R

2) is com-
pactly supported and v and ∇v vanish of infinite order at 0. This can be easily
seen by cutting u off for small |x| and regularizing.

With the help of Lemma 3.1 and 3.2, we are ready to show thatDαV vanishes
exponentially at 0 for |α| ≤ 1.

Proposition 3.1. If V ∈ W
1,2
loc (�) satisfies (2.13) and DαV vanishes of infinite

order at 0 for |α| ≤ 1, then there exist positive constants B and C such that

∫
|x|<R

(|V |2 + |∇V |2)dx ≤ C exp(−BR−1), (3.6)

for all sufficiently small R > 0. Here the constant C depends on V but is inde-
pendent of R provided R is small, while the constant B is independent of u and
R.

Proof. To begin, we write V = (v1, v2, v3, v4)
t . In view of Remark 3.1, we can

apply (3.1) and (3.2) to the function ξvj for j = 1, · · · , 4, where ξ(x) ∈ C∞
0 (R

2)

such that ξ(x) = 1 for |x| ≤ R and ξ(x) = 0 for |x| ≥ 2R (R > 0 sufficiently
small). Here the number R is not yet fixed and is given by R = γ−2s−1, where
γ > 0 is a large constant which will be chosen later. Using the estimate (3.1) and
the first two equations of (2.13), we can derive that

γ 4s2
∫

|x|<R
|x|−2s−2(|v1|2 + |v2|2)dx

= R−2
∫

|x|<R
|x|−2s−2(|v1|2 + |v2|2)dx

≤
∫

|x|<R
|x|−2s−4(|v1|2 + |v2|2)dx

≤
∫

|x|−2s−4(|ξv1|2 + |ξv2|2)dx

≤ 4
∫

|x|−2s−2(|L+(ξv1)|2 + |L−(ξv2)|2)dx

≤ 4
∫

|x|<R
|x|−2s−2(|L+v1|2 + |L−v2|2)dx + 4

∫
|x|>R

|x|−2s−2|G1|2dx

≤ 8‖M̃‖2
∞

∫
|x|<R

|x|−2s−2|V |2dx + 4
∫

|x|>R
|x|−2s−2|G1|2dx, (3.7)

where G1 ∈ L2(R2) is supported in B2R\BR. Hereafter, Br denotes the disc
centered at 0 with radius r > 0. Note that in applying (3.1) in (3.7) we take
s + 1 ∈ N + 1

2 . On the other hand, using (3.2) we have that



SUCP for the Lamé system with Lipschitz coefficients 619

∫
|x|<R

|x|−2s(|∇v1|2 + |∇v2|2)dx

≤
∫

|x|−2s(|∇(ξv1)|2 + |∇(ξv2)|2)dx

≤ 2
∫

|x|−2s(|L+(ξv1)|2 + |L−(ξv2)|2)dx

+16s2
∫

|x|−2s−2(|ξv1|2 + |ξv2|2)dx

≤ 4‖M̃‖2
∞

∫
|x|<R

|x|−2s |V |2dx + 16s2
∫

|x|<R
|x|−2s−2(|v1|2 + |v2|2)dx

+4
∫

|x|>R
|x|−2s |G2|2dx + 16s2

∫
|x|>R

|x|−2s−2|G3|2dx, (3.8)

where G2,G3 ∈ L2(R2) are supported in B2R\BR.
Next, we will carry out above arguments for v1 and v2 to v3 and v4. But here

we need to take into account of K 
= 0 in (2.13). We first estimate
∫

|x|<R
|x|−2s−2(|v3|2 + |v4|2)dx

≤
∫

|x|−2s−2(|ξv3|2 + |ξv4|2)dx

≤ 4
∫

|x|−2s(|L+(ξv3)|2 + |L−(ξv4)|2)dx

≤ 4
∫

|x|<R
|x|−2s(|L+v3|2 + |L−v4|2)dx + 4

∫
|x|>R

|x|−2s |G4|2dx

≤ 8‖K‖2
∞

∫
|x|<R

|x|−2s(|∇v1|2 + |∇v2|2)dx + 8‖M̃‖2
∞

∫
|x|<R

|x|−2s |V |2dx

+4
∫

|x|>R
|x|−2s |G4|2dx, (3.9)

where G4 ∈ L2(R2) is supported in B2R\BR. Note that here we take s ∈ N + 1
2 .

Similarly, we can compute that
∫

|x|<R
|x|−2s+2(|∇v3|2 + |∇v4|2)dx

≤
∫

|x|−2s+2(|∇(ξv3)|2 + |∇(ξv4)|2)dx

≤ 2
∫

|x|−2s+2(|L+(ξv3)|2 + |L−(ξv4)|2)dx

+16s2
∫

|x|−2s(|ξv3|2 + |ξv4|2)dx
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≤ 4‖K‖2
∞

∫
|x|<R

|x|−2s+2(|∇v1|2 + |∇v2|2)dx

+4‖M̃‖2
∞

∫
|x|<R

|x|−2s+2|V |2dx + 16s2
∫

|x|<R
|x|−2s(|v3|2 + |v4|2)dx

+4
∫

|x|>R
|x|−2s+2|G5|2dx + 16s2

∫
|x|>R

|x|−2s |G6|2dx

≤ 4‖K‖2
∞

∫
|x|<R

|x|−2s+2(|∇v1|2 + |∇v2|2)dx

+4‖M̃‖2
∞

∫
|x|<R

|x|−2s+2|V |2dx + 16γ−4
∫

|x|<R
|x|−2s−2(|v3|2 + |v4|2)dx

+4
∫

|x|>R
|x|−2s+2|G5|2dx + 16s2

∫
|x|>R

|x|−2s |G6|2dx, (3.10)

where G5,G6 ∈ L2(R2) are supported in B2R\BR. Here in using (3.2), we have
replaced the parameter s by s − 1 provided s > 1.

Now combining (3.7), γ 2(3.8), γ (3.9), and (3.10) yields

γ 4s2
∫

|x|<R
|x|−2s−2(|v1|2 + |v2|2)dx + γ 2

∫
|x|<R

|x|−2s(|∇v1|2 + |∇v2|2)dx

+γ
∫

|x|<R
|x|−2s−2(|v3|2 + |v4|2)dx+

∫
|x|<R

|x|−2s+2(|∇v3|2 + |∇v4|2)dx

≤ 8‖M̃‖2
∞

∫
|x|<R

|x|−2s−2|V |2dx + 4γ 2‖M̃‖2
∞

∫
|x|<R

|x|−2s |V |2dx

+16γ 2s2
∫

|x|<R
|x|−2s−2(|v1|2 + |v2|2)dx

+8γ ‖K‖2
∞

∫
|x|<R

|x|−2s(|∇v1|2 + |∇v2|2)dx

+8γ ‖M̃‖2
∞

∫
|x|<R

|x|−2s |V |2dx

+4‖K‖2
∞

∫
|x|<R

|x|−2s+2(|∇v1|2 + |∇v2|2)dx

+4‖M̃‖2
∞

∫
|x|<R

|x|−2s+2|V |2dx+16γ−4
∫

|x|<R
|x|−2s−2(|v3|2 + |v4|2)dx

+4
∫

|x|>R
|x|−2s−2|G1|2dx + 4γ 2

∫
|x|>R

|x|−2s |G2|2dx

+16γ 2s2
∫

|x|>R
|x|−2s−2|G3|2dx + 4γ

∫
|x|>R

|x|−2s |G4|2dx

+4
∫

|x|>R
|x|−2s+2|G5|2dx + 16s2

∫
|x|>R

|x|−2s |G6|2dx. (3.11)
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In order to compare terms on both sides of (3.11), we estimate the second term
on the right side of (3.11) and obtain

4γ 2‖M̃‖2
∞

∫
|x|<R

|x|−2s |V |2dx ≤ 4γ−2s−2‖M̃‖2
∞

∫
|x|<R

|x|−2s−2|V |2dx.

Note that |x|−s1 < |x|−s2 for 0 < s1 < s2 provided that |x| < R < 1. Therefore,
carefully checking terms on both sides of (3.11), we can choose γ > 0 large
enough such that all terms with vj and ∇vj , j = 1, · · · , 4, on the right side of
(3.11) are absorbed by the left hand side. We now fix such γ . Consequently, we
get that for s > 0 (

R

2

)−2s+2 ∫
|x|<R/2

(|V |2 + |∇V |2)dx

≤
∫

|x|<R/2
|x|−2s+2(|V |2 + |∇V |2)dx

≤
∫

|x|<R
|x|−2s+2(|V |2 + |∇V |2)dx

≤ C1s
2
∫
R<|x|<2R

6∑
k=1

|x|−2s−2|Gk|2dx

≤ C1R
−2s−2s2

∫
R<|x|<2R

6∑
k=1

|Gk|2dx, (3.12)

where C1 is a positive constant. Recall that R = γ−2s−1. We therefore deduce
from (3.12) that ∫

|x|<R/2
(|V |2 + |∇V |2)dx

≤ 4C1γ
−4R−6(2−2γ−2R−1

)

∫
|x|>R

6∑
k=1

|Gi |2dx

≤ CR−6(2−2γ−2R−1
),

where C ≤ 24C1γ
−4‖V ‖2

L2(B1)
. In other words, we have

∫
|x|<R/2

(|V |2 + |∇V |2)dx ≤ C exp(−B̃R−1) (3.13)

for some constant B̃ > 0.
It should be noted that (3.13) is valid for s ∈ N+ 1

2 andR = γ−2s−1. Therefore,
if we choose s ∈ {j + 1

2 : j ∈ N}, then (3.13) only holds for Rj = γ−2(j + 1
2 )

−1.
Nevertheless, we can see that

Rj+1 < Rj < 2Rj+1 and Rj → 0 as j → ∞.
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Thus, we can conclude that
∫

|x|<R
(|V |2 + |∇V |2)dx ≤ C exp(−BR−1),

for all sufficiently small R > 0 with B = B̃/2. �


4. Carleman estimates with more singular weights

In view of Proposition 3.1, we derive two Carleman estimates with weights φs =
exp((log |x|)2s), which will be used to complete the proof of (SUCP).

Lemma 4.1. There exist a sufficiently large number s0 > 0 such that for all
v ∈ Ur0 with 0 < r0 < e−1, s ≥ s0, and σ ∈ R satisfying σ = O(|s|), we have
that

s2
∫
φ2
s (log |x|)2σ+2s−2|x|−2|v|2dx ≤

∫
(log |x|)2σφ2

s |L±v|2dx, (4.1)

where Ur0 = {v ∈ C∞
0 (R

2 \ {0}) : supp(v) ⊂ Br0}.

Proof. We will prove (4.1) only for L+. The proof of (4.1) for L− is similar.
Denote ψ(|x|) = (log |x|)2s + log[(− log |x|)σ ] for |x| < 1 and set v = e−ψw.
Then we can find that∫

e2ψ |L+v|2dx =
∫

|∂1w − i∂2ψw + i∂2w − ∂1ψw|2dx

=
∫

|∂1w − i∂2ψw|2 + |i∂2w − ∂1ψw|2

+2Re
(
(∂1w − i∂2ψw) · (i∂2w − ∂1ψw)

)
dx

≥ 2Re
∫
(∂1w − i∂2ψw) · (i∂2w − ∂1ψw)dx

= 2Re
∫
(i∂2ψw − ∂1w) · (i∂2w̄ + ∂1ψw̄)dx

= 2Re
∫
i∂2ψw∂1ψw̄dx − 2Re

∫
i∂1w∂2w̄dx

−2Re
∫
∂1w∂1ψw̄dx − 2Re

∫
∂2ψw∂2w̄dx. (4.2)

It is readily seen that

2Re
∫
i∂2ψw∂1ψw̄dx = 2Re

∫
i∂2ψ∂1ψ |w|2dx = 0. (4.3)
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Performing the integration by parts yields
∫
∂1w∂2w̄dx =

∫
∂1w∂2w̄dx

and thus

2Re
∫
i∂1w∂2w̄dx = 0. (4.4)

We now deal with the last two terms in (4.2). Using the integration by parts,
we get that

−2Re
∫
∂1w∂1ψw̄dx = − ∫ ∂1ψ∂1|w|2dx = ∫

∂2
1ψ |w|2dx. (4.5)

Similarly, we can find that

−2Re
∫
∂2ψw∂2w̄dx = −

∫
∂2ψ∂2|w|2dx =

∫
∂2

2ψ |w|2dx. (4.6)

Combining (4.2), (4.3), (4.4), (4.5) and (4.6) gives
∫
(∂2

1ψ + ∂2
2ψ)|w|2dx ≤

∫
e2ψ |L+v|2dx. (4.7)

Through direct computations, we obtain that for j = 1, 2

∂jψ = 2s(log |x|)2s−1|x|−2xj + σ(log |x|)−1|x|−2xj ,

∂2
j ψ = 2s(2s − 1)(log |x|)2s−2|x|−4x2

j − 4s(log |x|)2s−1|x|−4x2
j

+2s(log |x|)2s−1|x|−2 − σ(log |x|)−2|x|−4x2
j

−2σ(log |x|)−1|x|−4x2
j + σ(log |x|)−1|x|−2

and therefore

∂2
1ψ + ∂2

2ψ = 2s(2s − 1)(log |x|)2s−2|x|−2 − σ(log |x|)−2|x|−2

−2σ(log |x|)−1|x|−2 + 2σ(log |x|)−1|x|−2.

In other words, ∂2
1ψ+ ∂2

2ψ dominates s2(log |x|)2s−2|x|−2 in |x| < e−1 when s is
sufficiently large. Consequently, by taking s large enough, we can get from (4.7)
that
∫
s2(log |x|)2s−2|x|−2|w|2dx ≤

∫
(∂2

1ψ + ∂2
2ψ)|w|2dx ≤

∫
e2ψ |L+v|2dx

(4.8)
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for v,w ∈ Uro with r0 < e−1. Substituting w = eψv and ψ = (log |x|)2s +
log[(− log |x|)σ ] into (4.8), we immediately obtain that

s2
∫
(log |x|)2σ+2s−2|x|−2φ2

s |v|2dx

= s2
∫
(log |x|)2s−2|x|−2e2ψ |v|2dx

= s2
∫
(log |x|)2s−2|x|−2|w|2dx

≤
∫
e2ψ |L+v|2dx

=
∫
(log |x|)2σφ2

s |L+v|2dx

for v ∈ Ur0 . The proof is complete. �

As before, to handle the possible non-zero off-diagonal blockK in (2.13), we

need another Carleman estimate.

Lemma 4.2. For all s > 0, σ ∈ R, and all v ∈ C∞
0 (R

2 \ {0}) we have that
∫
φ2
s (log |x|)2σ |∇v|2dx

≤ 2
∫
φ2
s (log |x|)2σ |L±v|2dx

+32(σ 2 + 4s2)

∫
φ2
s (log |x|)2σ+4s−2|x|−2|v|2dx. (4.9)

Proof. This lemma will be proved along the lines of the proof for Lemma 3.3. As
in Lemma 3.3, let v = vR + ivI then

|L±v|2 = |∂1v ± i∂2v|2 = |∂1v|2 ∓ 2(∂1vR∂2vI − ∂1vI ∂2vR)+ |∂2v|2. (4.10)

It suffices to estimate the second term on the very right side of (4.10). Simple
integration by parts implies

|
∫
(log |x|)2σφ2

s (∂1vR∂2vI − ∂1vI ∂2vR)dx|

= | −
∫
∂1((log |x|)2σφ2

s )vR∂2vIdx +
∫
∂2((log |x|)2σφ2

s )vR∂1vIdx|

≤
∫

|2σ(log |x|)2σ−1φ2
s |x|−2x1vR∂2vI |dx

+
∫

|2σ(log |x|)2σ−1φ2
s |x|−2x2vR∂1vI |dx
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+
∫

|4s(log |x|)2σ+2s−1φ2
s |x|−2x1vR∂2vI |dx

+
∫

|4s(log |x|)2σ+2s−1φ2
s |x|−2x2vR∂1vI |dx. (4.11)

We will estimate four terms on the right side of (4.11) one by one. The main tool
is the inequality 2|a||b| ≤ ε|a|2 + ε−1|b|2 with 0 < ε < 1. We begin with the
first term∫

|2σ(log |x|)2σ−1φ2
s |x|−2x1vR∂2vI |dx

=
∫

| [(log |x|)σφs∂2vI ][2σ(log |x|)σ−1φs |x|−2x1vR]|dx

≤ ε

2

∫
(log |x|)2σφ2

s (∂2vI )
2dx + 2σ 2

ε

∫
(log |x|)2σ−2φ2

s |x|−4x2
1v

2
Rdx.

(4.12)

For other three terms, we have that∫
|2σ(log |x|)2σ−1φ2

s |x|−2x2vR∂1vI |dx

=
∫

| [(log |x|)σφs∂1vI ][2σ(log |x|)σ−1φs |x|−2x2vR]|dx

≤ ε

2

∫
(log |x|)2σφ2

s (∂1vI )
2dx + 2σ 2

ε

∫
(log |x|)2σ−2φ2

s |x|−4x2
2v

2
Rdx,

(4.13)

∫
|4s(log |x|)2σ+2s−1φ2

s |x|−2x1vR∂2vI |dx

=
∫

| [(log |x|)σφs∂2vI ][4s(log |x|)σ+2s−1φs |x|−2x1vR]|dx

≤ ε

2

∫
(log |x|)2σφ2

s (∂2vI )
2dx + 8s2

ε

∫
(log |x|)2σ+4s−2φ2

s |x|−4x2
1v

2
Rdx,

(4.14)

and∫
|4s(log |x|)2σ+2s−1φ2

s |x|−2x2vR∂1vI |dx

=
∫

| [(log |x|)σφs∂1vI ][4s(log |x|)σ+2s−1φs |x|−2x2vR]|dx

≤ ε

2

∫
(log |x|)2σφ2

s (∂1vI )
2dx + 8s2

ε

∫
(log |x|)2σ+4s−2φ2

s |x|−4x2
2v

2
Rdx.

(4.15)
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Using (4.11) to (4.15) we see that

|
∫
(log |x|)2σφ2

s (∂1vR∂2vI − ∂1vI ∂2vR)dx|

≤ ε

∫
(log |x|)2σφ2

s |∇v|2dx + (2σ 2 + 8s2)

ε

∫
(log |x|)2σ+4s−2φ2

s |x|−2v2dx.

(4.16)

Now the estimate (4.9) follows from (4.10) and (4.16) with ε = 1
4 . �


Remark 4.1. Similar to Remark 3.1, Carleman estimates (4.1) and (4.9) remain
valid if we assume v ∈ W

1,2
loc (R

2) with supp (v) ⊂ Br0 , r0 < e−1, and satisfies
that Dαv for all |α| ≤ 1 vanish of exponential order at 0, i.e., (3.6).

5. Proof of (SUCP)

We will prove the (SUCP) for any solution V of (2.13) arising from V =
P−1(u, ∂1u+ T ∂2u)

t . This result immediately implies the (SUCP) for (1.2). Let
V be a solution of (2.13) . We have shown that V ∈ W 1,2

loc (�) and satisfies (3.6). In
view of Remark 4.1, we can use the Carleman estimates (4.1) and (4.9) provided
that we cut-off V . So let ξ(x) ∈ C∞

0 (R
2) be a cut-off function satisfying ξ(x) = 1

for |x| ≤ R and ξ(x) = 0 for |x| ≥ 2R,R > 0 is sufficiently small and 2R < e−1.
As before, we set V = (v1, v2, v3, v4)

t .
Now let σ = 0 in (4.1) for the operators L+ and L− acting on ξv1 and ξv2,

respectively, we obtain from (2.13) that

s2
∫
(log |x|)2s−2φ2

s |x|−2(|ξv1|2 + |ξv2|2)dx

≤
∫
φ2
s (|L+(ξv1)|2 + |L−(ξv2)|2)dx

≤
∫

|x|<R
φ2
s (|L+v1|2 + |L−v2|2)dx +

∫
R<|x|<2R

φ2
s |F1|2dx

≤ 2‖M̃‖2
∞

∫
|x|<R

φ2
s |V |2dx +

∫
R<|x|<2R

φ2
s |F1|2dx, (5.1)

where F1 ∈ L2(B2R \ BR). Letting σ = −s in (4.1) for the operators L+ and
L− acting on ξv3 and ξv4, respectively, we have from (2.13) that

s2
∫
(log |x|)−2φ2

s |x|−2(|ξv3|2 + |ξv4|2)dx

≤
∫
(log |x|)−2sφ2

s (|L+(ξv3)|2 + |L−(ξv4)|2)dx
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≤
∫

|x|<R
(log |x|)−2sφ2

s (|L+v3|2 + |L−v4|2)dx

+
∫
R<|x|<2R

(log |x|)−2sφ2
s |F2|2dx

≤ 2‖K‖2
∞

∫
|x|<R

(log |x|)−2sφ2
s (|∇v1|2 + |∇v2|2)dx

+2‖M̃‖2
∞

∫
|x|<R

(log |x|)−2sφ2
s |V |2dx +

∫
R<|x|<2R

(log |x|)−2sφ2
s |F2|2dx,

(5.2)

where F3 ∈ L2(B2R \ BR).
Next choosing σ = −s in (4.9) for the operators L+, L− and using (2.13), we

get that

∫
|x|<R

(log |x|)−2sφ2
s (|∇v1|2 + |∇v2|2)dx

≤
∫
(log |x|)−2sφ2

s (|∇(ξv1)|2 + |∇(ξv2)|2)dx

≤ 2
∫
(log |x|)−2sφ2

s (|L+(ξv1)|2 + |L−(ξv2)|2)dx

+160s2
∫
(log |x|)2s−2φ2

s |x|−2(|ξv1|2 + |ξv2|2)dx

≤ 4‖M̃‖2
∞

∫
|x|<R

(log |x|)−2sφ2
s |V |2dx

+160s2
∫
(log |x|)2s−2φ2

s |x|−2(|ξv1|2 + |ξv2|2)dx

+
∫
R<|x|<2R

(log |x|)−2sφ2
s |F3|2dx, (5.3)

where F2 ∈ L2(B2R \ BR).
Let ζ > 0 be a large number which will be determined later. Combining

ζ×(5.1) and (5.2) leads to

ζ s2
∫
(log |x|)2s−2φ2

s |x|−2(|ξv1|2 + |ξv2|2)dx

+s2
∫
(log |x|)−2φ2

s |x|−2(|ξv3|2 + |ξv4|2)dx

≤ 2ζ‖M̃‖2
∞

∫
|x|<R

φ2
s |V |2dx + ζ

∫
R<|x|<2R

φ2
s |F1|2dx
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+2‖M̃‖2
∞

∫
|x|<R

(log |x|)−2sφ2
s |V |2dx +

∫
R<|x|<2R

(log |x|)−2sφ2
s |F3|2dx

+2‖K‖2
∞

∫
|x|<R

(log |x|)−2sφ2
s (|∇v1|2 + |∇v2|2)dx. (5.4)

Replacing the very last term of (5.4) by (5.3) implies

ζ s2
∫
(log |x|)2s−2φ2

s |x|−2(|ξv1|2 + |ξv2|2)dx

+s2
∫
(log |x|)−2φ2

s |x|−2(|ξv3|2 + |ξv4|2)dx

≤ 2ζ‖M̃‖2
∞

∫
|x|<R

φ2
s |V |2dx + ζ

∫
R<|x|<2R

φ2
s |F1|2dx

+2‖M̃‖2
∞

∫
|x|<R

(log |x|)−2sφ2
s |V |2dx +

∫
R<|x|<2R

(log |x|)−2sφ2
s |F3|2dx

+8‖M̃‖2
∞‖K‖2

∞

∫
|x|<R

(log |x|)−2sφ2
s |V |2dx

+320‖K‖2
∞s

2
∫
(log |x|)2s−2φ2

s |x|−2(|ξv1|2 + |ξv2|2)dx

+2‖K‖2
∞

∫
R<|x|<2R

(log |x|)−2sφ2
s |F2|2dx. (5.5)

We now choose ζ > 320‖K‖2
∞ and fix it. Observe that if s > 0 then

(log |x|)−2s < 1 < |x|−2(log |x|)−2 (5.6)

for all |x| < R0 with sufficiently smallR0 > 0. So from now on we fixR = R0/2.
Taking ζ as indicated and using (5.6), we get from (5.5) that for s large

s2
∫

|x|<R
φ2
s |V |2dx ≤ C

∫
R<|x|<2R

φ2
s

3∑
k=1

|Fk|2dx. (5.7)

Note that φ2
s is a decreasing function of |x| in |x| < 1. Therefore, it follows from

(5.7) that

s2
∫

|x|<R
|V |2dx ≤ C

∫
R<|x|<2R

3∑
k=1

|Fk|2dx

and thus V = 0 in |x| < R, which implies V ≡ 0 in � by standard arguments.
This ends the proof.
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