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Abstract

In this paper we consider the stationary Navier–Stokes equations in a bounded domain with a variable
viscosity. We prove that one can uniquely determine the viscosity function from the knowledge of boundary
data.
© 2007 Elsevier Inc. All rights reserved.

1. Introduction

In this work we consider the unique determination of the viscosity in an incompressible
fluid described by the stationary Navier–Stokes equations. Let Ω ⊂ R

3 be an open bounded
domain with boundary ∂Ω ∈ C∞. Assume that Ω is filled with an incompressible fluid. Let
u = (u1, u2, u3)T be the velocity vector field satisfying the stationary Navier–Stokes system

{
divσμ(u,p) − (u · ∇)u = 0 in Ω ,

divu = 0 in Ω ,
(1.1)

where

σμ(u,p) = 2μSym(∇u) − pI
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and Sym(A) = (A+AT )/2 is the symmetric part of the matrix A. Here μ(x) > 0 is the viscosity
function. The exact regularity of μ will be specified as we go along. Precisely, we can write the
first equation of (1.1) componentwise, i.e.,

(
divσμ(u,p) − (u · ∇)u

)k =
∑
j

∂j

(
2μSym(∇u)jk

) − ∂kp −
∑
j

uj ∂ju
k.

Here and below, all Roman indices are from 1 to 3 unless otherwise indicated. The second equa-
tion of (1.1) is the well-known incompressibility condition.

We are interested in the inverse problem in this paper. We first define the meaning of boundary
measurements. Mathematically, the boundary measurements are encoded in the Cauchy data of
all solutions satisfying (1.1). Precisely, we define

S̃μ := {(
u|∂Ω,σμ(u,p)n|∂Ω

)}
,

where (u,p) solves (1.1) with well-defined boundary traces u|∂Ω and σμ(u,p)n|∂Ω , n is the unit
outer normal of the ∂Ω , and u|∂Ω satisfies the compatibility condition

∫
∂Ω

u|∂Ω · nds = 0. (1.2)

We want to remark that a solution (u,p) satisfies (1.1) with nonhomogeneous Dirichlet condition
u|∂Ω is not necessarily unique (see [23]). In the physical sense, σμ(u,p)n|∂Ω represents the
Cauchy force acting on ∂Ω . The inverse problem now is to determine μ from the knowledge of
S̃μ.

To study our inverse problem, we will not consider the general Dirichlet data u|∂Ω = φ. In-
stead, we shall take

φ = εψ (1.3)

with |ε| sufficiently small and ψ ∈ H 3/2(∂Ω) satisfying the compatibility condition (1.2). For
such a choice of Dirichlet data, we can show that there exists a solution (u,p) to (1.1) with
u|∂Ω = εψ and the boundary trace σμ(u,p)n|∂Ω ∈ H 1/2(∂Ω). Thus the Cauchy data S̃μ is
meaningful in this case. When |ε| is sufficiently small, we even know that the solution (u,p) to
(1.1) is unique (p is unique up to a constant), but we do not need it. The main result of this paper
is the following global uniqueness theorem of the inverse problem.

Theorem 1. Assume that μ1(x) and μ2(x) are two viscosity functions satisfying μ1,μ2 ∈
Cn0(Ω̄) for n0 � 8 and

∂αμ1(x) = ∂αμ2(x) ∀x ∈ ∂Ω, |α| � 1. (1.4)

Let S̃μ1 and S̃μ2 be the Cauchy data associated with μ1 and μ2, respectively. If S̃μ1 = S̃μ2 then
μ1 = μ2.

When the boundary ∂Ω is convex and has nonvanishing Gauss curvature, we can remove the
assumption (1.4) from Theorem 1.
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Theorem 2. Let ∂Ω be convex with nonvanishing Gauss curvature. Assume that μ1(x) and μ2(x)

are two viscosity functions satisfying μ1,μ2 ∈ Cn0(Ω̄) for n0 � 8. If S̃μ1 = S̃μ2 then μ1 = μ2.

The parameter determination problem by boundary measurements is a rather well-studied
field. Since Calderón’s pioneer contribution [1], a key method has been the construction of com-
plex geometrical optics solutions with a large parameter which was introduced by Sylvester and
Uhlmann [22] and has become a standard method. We also refer the readers to Uhlmann’s survey
article [24]. The inverse problem for incompressible fluid governed by the Stokes equations was
studied by Heck, Li and Wang [7]. They proved a global identifiability of the viscosity para-
meter by boundary measurements using the method introduced by Eskin and Ralston [3–5] and
also related work [16,17]. To study the Navier–Stokes equations we shall apply the linearization
method. This method was first introduced by Isakov [9] in a semilinear parabolic inverse prob-
lem. This technique allows for the reduction of the semilinear inverse boundary value problem to
the corresponding linear one. The linearization strategy has been used by many authors to treat
the inverse problem for nonlinear equations, see for example [8,10–15,18–21].

The difficulty in implementing the linearization technique to our problem lies in the existence
of particular solutions to (1.1) which possess some controlled asymptotic properties. This is why
we introduce the Dirichlet condition with small parameter ε as in (1.3). The key step in the proofs
of Theorems 1 and 2 is to show that there exists a solution (uε,pε) to (1.1) with boundary con-
dition (1.3) and (ε−1uε, ε

−1pε) converges to (v0, q0) in suitable Sobolev spaces, where (v0, q0)

satisfies the Stokes equations. Subsequently, one can determine the Cauchy data associated with
the Stokes equations from S̃μ. Then the inverse problem for the Navier–Stokes equations (1.1) is
reduced to the same problem for the Stokes equations. We would like to mention that Theorems 1
and 2 for Navier–Stokes equations are counterparts of Theorem 1.1 and Corollary 1.4 in [7] for
Stokes equations.

This paper is organized as follows. In Section 2, we will prove the existence of the boundary
value problem for (1.1). In Section 3, we linearize the Cauchy data S̃μ and prove Theorems 1
and 2. In Appendix A we provide the existence, uniqueness and regularity results of the solution
of the Stokes equations which we use in Section 2.

2. Direct problem

In this section we aim to prove the existence of the boundary value problem
⎧⎪⎨
⎪⎩

div
(
σμ(u,p)

) − (u · ∇)u = 0 in Ω ,

divu = 0 in Ω ,

u = φ ∈ H 3/2(Ω) on ∂Ω

(2.1)

with the compatibility condition (1.2). When μ is a constant, this problem has been well docu-
mented in the literature, see for example [6,23]. Here we study the case where μ is a function
and the boundary value contains a small parameter.

As mentioned in the introduction, we choose φ = εψ with ψ ∈ H 3/2(∂Ω) and look for
(uε,pε) = (εvε, εqε) satisfies (2.1). The problem (2.1) is reduced to

⎧⎪⎨
⎪⎩

div
(
σμ(vε, qε)

) − ε(vε · ∇)vε = 0 in Ω ,

divvε = 0 in Ω , (2.2)
vε = ψ on ∂Ω .
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We will solve for (2.2) with the form vε = v0 + εv and qε = q0 + εq , where (v0, q0) satisfies the
Stokes equations

⎧⎪⎨
⎪⎩

div
(
σμ(v0, q0)

) = 0 in Ω ,

divv0 = 0 in Ω ,

v0 = ψ on ∂Ω ,

(2.3)

and (v, q) satisfies

⎧⎨
⎩

−div
(
σμ(v, q)

) + ε(v0 · ∇)v + ε(v · ∇)v0 + ε2(v · ∇)v = f in Ω ,

divv = 0 in Ω ,

v = 0 on ∂Ω

(2.4)

with f = −(v0 · ∇)v0.
For (2.3), we know (see Theorem 11 in Appendix A) that for each ψ ∈ H 3/2(∂Ω) there exists

a unique (v0, q0) ∈ H 2(Ω) × H 1(Ω) (q0 is unique up to a constant) satisfying (2.3) and the
estimate

‖v0‖H 2(Ω) + ‖q0‖H 1(Ω)/R � C‖ψ‖H 3/2(∂Ω), (2.5)

where ‖q0‖H 1(Ω)/R := infc∈R ‖q0 + c‖H 1(Ω). In view of the Sobolev imbedding theorem
H 2(Ω) ↪→ C0(Ω̄), we have that

‖f ‖H 1(Ω) = ∥∥(v0 · ∇)v0
∥∥

H 1(Ω)
� C‖v0‖2

H 2(Ω)
� C‖ψ‖2

H 3/2(∂Ω)
. (2.6)

Now we need to solve (2.4). We first prove an existence theorem.

Theorem 3. There exists a positive number ε0 depending on ψ such that for any |ε| � ε0,
(2.4) has at least one weak solution (v, q) ∈ H 1

0 (Ω) × L2(Ω).

Proof. As outlined in [23] for the standard Navier–Stokes equations, we solve (2.4) by the
Galerkin method. Let us denote

V = {
v ∈ H 1

0 (Ω): divv = 0
}
.

Combining Korn’s inequality and Poincaré’s inequality, H 1
0 (Ω) is a separable Hilbert space with

respect to the inner product

〈u,w〉 =
∫
Ω

S(u) · S(w̄) dx. (2.7)

Note that V is a closed subspace of H 1
0 (Ω), which is also separable. Let w1,w2, . . . be elements

of V which form a complete orthonormal system of V , where

V := {
w ∈ C∞

0 (Ω): divw = 0
}
.
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Let

vn =
n∑

j=1

ξj,nwj with ξj,n ∈ C (2.8)

satisfy

μ〈vn,wj 〉 + εb(v0, vn,wj ) + εb(vn, v0,wj ) + ε2b(vn, vn,wj ) = (f,wj ) (2.9)

for j = 1, . . . , n, where

b(u, v,w) =
∫
Ω

(u · ∇)v · w̄ dx

and

(f,w) =
∫
Ω

f · w̄ dx.

Arguing as in [23, Lemma 1.3, Chapter II], one can easily prove two properties of b(u, v,w):

b(u, v, v) = 0 for all u ∈ V, v ∈ H 1
0 (Ω) (2.10)

and

b(u, v,w) = −b(u,w,v) for all u ∈ V, v,w ∈ H 1
0 (Ω). (2.11)

Moreover, using the imbedding H 2(Ω) ↪→ C0(Ω̄), we can see that

∣∣b(v, v, v0)
∣∣ =

∣∣∣∣
∫
Ω

(v · ∇)v · v0 dx

∣∣∣∣ � C‖v0‖H 2(Ω)‖v‖2
H 1(Ω)

. (2.12)

Next we recall a technical lemma proved in [23].

Lemma 4. (See [23, Lemma 1.4, Chapter II].) Let X be a finite-dimensional Hilbert space with
inner product [·,·] and norm ‖ · ‖ and let P be a continuous map from X to itself such that

[
P(ζ ), ζ

]
> 0 for ‖ζ‖ = k > 0. (2.13)

Then there exists ζ ∈ X with ‖ζ‖ � k so that P(ζ ) = 0.

In applying Lemma 4, we take X = the space spanned by w1, . . . ,wn and the inner product
[·,·] is induced by that of V , namely, 〈·,·〉 given in (2.7). Here the norm ‖ · ‖ = ‖ · ‖H 1(Ω). We
now define P = Pn by
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[
Pn(v),w

] = 〈
Pn(v),w

〉
= μ〈v,w〉 + εb(v0, v,w) + εb(v, v0,w) + ε2b(v, v,w) − (f,w)

for v,w ∈ X. The continuity of Pn is obvious. To verify (2.13), we can see with the help of (2.10),
(2.11), and (2.12) that

[
Pn(v), v

] = μ〈v, v〉 + εb(v0, v, v) + εb(v, v0, v) + ε2b(v, v, v) − (f, v)

� C‖v‖2
H 1(Ω)

− ∣∣εb(v, v, v0)
∣∣ − ∣∣(f, v)

∣∣
� C‖v‖2

H 1(Ω)
− |ε|C′‖v0‖H 2(Ω)‖v‖2

H 1(Ω)
− ‖f ‖H−1(Ω)‖v‖H 1(Ω)

� ‖v‖H 1(Ω)

{(
C − |ε|C′‖v0‖H 2(Ω)

)‖v‖H 1(Ω) − ‖f ‖H−1(Ω)

}
,

where C and C′ are positive numbers. Therefore, if we choose a small ε0, depending on ψ , such
that

C − |ε|C′‖v0‖H 2(Ω) > 0 ∀|ε| � ε0,

then [Pn(v), v] > 0 for ‖v‖H 1(Ω) = k with

k >
‖f ‖H−1(Ω)

C − |ε|C′‖v0‖H 2(Ω)

for |ε| � ε0.

Hence, Lemma 4 guarantees the existence of vn satisfying (2.8) and (2.9).
Now we want to pass the limit of vn. Multiplying (2.9) by ξ̄j,n and summing the corresponding

equalities from 1 to n gives

μ〈vn, vn〉 + εb(v0, vn, vn) + εb(vn, v0, vn) + ε2b(vn, vn, vn) = (f, vn).

Using (2.10), (2.11), and (2.12) again, we obtain that

‖vn‖H 1(Ω) � C0‖f ‖H−1(Ω),

where C0 > 0 is uniformly in ε provided |ε| � ε0. Therefore, there exist v in V and a subsequence
{vn′ } such that

vn′ → v weakly in V. (2.14)

By the Rellich theorem, we have that

vn′ → v strongly in L2(Ω). (2.15)

With the help of (2.14) and (2.15), we can derive that

b(v0, vn′ ,w) → b(v0, v,w), (2.16)

b(vn′ , v0,w) → b(v, v0,w), (2.17)
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and

b(vn′ , vn′ ,w) → b(v, v,w) (2.18)

for all w ∈ V . The proof of (2.18) was already given in [23, Lemma 1.5, Chapter II]. As for (2.16)
and (2.17), they are easy consequences of (2.15). Therefore, passing the limit in vn′ , we obtain
that

μ〈v,wj 〉 + εb(v0, v,wj ) + εb(v, v0,wj ) + ε2b(v, v,wj ) = (f,wj )

for j = 1,2, . . . . Since w1,w2, . . . is a complete orthonormal system of V , we conclude that

μ〈v,w〉 + εb(v0, v,w) + εb(v, v0,w) + ε2b(v, v,w) = (f,w)

for all w ∈ V . Thus, there exists q ∈ L2(Ω) (and v ∈ V ) such that

−div
(
σμ(v, q)

) + ε(v0 · ∇)v + ε(v · ∇)v0 + ε2(v · ∇)v = f

in the weak sense. �
Now we have the existence of weak solution (v, q) to (2.4). To indicate the dependence of

(v, q) on ε, we denote v = ṽε and q = q̃ε . Our next task is to derive the regularity of (ṽε, q̃ε).
The aim is to show that (ṽε, q̃ε) are uniformly bounded in ε with respect to some Sobolev norms.
This enables us to consider the limiting behavior of (ε−1vε, ε

−1pε). The proof of regularity for
(ṽε, q̃ε) relies on the regularity result for the Stokes equations and the “bootstrapping” technique.
Some arguments used here are inspired by [23].

Theorem 5. Let (ṽε, q̃ε) be a weak solution of (2.4) for |ε| � ε0. We may choose ε0 < 1. Then
(ṽε, q̃ε) ∈ H 2(Ω) × H 1(Ω) and satisfies

‖ṽε‖H 2(Ω) + ‖q̃ε‖H 1(Ω)/R � C

16∑
j=2

‖ψ‖j

H 3/2(∂Ω)
(2.19)

where C is independent of ε.

Proof. To simply the notations in the proof, we reuse v = ṽε and q = q̃ε . We now write the first
equation of (2.4) in the form of Stokes equations

div
(
σμ(v, q)

) = g, divv = 0

with

g = ε(v0 · ∇)v + ε(v · ∇)v0 + ε2(v · ∇)v − f.

From the proof of the existence, we see that v ∈ H 1
0 (Ω) and

‖v‖H 1(Ω) � C‖f ‖H−1(Ω) � C‖ψ‖2
3/2 .
H (∂Ω)
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Hereafter, C, C′, C′′, and C̃ represent constants independent of ε. Their exact values are not
important. In view of the Sobolev imbedding, we have v ∈ L6(Ω). Subsequently, we get that
(v · ∇)v ∈ L3/2(Ω) and

∥∥(v · ∇)v
∥∥

L3/2(Ω)
� C‖v‖2

H 1(Ω)
� C‖ψ‖4

H 3/2(∂Ω)
.

Similarly, we have that

∥∥(v · ∇)v0
∥∥

L3/2(Ω)
� C‖v‖L6(Ω)‖v0‖H 1(Ω) � C‖ψ‖4

H 3/2(∂Ω)

and

∥∥(v0 · ∇)v
∥∥

L3/2(Ω)
� C

∥∥(v0 · ∇)v
∥∥

L2(Ω)
� C‖ψ‖4

H 3/2(∂Ω)
.

Therefore, from (2.6) we have g ∈ L3/2(Ω) and

‖g‖L3/2(Ω) � C
(
ε0‖ψ‖4

H 3/2(∂Ω)
+ ‖ψ‖2

H 3/2(∂Ω)

)
.

From now on, we choose ε0 < 1 and hence

‖g‖L3/2(Ω) � C
(‖ψ‖4

H 3/2(∂Ω)
+ ‖ψ‖2

H 3/2(∂Ω)

)
.

The regularity theorem for the Stokes equations (Theorem 11 in Appendix A) implies

‖v‖W 2,3/2(Ω) + ‖q‖W 1,3/2(Ω)/R � C‖g‖L3/2(Ω) � C
(‖ψ‖4

H 3/2(∂Ω)
+ ‖ψ‖2

H 3/2(∂Ω)

)
. (2.20)

The estimate (2.20) is not exactly what we want. We need to improve L3/2-base Sobolev
norms to L2-base ones on the left-hand side of (2.20). This can be achieved by the “bootstrap-
ping” argument. In view of Sobolev imbedding, W 2,3/2(Ω) ↪→ Lr(Ω) for any 1 < r < ∞, we
thus obtain that v ⊗ v ∈ Ls for any s ∈ (1,∞) and

∥∥(v · ∇)v
∥∥

W−1,s (Ω)
= ∥∥∇(v ⊗ v)

∥∥
W−1,s (Ω)

� C‖v‖Lr1 (Ω)‖v‖Lr2 (Ω)

� C′‖v‖2
W 2,3/2(Ω)

� C′′(‖ψ‖8
H 3/2(∂Ω)

+ ‖ψ‖4
H 3/2(∂Ω)

)
, (2.21)

where s−1 = r−1
1 + r−1

2 and C′′ = C′′(Ω, r1, r2). In the first equality of (2.21), we have used
divv = 0. On the other hand, v0 ∈ H 2(Ω) = W 2,2(Ω) ↪→ W 2,3/2(Ω). Likewise, we have that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∥∥(v · ∇)v0
∥∥

W−1,s (Ω)
� C̃

(‖ψ‖5
H 3/2(∂Ω)

+ ‖ψ‖3
H 3/2(∂Ω)

)
,∥∥(v0 · ∇)v

∥∥
W−1,s (Ω)

� C̃
(‖ψ‖5

H 3/2(∂Ω)
+ ‖ψ‖3

H 3/2(∂Ω)

)
,

‖f ‖W−1,s (Ω) = ∥∥(v0 · ∇)v0
∥∥ −1,s � C̃‖ψ‖2

3/2 ,

(2.22)
W (Ω) H (∂Ω)
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where s−1 = r−1
1 + r−1

2 and C̃ = C̃(Ω, r1, r2). Combining (2.21) and (2.22) leads to

‖g‖W−1,s (Ω) � C

8∑
j=2

‖ψ‖j

H 3/2(∂Ω)
.

Thus from Theorem 10 in Appendix A we have

‖v‖W 1,s (Ω) + ‖q‖Ls(Ω)/R � C

8∑
j=2

‖ψ‖j

H 3/2(∂Ω)

for any s ∈ (1,∞).
We need one more iteration. Due to the imbedding theorem, i.e., W 1,s(Ω) ↪→ C0(Ω̄) for

s > 3, we can see that (v · ∇)v ∈ Ls(Ω) for any s ∈ (1,∞) since Ω is bounded. In particular, we
have (v · ∇)v ∈ L2(Ω) and

∥∥(v · ∇)v
∥∥

L2(Ω)
� C

16∑
j=4

‖ψ‖j

H 3/2(∂Ω)
.

We already knew that v0 ∈ W 2,2(Ω) ↪→ C0(Ω̄). So we immediately have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∥∥(v · ∇)v0
∥∥

L2(Ω)
� C

9∑
j=3

‖ψ‖j

H 3/2(∂Ω)
,

∥∥(v0 · ∇)v
∥∥

L2(Ω)
� C

9∑
j=3

‖ψ‖j

H 3/2(∂Ω)
,

‖f ‖L2(Ω) � C‖ψ‖2
H 3/2(∂Ω)

.

In other words, we get

‖g‖L2(Ω) � C

16∑
j=2

‖ψ‖j

H 3/2(∂Ω)

and therefore Theorem 11 in Appendix A implies

‖v‖H 2(Ω) + ‖q‖H 1(Ω)/R � C

16∑
j=2

‖ψ‖j

H 3/2(∂Ω)
. �

Remark 6. Even though we will not need the uniqueness result of direct problem (2.1) in our
inverse problem, the solution (uε,pε) of (2.1) with boundary condition φ = εψ is indeed unique
(pε is unique up to constants) when |ε| is sufficiently small. This fact can be proved by modifying
arguments in [23, Theorem 1.6, Chapter II].
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3. Inverse problem

We already proved the existence of the solution to the system (1.1) with the boundary data
εψ in Section 2. More importantly, we derived the asymptotic behavior of solutions as ε → 0. In
this section we linearize the Cauchy data S̃μ and prove Theorems 1 and 2.

Given any ψ ∈ H 3/2(∂Ω), let (v0, q0) ∈ H 2(Ω)×H 1(Ω) be the unique solution (q0 is unique
up to a constant) of the Stokes equations

{
div

(
σμ(v0, q0)

) = 0 in Ω ,

divv0 = 0 in Ω
(3.1)

with boundary data v0|∂Ω = ψ (see Theorem 11 in Appendix A). As proved in the previous
section, there exists (uε,pε) with the form

uε = εv0 + ε2ṽε, pε = εq0 + ε2q̃ε

satisfying (1.1) with boundary data uε|∂Ω = εψ for all |ε| < ε0, where ε0 depends on
‖ψ‖H 3/2(∂Ω). Moreover, ṽε and q̃ε satisfy (2.19). We immediately see that

∥∥ε−1uε − v0
∥∥

H 2(Ω)
= ‖εṽε‖H 2(Ω) → 0,∥∥ε−1pε − q0

∥∥
H 1(Ω)/R

= ‖εq̃ε‖H 1(Ω)/R → 0,

and therefore

∥∥ε−1uε|∂Ω − v0|∂Ω

∥∥
H 3/2(∂Ω)

→ 0, (3.2)

∥∥ε−1σμ(uε,pε)n|∂Ω − σμ(v0, q0)n|∂Ω

∥∥
H 1/2(∂Ω)

→ 0 (3.3)

provided

∫
Ω

pε dx =
∫
Ω

q0 dx = 0.

As in [7], we define the Cauchy data associated to (3.1)

Sμ = {(
v0|∂Ω,σμ(v0, q0)n|∂Ω

)} ⊂ H 3/2(∂Ω) × H 1/2(∂Ω), (3.4)

where (v0, q0) satisfies (3.1). Now combining (3.2) and (3.3) leads to the following result:

Theorem 7. The Cauchy data Sμ of the Stokes equations can be uniquely determined from the
Cauchy data S̃μ of the Navier–Stokes equations.

In other words, let μ1 and μ2 be two viscosities, then S̃μ1 = S̃μ2 implies Sμ1 = Sμ2 . So we
reduce the uniqueness question of the inverse problem for the Navier–Stokes equations to that
for the Stokes equations. Therefore, Theorems 1 and 2 follow from Theorem 7 and the unique
determination of viscosity for the Stokes equations proved in [7].
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Theorem 8. (See [7, Theorem 1.1].) Assume that μ1(x) and μ2(x) are two viscosity functions
satisfying μ1,μ2 ∈ Cn0(Ω̄) for n0 � 8 and

∂αμ1(x) = ∂αμ2(x) ∀x ∈ ∂Ω, |α| � 1.

Let Sμ1 and Sμ2 be the Cauchy data associated with μ1 and μ2, respectively. If Sμ1 = Sμ2 then
μ1 = μ2.

Theorem 9. (See [7, Corollary 1.4].) Let ∂Ω be convex with nonvanishing Gauss curvature.
Assume that μ1(x) and μ2(x) are two viscosity functions satisfying μ1,μ2 ∈ Cn0(Ω̄) for n0 � 8.
If Sμ1 = Sμ2 then μ1 = μ2.

The regularity requirement in Theorem 8 is to make sure that Eskin’s method of [3] works
in our case. We do not know whether it is optimal. Also, we want to remark that in [7] we
define the Cauchy data of the Stokes equations as a subset of H 1/2(∂Ω) × H−1/2(∂Ω), i.e.
Sμ ⊂ H 1/2(∂Ω) × H−1/2(∂Ω). Nevertheless, the same proof in [7] still holds true when we
consider Sμ as given in (3.4).
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Appendix A. Ls (s > 1) theory for the Stokes equations

In this appendix we will prove the existence, uniqueness, and regularity of the solution to the
Stokes equations in the category of Ls when the viscosity is a function. When μ is a constant,
this problem has been well documented in the literature, see for example [6,23]. However, we
were not able to find any reference for the case where μ is a variable function. For the sake of
completeness, we provide a proof here. As before, let Ω be an open bounded domain in R

3 with
smooth boundary ∂Ω . Consider the Stokes equations

⎧⎨
⎩

divσμ(v, q) = f in Ω ,

divv = g in Ω ,

v = ψ on ∂Ω ,

(A.1)

where the viscosity μ(x) > 0 and the following compatibility condition holds:

∫
Ω

g dx =
∫

∂Ω

ψ · nds.

The system (A.1) will not be affected if we add a constant to q . We define the following norm

‖q‖Wk,s(Ω)/R := inf
c∈R

‖q + c‖Wk,s(Ω), k � −1.
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For a suitable μ(x), one can prove that

Theorem 10. Suppose μ ∈ C1,1(Ω̄). For any

f ∈ W−1,s(Ω), g ∈ Ls(Ω), ψ ∈ W 1−1/s,s(∂Ω), 1 < s < ∞,

there exists a unique solution (v, q) ∈ W 1,s(Ω)×Ls(Ω) (q is unique up to a constant) satisfying
(A.1). Moreover this solution obeys the estimate

‖v‖W 1,s (Ω) + ‖q‖Ls(Ω)/R

� C
(‖f ‖W−1,s (Ω) + ‖g‖Ls(Ω) + ‖ψ‖W 1−1/s,s (∂Ω)

)
(A.2)

where C depends on s, Ω , minx∈Ω̄ μ and ‖μ‖C1,1(Ω̄).

Theorem 11. Suppose μ ∈ Cr,1(Ω̄) with the integer r = max{m,1}, m � 0. For any

f ∈ Wm,s(Ω), g ∈ Wm+1,s(Ω), ψ ∈ Wm+2−1/s,s(∂Ω), 1 < s < ∞,

there exists a unique solution (v, q) ∈ Wm+2,s(Ω) × Wm+1,s(Ω) (q is unique up to a constant)
satisfying (A.1). Moreover this solution obeys the estimate

‖v‖Wm+2,s (Ω) + ‖q‖Wm+1,s (Ω)/R

� C
(‖f ‖Wm,s(Ω) + ‖g‖Wm+1,s (Ω) + ‖ψ‖Wm+2−1/s,s (∂Ω)

)
(A.3)

where C depends on m, s, Ω , minx∈Ω̄ μ and ‖μ‖Cr,1(Ω̄).

Remark 12. In Theorems 10 and 11, the regularity assumptions on μ are not necessarily op-
timal. We impose the least smoothness μ ∈ C1,1(Ω̄) due to the consideration of uniqueness in
Lemma 14.

When μ is a constant, these results were originally proved by Cattabriga [2], and a nice presen-
tation could be found for example in [6, Theorem IV.6.1 and Ex. IV.6.2]. Here we shall provide
a proof for the variable viscosity following general procedures used in [2,6]. From [6, Theo-
rem III.3.2], we know there exists at least one vector field w ∈ Wm+2,s(Ω) (m � −1) such that

{
divw = g in Ω ,

w = ψ on ∂Ω .

Moreover, this solution satisfies the estimate

‖w‖Wm+2,s (Ω) � C(m, s,Ω)
(‖g‖Wm+1,s (Ω) + ‖ψ‖Wm+2−1/s,s (∂Ω)

)
.

So we can always assume that g and ψ are zeros in system (A.1). Theorems 10 and 11 will be
proved together. We first show a priori estimates.
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Lemma 13. Let (v, q) ∈ W 1,s(Ω) × Ls(Ω) be a weak solution of (A.1).

(i) Suppose μ ∈ C0(Ω̄), f , g, and ψ are as in Theorem 10. We have

‖v‖W 1,s (Ω) + ‖q‖Ls(Ω)/R

� C
(‖f ‖W−1,s (Ω) + ‖g‖Ls(Ω) + ‖ψ‖W 1−1/s,s (∂Ω) + ‖v‖Ls(Ω) + ‖q‖W−1,s (Ω)

)
. (A.4)

(ii) Suppose μ ∈ Cm,1(Ω̄) (m � 0), f , g, and ψ are as in Theorem 11. We have

‖v‖Wm+2,s (Ω) + ‖q‖Wm+1,s (Ω)/R

� C
(‖f ‖Wm,s(Ω) +‖g‖Wm+1,s (Ω) +‖ψ‖Wm+2−1/s,s (∂Ω) +‖v‖Ls(Ω) +‖q‖W−1,s (Ω)

)
. (A.5)

Proof. We only need to consider the case when g and ψ are zeros. The estimate (A.4) can be
proved by freezing the coefficient and the result for the Stokes equations with constant vis-
cosity. One only needs to show (A.4) holds in a ball BR(x(0)) and a half ball B+

R (x(1)) :=
BR(x(1))∩{x3 > 0} which correspond to the interior estimate and the estimate near the boundary,
respectively. Then a finite covering of Ω̄ implies that (A.4) holds. Consider a ball B2R(x(0)) ⊂ Ω

and take a cutoff function η ∈ C∞
0 (B2R(x(0))) with η = 1 in BR(x(0)). Direct computation shows

that ηv and ηq satisfy the following constant coefficient Stokes equations

⎧⎪⎨
⎪⎩

μ
(
x(0)

)

(ηv) − ∇(ηq) = f̃ in B2R

(
x(0)

)
,

div(ηv) = g̃ in B2R

(
x(0)

)
,

ηv = 0 on ∂B2R

(
x(0)

)
,

(A.6)

where

f̃ = −div
[
2
(
μ(x) − μ

(
x(0)

))
Sym

(∇(ηv)
)] + ηf

+ div
[
2
(
μ(x) − μ

(
x(0)

))
Sym(∇η ⊗ v)

] + 2
(
μ(x) − μ

(
x(0)

))∇η · Sym(∇v)

+ 2μ
(
x(0)

)
(∇η · ∇) · v + μ

(
x(0)

)
(
η)v + q∇η

and g̃ = ∇η · v.
From [6, Theorem IV.6.1 and Ex. IV.6.2], we have

‖ηv‖W 1,s (B2R(x(0))) + ‖ηq‖Ls(B2R(x(0)))/R

� C1
(‖f̃ ‖W−1,s (B2R(x(0))) + ‖g̃‖Ls(B2R(x(0)))

)
� C2 sup

x∈B2R(x(0))

∣∣μ(x) − μ
(
x(0)

)∣∣‖ηv‖W 1,s (B2Rl(x(0)))

+ C3
(‖f ‖W−1,s (B2R(x(0))) + ‖v‖Ls(B2R(x(0))) + ‖q‖W−1,s (B2R(x(0)))

)
.

If the radius 2R of the ball is small, then supx∈B2R(x(0)) |μ(x)−μ(x(0))| will be small too because
of the continuity of μ. So the term ‖ηv‖W 1,s (B2R(x(0))) can be absorbed to the left-hand side.
Furthermore, from η = 1 in BR(x(0)) we conclude
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‖v‖W 1,s (BR(x(0))) + ‖q‖Ls(BR(x(0)))/R

� C
(‖f ‖W−1,s (B2R(x(0))) + ‖v‖Ls(B2R(x(0))) + ‖q‖W−1,s (B2R(x(0)))

)
.

A similar argument works for the half ball. Then (A.4) holds by a finite covering of Ω̄ .
The estimate (A.5) can be proved by the iteration for m > 0 provided it is true for m = 0. If

(v, q) ∈ W 2,s(Ω) × W 1,s(Ω), then (A.5) holds for m = 0 by a similar proof as for (A.4). We
use the difference quotient method to show (v, q) ∈ W 2,s(Ω) × W 1,s(Ω). The definition of the
difference quotient of a function w ∈ Wk,s(Ω) (k � 0) in the direction ej is given by

wh(x) = w(x + hej ) − w(x)

h
, h �= 0.

A useful estimate is

∥∥wh
∥∥

Wk−1,s (Ω ′) � C‖w‖Wk,s(Ω) (A.7)

for any Ω ′ satisfying Ω̄ ′ ⊂ Ω and |h| < dist(Ω ′, ∂Ω).
As before, we consider the case for a ball and a half ball only. Direct computation shows that

(ηv)h and (ηq)h satisfy the Stokes equations (A.6) with the data f̃ h, g̃h. The first term in f̃ h

will bother us a little bit. We compute

{
div

[
2
(
μ(x) − μ

(
x(0)

))
Sym

(∇(ηv)
)]}h

= div
{[

2
(
μ(x) − μ

(
x(0)

))
Sym

(∇(ηv)
)]h}

= div
[
2(μh(x)Sym

(∇(ηv)(x + hej )
)] + div

[
2
(
μ(x) − μ

(
x(0)

))
Sym

(∇(ηv)h
)]

.

From the estimate (A.4), (A.7), letting R be small as before, we know

∥∥(ηv)h
∥∥

W 1,s (B2R(x(0)))
+ ∥∥(ηq)h

∥∥
Ls(B2R(x(0)))/R

� C.

So (v, q) ∈ W 2,s(BR(x(0))) × W 1,s(BR(x(0))).
For a half ball B+

R (x(1)) := BR(x(1)) ∩ {x3 > 0}, using the same argument as for a ball, we
can conclude that the derivatives DjDkv ∈ L2(B+

R (x(1))) for all pairs (j, k) �= (3,3), and Dj ∈
L2(B+

R (x(1))) for j �= 3. Then using this obtained result and the system (A.1) satisfied by (v, q),
we can get D3D3v ∈ L2(B+

R (x(1))) and D3 ∈ L2(B+
R (x(1))). The proof is complete. �

We are going to drop the last two terms in (A.4) and in (A.5). We need the following unique-
ness result.

Lemma 14. Suppose that μ ∈ C1,1(Ω̄). If (v, q) ∈ W 1,s(Ω)×Ls(Ω) is a weak solution of (A.1)
with f = g = 0 in Ω and ψ = 0 on ∂Ω , then v = 0, q = const a.e. in Ω .

Proof. If s = 2, the uniqueness of the solution is proved in Section 2 of [7]. If s > 2, it is also
true due to Wk,s(Ω) ⊂ Wk,2(Ω), k = 0,1. If 1 < s < 2, from the second part of Lemma 13 for
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m = 1, we know (v, q) ∈ W 3,s(Ω)×W 2,s (Ω). Then the uniqueness result for 1 < s < 2 follows
from the Sobolev imbedding

W 3,s(Ω) × W 2,s(Ω) ⊂ W 1,2(Ω) × L2(Ω), for any 1 < s < 2,

and the uniqueness result for s = 2. �
Arguing as in [6, Lemma IV.6.1], one can drop the last two terms in (A.4) and in (A.5) by

Lemma 14 and compactness properties of Sobolev spaces. We obtain

Lemma 15. Let (v, q) ∈ W 1,s(Ω) × Ls(Ω) be a weak solution of (A.1).

(i) Suppose that μ, f , g and ψ are as in Theorem 10. We have

‖v‖W 1,s (Ω) + ‖q‖Ls(Ω)/R

� C
(‖f ‖W−1,s (Ω) + ‖g‖Ls(Ω) + ‖ψ‖W 1−1/s,s (∂Ω)

)
. (A.8)

(ii) Suppose that μ, f , g and ψ are as in Theorem 11. We have

‖v‖Wm+2,s (Ω) + ‖q‖Wm+1,s (Ω)/R

� C
(‖f ‖Wm,s(Ω) + ‖g‖Wm+1,s (Ω) + ‖ψ‖Wm+2−1/s,s (∂Ω)

)
. (A.9)

To finish the proofs for Theorems 10 and 11, one only needs to show the existence of weak
solution. In view of (A.9), we only need to prove Theorem 10.

Lemma 16. Suppose that μ, f , g and ψ are as in Theorem 10. Then there exists a weak solution
(v, q) ∈ W 1,s(Ω) × Ls(Ω) of (A.1).

Proof. Once again, we only consider the case while g and ψ are zeros. When s = 2, the existence
of weak solution is proved in Section 2 of [7]. For a general s ∈ (1,∞), we argue as follows.
We first prove that the weak solution (v, q) ∈ W 1,s(Ω) × Ls(Ω) exists when f ∈ W 1,2(Ω).
Since f ∈ W 1,2(Ω) ⊂ W−1,2(Ω), we already showed the existence of weak solution (v, q) ∈
W 1,2(Ω) × L2(Ω). Moreover, from (A.9) of Lemma 15 with m = 1, s = 2 and an imbedding
theorem, we obtain

(v, q) ∈ W 3,2(Ω) × W 2,2(Ω) ⊂ W 1,s(Ω) × Ls(Ω).

Now we consider the case when f ∈ W−1,s(Ω). Let us choose a sequence {fj } ⊂ C∞
0 ⊂

W 1,2(Ω) such that ‖fj − f ‖W−1,s (Ω) → 0 as j → ∞. Then there exist weak solutions
(vj , qj ) ∈ W 1,s(Ω) × Ls(Ω) corresponding to the data fj . Using (A.8) we get that there ex-
ists (v, q) ∈ W 1,s(Ω) × Ls(Ω) such that

vj → v strongly in W 1,s(Ω), qj → q strongly in Ls(Ω).

Obviously, (v, q) is a weak solution of (A.1). �
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